Chemistry:Standard electrode potential (data page)

From HandWiki
Short description: Data values of standard electrode potential
Main page: Chemistry:Standard electrode potential

The data below tabulates standard electrode potentials (E°), in volts relative to the standard hydrogen electrode, at:

  • Temperature 298.15 K (25.00 °C; 77.00 °F);
  • Effective concentration 1 mol/L for each aqueous or amalgamated (mercury-alloyed) species;
  • Unit activity for each solvent and pure solid or liquid species; and
  • Absolute partial pressure 101.325 kPa (1.00000 atm; 1.01325 bar) for each gaseous reagent — the convention in most literature data but not the current standard state (100 kPa).

The Nernst equation adjusts for general concentrations, pressures, or temperatures.

Simultaneous half-reactions do not in general add voltages, but instead add Gibbs free energy change: the product of the voltage and the number of electrons transferred, typically the Faraday constant. For example, from FeTemplate:2+ + 2e ⇌ Fe(s) (–0.44 V), the energy to create one neutral atom of Fe(s) from one FeTemplate:2+ ion and two electrons is 2 × 0.44 eV = 0.88 eV, or 84 895 J/(mol e). That value is also the standard formation energy for an FeTemplate:2+ ion, since e and Fe(s) both have zero formation energy.

Data from different sources may cause table inconsistencies. For example: [math]\displaystyle{ \begin{alignat}{4} &\ce{Cu+ + e-} &{}\rightleftharpoons{}&\ce{Cu}(s)&\quad\quad E_1=+0.520\text{ V} \\ &\ce{Cu^2+ + 2e-}&{}\rightleftharpoons{}&\ce{Cu} &\quad\quad E_2=+0.337\text{ V} \\ &\ce{Cu^2+ + e-}&{}\rightleftharpoons{}&\ce{Cu+} &\quad\quad E_3=+0.159\text{ V} \end{alignat} }[/math] Additivity of Gibbs energy implies [math]\displaystyle{ E_3=\frac{2\cdot E_2-1\cdot E_1}{1}=0.154\text{ V,} }[/math] not the experimental 0.159 V.

Table of standard electrode potentials

Legend: (s) – solid; (l) – liquid; (g) – gas; (aq) – aqueous (default for all charged species); (Hg) – amalgam; bold – water electrolysis equations.

Element Half-reaction / V Electrons Ref.
Oxidant Reductant
Sr Sr+ + e Sr(s) -4.101 1 [1]
Ca Ca+ + e Ca(s) -3.8 1 [1]
Th Th4+ + e Th3+ -3.6 1 [2]
Pr Pr3+ + e Pr2+ -3.1 1 Estimated[3]
N 3N2(g) + 2H+ + 2e 2HN3(aq) -3.09 2 [4][5]
Li Li+ + e Li(s) -3.0401 1 [5][6]:153
N N2(g) + 4H
2
O
+ 2e
2NH2OH(aq) + 2OH -3.04 2 [4]
Cs Cs+ + e Cs(s) -3.026 1 [5]
Ca Ca(OH)2 + 2e Ca(s) + 2OH -3.02 2 [1]
Er Er3+ + e Er2+ -3 1 [1]
Ba Ba(OH)2 + 2e Ba(s) + 2OH -2.99 2 [1]
Rb Rb+ + e Rb(s) -2.98 1 [5]
K K+ + e K(s) -2.931 1 [5]
Ba Ba2+ + 2e Ba(s) -2.912 2 [5]
La La(OH)3(s) + 3e La(s) + 3OH -2.9 3 [5]
Fr Fr+ + e Fr(s) -2.9 1 [1]
Sr Sr2+ + 2e Sr(s) -2.899 2 [5]
Sr Sr(OH)2 + 2e Sr(s) + 2OH -2.88 2 [1]
Ca Ca2+ + 2e Ca(s) -2.868 2 [5][6]:153
Li Li+ + C6(s) + e LiC6(s) -2.84 1 [5]
Eu Eu2+ + 2e Eu(s) -2.812 2 [5]
Ra Ra2+ + 2e Ra(s) -2.8 2 [5]
Ho Ho3+ + e -2.8 1 [1]
Bk Bk3+ + e Bk2+ -2.8 1 [1]
Yb Yb2+ + 2e Yb(s) -2.76 2 [1]
Na Na+ + e Na(s) -2.71 1 [5][7]
Mg Mg+ + e Mg(s) -2.7 1 [1]
Nd Nd3+ + e Nd2+ -2.7 1 [1]
Mg Mg(OH)2 + 2e Mg(s) + 2OH -2.69 2 [1]
Sm Sm2+ + 2e Sm(s) -2.68 2 [1]
Be Be2O2−3 + 3H
2
O
+ 4e
2Be(s) + 6OH -2.63 4 [1]
Pm Pm3+ + e Pm2+ -2.6 1 [1]
Dy Dy3+ + e Dy2+ -2.6 1 [1]
No No2+ + 2e No -2.5 2 [1]
Hf HfO(OH)2 + H
2
O
+ 4e
Hf(s) + 4OH -2.5 4 [1]
Th Th(OH)4 + 4e Th(s) + 4OH -2.48 4 [1]
Md Md2+ + 2e Md -2.4 2 [1]
Tm Tm2+ + 2e Tm(s) -2.4 2 [1]
La La3+ + 3e La(s) -2.379 3 [5]
Y Y3+ + 3e Y(s) -2.372 3 [5]
Mg Mg2+ + 2e Mg(s) -2.372 2 [5]
Sc ScF
3
(aq) + 3H+ + 3e
Sc(s) + 3HF(aq) -2.37 3 [6]:792
Zr ZrO(OH)2(s) + H
2
O
+ 4e
Zr(s) + 4OH -2.36 4 [5]
Pr Pr3+ + 3e Pr(s) -2.353 3 [1]
Ce Ce3+ + 3e Ce(s) -2.336 3 [1]
Er Er3+ + 3e Er(s) -2.331 3 [1]
Ho Ho3+ + 3e Ho(s) -2.33 3 [1]
Al H2AlO3 + H
2
O
+ 3e
Al(s) + 4OH -2.33 3 [1]
Nd Nd3+ + 3e Nd(s) -2.323 3 [1]
Tm Tm3+ + 3e Tm(s) -2.319 3 [1]
Al Al(OH)3(s) + 3e Al(s) + 3OH -2.31 3 [8]
Sm Sm3+ + 3e Sm(s) -2.304 3 [1]
Fm FmTemplate:2+ + 2e Fm -2.3 2 [1]
Am Am3+ + e Am2+ -2.3 1 [1]
Dy Dy3+ + 3e Dy(s) -2.295 3 [1]
Lu Lu3+ + 3e Lu(s) -2.28 3 [1]
Sc ScF+2 + 2H+ + 3e Sc(s) + 2HF(l) -2.28 3 [6]:792
Tb Tb3+ + 3e Tb(s) -2.28 3 [1]
Gd Gd3+ + 3e Gd(s) -2.279 3 [1]
H H2(g) + 2e 2H -2.23 2 [1]
Es Es2+ + 2e Es(s) -2.23 2 [1]
Pm Pm2+ + 2e Pm(s) -2.2 2 [1]
Tm Tm3+ + e -2.2 1 [1]
Dy Dy2+ + 2e Dy(s) -2.2 2 [1]
Ac Ac3+ + 3e Ac(s) -2.2 3 [1]
Yb Yb3+ + 3e Yb(s) -2.19 3 [1]
Cf Cf2+ + 2e Cf(s) -2.12 2 [1]
Nd Nd2+ + 2e Nd(s) -2.1 2 [1]
Ho Ho2+ + 2e Ho(s) -2.1 2 [1]
Sc Sc3+ + 3e Sc(s) -2.077 3 [9]
Al AlF3−6 + 3e Al(s) + 6F -2.069 3 [1]
Cm Cm3+ + 3e Cm(s) -2.04 3 [1]
Pu Pu3+ + 3e Pu(s) -2.031 3 [1]
Pr Pr2+ + 2e Pr(s) -2 2 [1]
Er Er2+ + 2e Er(s) -2 2 [1]
Eu Eu3+ + 3e Eu(s) -1.991 3 [1]
Lr Lr3+ + 3e Lr -1.96 3 [1]
Cf Cf3+ + 3e Cf(s) -1.94 3 [1]
Es Es3+ + 3e Es(s) -1.91 3 [1]
Pa Pa4+ + e Pa3+ -1.9 1 [1]
Am Am2+ + 2e Am(s) -1.9 2 [1]
Th Th4+ + 4e Th(s) -1.899 4 [1]
Fm Fm3+ + 3e Fm -1.89 3 [1]
N N
2
(g) + 2H
2
O
(l) + 4H+ + 2e
2NH
3
OH+
-1.87 2 [6]:789
Np Np3+ + 3e Np(s) -1.856 3 [1]
Be Be2+ + 2e Be(s) -1.847 2 [1]
P H2PO2 + e P(s) + 2OH -1.82 1 [1]
U U3+ + 3e U(s) -1.798 3 [1]
Sr Sr2+ + 2e Sr(Hg) -1.793 2 [1]
B H2BO3 + H
2
O
+ 3e
B(s) + 4OH -1.79 3 [1]
Th ThO2 + 4H+ + 4e Th(s) + 2H
2
O
-1.789 4 [1]
Hf HfO2+ + 2H+ + 4e Hf(s) + H
2
O
-1.724 4 [1]
P HPO2−3 + 2H
2
O
+ 3e
P(s) + 5OH -1.71 3 [1]
Si SiO2−3 + 3H
2
O
+ 4e
Si(s) + 6OH -1.697 4 [1]
Al Al3+ + 3e Al(s) -1.662 3 [1]
Ti Ti2+ + 2e Ti(s) -1.63 2 [7]
Zr ZrO2(s) + 4H+ + 4e Zr(s) + 2H
2
O
-1.553 4 [10]
Zr Zr4+ + 4e Zr(s) -1.45 4 [10]
Ti Ti3+ + 3e Ti(s) -1.37 3 [11]
Ti TiO(s) + 2H+ + 2e Ti(s) + H
2
O
-1.31 2 [6]:792
B B(OH)4 + 4H
2
O
(l) + 8e
BH4 + 8OH -1.24 8 [6]:788
Ga GaO(OH)2 + H
2
O
(l) + 3e
Ga(s) + 3OH -1.22 3 [6]:788
Ti Ti2O3(s) + 2H+ + 2e 2TiO(s) + H
2
O
-1.23 2 [6]:792
Zn Zn(OH)2−4 + 2e Zn(s) + 4OH -1.199 2 [10]
Mn Mn2+ + 2e Mn(s) -1.185 2 [10]
Fe Fe(CN)4−6 + 6H+ + 2e Fe(s) + 6HCN(aq) -1.16 2 [12]
C C(s) + 3H
2
O
(l) + 2e
CH
3
OH
(l) + 2OH
-1.148 2 [6]:788
Cr Cr(CN)3−6 + e Cr(CN)4−6 -1.143 1 [6]:793
Te Te(s) + 2e Te2− -1.143 2 [13]
V V2+ + 2e V(s) -1.13 2 [13]
Nb Nb3+ + 3e Nb(s) -1.099 3 [8]
Sn Sn(s) + 4H+ + 4e SnH4(g) -1.07 4
Po Po(s) + 2e Po2− -1.021 2 [14]
Cr [Cr(edta)(H2O)] + e [Cr(edta)(H2O)]2− -0.99 1 [6]:793
P 2H
3
PO
4
(aq) + 2H+ + 2e
(H
2
PO
3
)
2
(aq) + H
2
O
(l)
-0.933 2 [6]:789
C CO2−3 + 3H+ + 2e HCO2 + H
2
O
(l)
-0.93 2 [6]:788
Ti TiO2+ + 2H+ + 4e Ti(s) + H
2
O
-0.93 4
Si SiO2(quartz) + 4H+ + 4e Si(s) + 2H
2
O
-0.909 4 [6]:788
Cr Cr2+ + 2e Cr(s) -0.9 2 [6]:793
B B(OH)3(aq) + 3H+ + 3e B(s) + 3H
2
O
-0.89 3 [6]:788
Fe Fe(OH)2(s) + 2e Fe(s) + 2OH -0.89 2 [12]
Fe Fe2O3(s) + 3H
2
O
+ 2e
2Fe(OH)2(s) + 2OH -0.86 2 [12]
H 2H
2
O
+ 2e
H2(g) + 2OH -0.8277 2 [10]
Bi Bi(s) + 3H+ + 3e BiH3 -0.8 3 [10]
Zn Zn2+ + 2e Zn(Hg) -0.7628 2 [10]
Zn Zn2+ + 2e Zn(s) -0.7618 2 [10]
Ta Ta2O5(s) + 10H+ + 10e 2Ta(s) + 5H
2
O
-0.75 10
Te 2Te(s) + 2e Te2−2 -0.74 2 [6]:790
Ni Ni(OH)2(s) + 2e Ni(s) + 2OH -0.72 2 [1]
Nb Nb
2
O
5
(s) + 10H+ + 10e
2Nb(s) + 5H
2
O
(l)
-0.7 10 [6]:793
Ag Ag2S(s) + 2e 2Ag(s) + S2−(aq) -0.69 2
Te Te2−2 + 4H+ + 2e 2H
2
Te
(g)
-0.64 2 [6]:790
Sb Sb(OH)4 + 3e Sb(s) + 4OH -0.639 3 [6]:789
Au [Au(CN)2] + e Au(s) + 2CN -0.6 1
Ta Ta3+ + 3e Ta(s) -0.6 3 [8]
Pb PbO(s) + H
2
O
+ 2e
Pb(s) + 2OH -0.580 2 [8]
Ti 2TiO2(s) + 2H+ + 2e Ti2O3(s) + H
2
O
-0.56 2 [6]:792
Ga Ga3+ + 3e Ga(s) -0.549 3 [8]
U U4+ + e U3+ -0.52 1 [15]
Sb Sb + 3e SbH3 -0.51 3 [6]:789
P H3PO2(aq) + H+ + e P(white)[note 1] + 2H
2
O
-0.508 1 [10]
P H3PO3(aq) + 2H+ + 2e H3PO2(aq) + H
2
O
-0.499 2 [10]
Ni NiO2(s) + 2H
2
O
+ 2e
Ni(OH)2(s) + 2OH -0.49 2 [1]
Sb Sb(OH)6 + 2e Sb(OH)4 + 2OH -0.465 2 [6]:789
P H3PO3(aq) + 3H+ + 3e P(red)[note 1] + 3H
2
O
-0.454 3 [10]
Bi Bi
2
O
3
(s) + 3H
2
O
(l) + 6e
Bi(s) + 6OH -0.452 6 [6]:789
Ta TaF2−7 + 7H+ + 5e Ta(s) + 7HF(l) -0.45 5 [6]:793
In In3+ + 2e In+
-0.444 2 [6]:788
Cu Cu(CN)2 + e Cu(s) + 2CN -0.44 1 [13]
Fe Fe2+ + 2e Fe(s) -0.44 2 [7]
C 2CO2(g) + 2H+ + 2e HOOCCOOH(aq) -0.43 2
Cr Cr3+ + e Cr2+ -0.407 1 [8]
Cd Cd2+ + 2e Cd(s) -0.4 2 [7]
Ti Ti3+ + e Ti2+ -0.37 1 [6]:792
Cu Cu2O(s) + H
2
O
+ 2e
2Cu(s) + 2OH -0.36 2 [10]
Pb PbSO4(s) + 2e Pb(s) + SO2−4 -0.3588 2 [10]
Pb PbSO4(s) + 2e Pb(Hg) + SO2−4 -0.3505 2 [10]
Eu Eu3+ + e Eu2+ -0.35 1 [15]
In In3+ + 3e In(s) -0.34 3 [13]
Tl Tl+ + e Tl(s) -0.34 1 [13]
Ge Ge(s) + 4H+ + 4e GeH4(g) -0.29 4
Co Co2+ + 2e Co(s) -0.28 2 [10]
P H3PO4(aq) + 2H+ + 2e H3PO3(aq) + H
2
O
-0.276 2 [10]
N N2(g) + 8H+ + 6e 2NH+4 -0.27 6 [16]
V V3+ + e V2+ -0.26 1 [7]
Ni Ni2+ + 2e Ni(s) -0.257 2 [8]
S 2HSO4 + 2H+ + 2e S2O2−6 + 2H
2
O
(l)
-0.253 2 [6]:790
As As(s) + 3H+ + 3e AsH3(g) -0.23 3 [13]
N N2(g) + 5H+ + 4e N2H+5 -0.23 4 [6]:789
Ga Ga+ + e Ga(s) -0.2 1 [8]
Ag AgI(s) + e Ag(s) + I -0.15224 1 [10]
Ge GeO2(s) + 4H+ + 4e Ge(s) + H2O(l) -0.15 4 [16]
Mo MoO2(s) + 4H+ + 4e Mo(s) + 2H
2
O
-0.15 4
Si Si(s) + 4H+ + 4e SiH4(g) -0.14 4
Sn Sn2+ + 2e Sn(s) -0.13 2
O O2(g) + H+ + e HO2(aq) -0.13 1
In In+
+ e
In(s) -0.126 1 [6]:788
Pb Pb2+ + 2e Pb(s) -0.126 2 [7]
W WO2(s) + 4H+ + 4e W(s) + 2H
2
O
-0.12 4
Ge GeO2(s) + 2H+ + 2e GeO(s) + H
2
O
-0.118 2 [8]
P P(red) + 3H+ + 3e PH3(g) -0.111 3 [10]
C CO2(g) + 2H+ + 2e HCOOH(aq) -0.11 2
Se Se(s) + 2H+ + 2e H2Se(g) -0.11 2 [6]:790
C CO2(g) + 2H+ + 2e CO(g) + H
2
O
-0.11 2
Sn α-SnO(s) + 2H+ + 2e Sn(s) + H
2
O
-0.104 2 [6]:788
Cu Cu(NH3)+2 + e Cu(s) + 2NH3(aq) -0.1 1 [13]
Nb Nb
2
O
5
(s) + 10H+ + 4e
2Nb3+ + 5H
2
O
(l)
-0.1 4 [6]:793
W WO3(aq) + 6H+ + 6e W(s) + 3H
2
O
-0.09 6 [13]
Sn SnO2(s) + 2H+ + 2e α-SnO(s) + H
2
O
-0.088 2 [6]:788
Fe Fe3O4(s) + 8H+ + 8e 3Fe(s) + 4H
2
O
-0.085 8 [17]
V VOH2+ + H+ + e V2+ + H
2
O
(l)
-0.082 1 [6]:793
P P(white) + 3H+ + 3e PH3(g) -0.063 3 [10]
N N
2
O
(g) + H
2
O
(l) + 6H+ + 4e
2NH
3
OH+
-0.05 4 [6]:789
Fe Fe3+ + 3e Fe(s) -0.04 3 [12]
C HCOOH(aq) + 2H+ + 2e HCHO(aq) + H
2
O
-0.034 2 [6]:788
H 2H+ + 2e H2(g) 0 2
Ag AgBr(s) + e Ag(s) + Br 0.07133 1 [10]
S S4O2−6 + 2e 2S2O2−3 0.08 2
N N2(g) + 2H
2
O
+ 6H+ + 6e
2NH4OH(aq) 0.092 6
Hg HgO(s) + H
2
O
+ 2e
Hg(l) + 2OH 0.0977 2
Cu Cu(NH3)2+4 + e Cu(NH3)+2 + 2NH3(aq) 0.1 1 [13]
Ru Ru(NH3)3+6 + e Ru(NH3)2+6 0.1 1 [15]
N N2H4(aq) + 4H
2
O
+ 2e
2NH+4 + 4OH 0.11 2 [4]
Mo H2MoO4(aq) + 6H+ + 6e Mo(s) + 4H
2
O
0.11 6
Ge Ge4+ + 4e Ge(s) 0.12 4
C C(s) + 4H+ + 4e CH4(g) 0.13 4 [13]
C HCHO(aq) + 2H+ + 2e CH3OH(aq) 0.13 2
S S(s) + 2H+ + 2e H2S(g) 0.144 2 [6]:790
Sb Sb2O3(s) + 6H+ + 6e 2Sb(s) + 3H2O 0.15 6 [6]:789
Sn Sn4+ + 2e Sn2+ 0.151 2 [8]
S HSO4 + 3H+ + 2e SO2(aq) + 2H
2
O
0.158 2 [6]:790
Cu Cu2+ + e Cu+ 0.159 1 [13]
U UO2+2 + e UO+2 0.163 1 [15]
S SO2−4 + 4H+ + 2e SO2(aq) + 2H
2
O
0.17 2
Ti TiO2+ + 2H+ + e Ti3+ + H
2
O
0.19 1
Sb SbO+ + 2H+ + 3e Sb(s) + H
2
O
0.2 3
Fe 3Fe2O3(s) + 2H+ + 2e 2Fe3O4(s) + H
2
O
0.22 2 [18]:p.100
Ag AgCl(s) + e Ag(s) + Cl 0.22233 1 [10]
As H3AsO3(aq) + 3H+ + 3e As(s) + 3H
2
O
0.24 3 [6]:789
Ru Ru3+(aq) + e Ru2+(aq) 0.249 1 [19]
Pb PbO
2
(s) + H
2
O
+ 2e
α-PbO(s) + 2OH 0.254 2 [6]:788
Ge GeO(s) + 2H+ + 2e Ge(s) + H
2
O
0.26 2
Hg Hg
2
Cl
2
(s) + 2e
2Hg(l) + 2Cl
0.27 2 [16]
U UO+2 + 4H+ + e U4+ + 2H
2
O
0.273 1 [15]
Re Re3+ + 3e Re(s) 0.300 3 [8]
At At + e At 0.3 1 [20]
Bi Bi3+ + 3e Bi(s) 0.308 3 [10]
C 2HCNO + 2H+ + 2e (CN)2 + 2H
2
O
0.330 2 [8]
Cu Cu2+ + 2e Cu(s) 0.337 2 [13]
V VO2+ + 2H+ + e V3+ + H
2
O
0.337 1 [6]:793
Sb Sb
2
O
4
(s) + 2H+ + 2e
Sb
2
O
3
(s) + H
2
O
(l)
0.342 2 [6]:789
At At+ + 2e At- 0.36 2 [21]
Fe [Fe(CN)6]3− + e [Fe(CN)6]4− 0.3704 1 [22]
C (CN)2 + 2H+ + 2e 2HCN 0.373 2 [8]
P (H
2
PO
3
)
2
(aq) + 2H+ + 2e
2H
3
PO
3
0.38 2 [6]:789
S 2SO2(aq) + 2H+ + 2e S2O2−3 + H2O(l) 0.4 2 [6]:790
O O2(g) + 2H
2
O
+ 4e
4OH(aq) 0.401 4 [7]
Mo H2MoO4 + 6H+ + 3e Mo3+ + 4H
2
O
0.43 3
Ru Ru2+(aq) + 2e Ru 0.455 2 [19]
V VO(OH)+
+ 2H+ + e
VOH2+ + H
2
O
(l)
0.481 1 [6]:793
C CH3OH(aq) + 2H+ + 2e CH4(g) + H
2
O
0.5 2
S SO2(aq) + 4H+ + 4e S(s) + 2H
2
O
0.5 4 [6]:790
S 4SO2(aq) + 4H+ + 8e S4O4−6 + 2H
2
O
(l)
0.51 8 [16]
Cu Cu+ + e Cu(s) 0.52 1 [13]
C CO(g) + 2H+ + 2e C(s) + H
2
O
0.52 2 [6]:788
I I3 + 2e 3I 0.53 2 [7]
Te TeO
2
(s) + 4H+ + 4e
Te(s) + 2H
2
O
(l)
0.53 4 [6]:790
Cu Cu2+ + Cl
+ e
CuCl(s) 0.54 1 [16]
I I2(s) + 2e 2I 0.54 2 [7]
Au [AuI4] + 3e Au(s) + 4I 0.56 3
As H3AsO4(aq) + 2H+ + 2e H3AsO3(aq) + H
2
O
0.56 2 [6]:789
S S2O2−6 + 4H+ + 2e 2H
2
SO
3
0.569 2 [6]:790
Au [AuI2] + e Au(s) + 2I 0.58 1
Mn MnO4 + 2H
2
O
+ 3e
MnO2(s) + 4OH 0.595 3 [1]
S S2O2−3 + 6H+ + 4e 2S(s) + 3H
2
O
0.6 4 [6]:790
Fe Fc+ + e Fc(s) 0.63 1 Substantial literature variation[23]
Mo H2MoO4(aq) + 2H+ + 2e MoO2(s) + 2H
2
O
0.65 2
N HN3(aq) + 11H+ + 8e 3NH+4 0.69 8 [16]
O O2(g) + 2H+ + 2e H2O2(aq) 0.695 2 [8]
Sb Sb
2
O
5
(s) + 4H+ + 4e
Sb
2
O
3
(s) + 2H
2
O
0.699 4 [6]:789
C 1,4-Benzochinon.svg + 2H+ + 2e Hydrochinon2.svg 0.6992 2 [10]
V H2V10O4−28 + 24H+ + 10e 10VO(OH)+
+ 8H
2
O
(l)
0.723 10 [6]:793
Pt PtCl2−6 + 2e PtCl2−4 + 2Cl 0.726 2 [15]
Fe Fe2O3(s) + 6H+ + 2e 2Fe2+ + 3H
2
O
0.728 2 [18]:p.100
Se H2SeO3(aq) + 4H+ + 4e Se(s) + 3H
2
O
0.74 4 [8]
At AtO+ + 2H+ + 2e At+ + H
2
O
0.74 2 [21]
Tl Tl3+ + 3e Tl(s) 0.741 3 [8]
No No3+ + e No2+ 0.75 1 [24]
Pt PtCl2−4 + 2e Pt(s) + 4Cl 0.758 2 [15]
Br BrO
+ H
2
O
(l) + 2e
Br
+ 2OH
0.76 2 [6]:791
Po Po4+ + 4e Po 0.76 4 [8]
S (SCN)2 + 2e 2SCN- 0.77 2 [8]
Fe Fe3+ + e Fe2+ 0.771 1 [8]
Hg Hg2+2 + 2e 2Hg(l) 0.7973 2 [8]
Ag Ag+ + e Ag(s) 0.7996 1 [10]
N 2NO3(aq) + 4H+ + 2e N2O4(g) + 2H
2
O
0.803 2 [6]:789
Fe 2FeO2−4 + 5H
2
O
+ 6e
Fe2O3(s) + 10OH 0.81 6 [12]
Au [AuBr4] + 3e Au(s) + 4Br 0.85 3
Hg Hg2+ + 2e Hg(l) 0.85 2
Ir [IrCl6]2− + e [IrCl6]3− 0.87 1 [6]:153
Mn MnO4 + H+ + e HMnO4 0.9 1
Po Po4+ + 2e Po2+ 0.9 2 [8]
Hg 2Hg2+ + 2e Hg2+2 0.91 2 [13]
Pd Pd2+ + 2e Pd(s) 0.915 2 [15]
Au [AuCl4] + 3e Au(s) + 4Cl 0.93 3
N NO3 + 3H+ + 2e HNO
2
(aq)
0.94 2 [6]:789
Mn MnO2(s) + 4H+ + e Mn3+ + 2H
2
O
0.95 1
N NO3(aq) + 4H+ + 3e NO(g) + 2H
2
O
(l)
0.958 3 [7]
Au [AuBr2] + e Au(s) + 2Br 0.96 1
Fe Fe3O4(s) + 8H+ + 2e 3Fe2+ + 4H
2
O
0.98 2 [18]:p.100
Xe [HXeO6]3− + 2H
2
O
+ 2e
[HXeO4] + 4OH 0.99 2 [6]:792[25]
N HNO
2
(aq) + H+ + e
NO(g) + H
2
O
(l)
0.996 1 [6]:789
At HAtO + H+ + e At + H
2
O
1.0 1 [20]
V [VO2]+(aq) + 2H+ + e [VO]2+(aq) + H
2
O
1 1 [26]
Te H6TeO6(aq) + 2H+ + 2e TeO2(s) + 4H
2
O
1.02 2 [26]
N NO2(g) + 2H+ + 2e NO(g) + H2O(l) 1.03 2 [16]
Br Br3 + 2e 3Br 1.05 2 [16]
Sb Sb
2
O
5
(s) + 2H+ + 2e
Sb
2
O
4
(s) + H
2
O
(l)
1.055 2 [6]:789
I ICl2 + e 2Cl + I(s) 1.06 1 [16]
Br Br2(l) + 2e 2Br 1.066 2 [10]
N N
2
O
4
(g) + 2H+ + 2e
2HNO
2
1.07 2 [6]:789
Br Br2(aq) + 2e 2Br 1.0873 2 [10]
Ru RuO2 + 4H+ + 2e Ru2+(aq) + 2H
2
O
1.120 2 [19]
Cu Cu2+ + 2CN + e Cu(CN)2 1.12 1 [13]
I IO3 + 5H+ + 4e HIO(aq) + 2H
2
O
1.13 4 [6]:791
O H
2
O
2
(aq) + H+ + e
H
2
O
(l) + HO•
1.14 1 [6]:790
Au [AuCl2] + e Au(s) + 2Cl 1.15 1
Se HSeO4 + 3H+ + 2e H2SeO3(aq) + H
2
O
1.15 2 [6]:790
Ag Ag2O(s) + 2H+ + 2e 2Ag(s) + H
2
O
1.17 2
Cl ClO3 + 2H+ + e ClO2(g) + H
2
O
1.175 1 [6]:791
Xe [HXeO6]3− + 5H
2
O
+ 8e
Xe(g) + 11OH 1.18 8 [25]
Pt Pt2+ + 2e Pt(s) 1.188 2 [15]
Cl ClO2(g) + H+ + e HClO2(aq) 1.19 1 [27]
I 2IO3 + 12H+ + 10e I2(s) + 6H
2
O
1.2 10 [16]
Mn MnO2(s) + 4H+ + 2e Mn2+ + 2H
2
O
1.224 2 [10]
O O2(g) + 4H+ + 4e 2H
2
O
1.229 4 [7]
N N2H+5 + 3H+ + 2e 2NH+4 1.28 2 [6]:789
Cl ClO4 + 2H+ + 2e ClO3 + H
2
O
1.23 2 [28]
Ru [Ru(bipy)3]3+ + e [Ru(bipy)3]2+ 1.24 1 [1]
Xe [HXeO4] + 3H
2
O
+ 6e
Xe(g) + 7OH 1.24 6 [6]:792[25]
N 2NO3 + 12H+ + 10e N
2
(g) + 6H
2
O
(l)
1.25 10 [6]:789
Tl Tl3+ + 2e Tl+ 1.25 2 [6]:788
N 2HNO
2
(aq) + 4H+ + 4e
N
2
O
(g) + 3H
2
O
(l)
1.297 4 [6]:789
Cr Cr2O2−7 + 14H+ + 6e 2Cr3+ + 7H
2
O
1.38 6 [6]:793
N NH
3
OH+
+ 2H+ + 2e
NH+4 + H
2
O
(l)
1.35 2 [6]:789
Cl Cl2(g) + 2e 2Cl 1.36 2 [7]
Ru RuO4(aq) + 8H+ + 5e Ru2+(aq) + 4H
2
O
1.368 5 [19]
Ru RuO4 + 4H+ + 4e RuO2 + 2H
2
O
1.387 4 [19]
Co CoO2(s) + 4H+ + e Co3+ + 2H
2
O
1.42 1
N 2NH3OH+ + H+ + 2e N2H+5 + 2H
2
O
1.42 2 [4]
I 2HIO(aq) + 2H+ + 2e I2(s) + 2H
2
O
1.44 2 [6]:791
Br BrO3 + 5H+ + 4e HBrO(aq) + 2H
2
O
1.447 4 [6]:791
Pb β-PbO2(s) + 4H+ + 2e Pb2+ + 2H
2
O
1.46 2 [13]
Pb α-PbO2(s) + 4H+ + 2e Pb2+ + 2H
2
O
1.468 2 [13]
Br 2BrO3 + 12H+ + 10e Br2(l) + 6H
2
O
1.48 10
At HAtO3 + 4H+ + 4e HAtO + 2H
2
O
1.5 4 [20]
Mn MnO4 + 8H+ + 5e Mn2+ + 4H
2
O
1.51 5 [16]
O HO2 + H+ + e H2O2(aq) 1.51 1
Au Au3+ + 3e Au(s) 1.52 3
Ru RuO2−4(aq) + 8H+ + 4e Ru2+(aq) + 4H
2
O
1.563 4 [19]
N 2NO(g) + 2H+ + 2e N
2
O
(g) + H
2
O
(l)
1.59 2 [6]:789
Ni NiO2(s) + 2H+ + 2e Ni2+ + 2OH 1.59 2
Ce Ce4+ + e Ce3+ 1.61 1
Cl 2HClO(aq) + 2H+ + 2e Cl2(g) + 2H
2
O
1.63 2 [27]
I IO4 + 2H+ + 2e IO3 + H
2
O
1.64 2 [28]
Ag Ag2O3(s) + 6H+ + 4e 2Ag+ + 3H
2
O
1.67 4
Cl HClO2(aq) + 2H+ + 2e HClO(aq) + H
2
O
1.67 2 [27]
Pb Pb4+ + 2e Pb2+ 1.69 2 [13]
Mn MnO4 + 4H+ + 3e MnO2(s) + 2H
2
O
1.7 3 [16]
Br BrO4 + 2H+ + 2e BrO3 + H
2
O
1.74 2 [28]
Ag AgO(s) + 2H+ + e Ag+ + H
2
O
1.77 1
N N
2
O
(g) + 2H+ + 2e
N
2
(g) + H
2
O
(l)
1.77 2 [6]:789
O H2O2(aq) + 2H+ + 2e 2H
2
O
1.78 2 [27]
Au Au+ + e Au(s) 1.83 1 [13]
Co Co3+ + e Co2+ 1.92 1 [8]
Ag Ag2+ + e Ag+ 1.98 1 [13]
O S2O2−8 + 2e 2SO2−4 2.01 2 [10]
O O3(g) + 2H+ + 2e O2(g) + H
2
O
2.075 2 [15]
Mn HMnO4 + 3H+ + 2e MnO2(s) + 2H
2
O
2.09 2
Xe XeO3(aq) + 6H+ + 6e Xe(g) + 3H
2
O
2.12 6 [6]:792[25]
Xe H4XeO6(aq) + 8H+ + 8e Xe(g) + 6H
2
O
2.18 8 [6]:792[25]
Fe FeO2−4 + 8H+ + 3e Fe3+ + 4H
2
O
2.2 3 [29]
Xe XeF2(aq) + 2H+ + 2e Xe(g) + 2HF(aq) 2.32 2 [25][27]
O HO• + H+ + e H
2
O
(l)
2.38 1 [6]:790
Xe H4XeO6(aq) + 2H+ + 2e XeO3(aq) + 3H
2
O
2.42 2 [25][6]:792
F F2(g) + 2e 2F 2.87 2 [6]:153[7][13]
Cm Cm4+ + e Cm3+ 3.0 1 Estimated[3]
F F2(g) + 2H+ + 2e 2HF(aq) 3.077 2 [3]
Tb Tb4+ + e Tb3+ 3.1 1 Estimated[3]
Pr Pr4+ + e Pr3+ 3.2 1 Estimated[3]
Kr KrF2(aq) + 2e Kr(g) + 2F(aq) 3.27 2 Estimated[30]

See also

Notes

  1. Jump up to: 1.0 1.1 Not specified in the indicated reference, but assumed due to the difference between the value −0.454 and that computed by (2×(−0.499) + (−0.508))/3 = −0.502, exactly matching the difference between the values for white (−0.063) and red (−0.111) phosphorus in equilibrium with PH3.

References

  1. Jump up to: 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.40 1.41 1.42 1.43 1.44 1.45 1.46 1.47 1.48 1.49 1.50 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.69 1.70 1.71 1.72 1.73 Lide, David R., ed (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, FL: CRC Press. ISBN 0-8493-0487-3. 
  2. Greenwood and Earnshaw, p. 1263
  3. Jump up to: 3.0 3.1 3.2 3.3 3.4 Bratsch, Stephen G. (July 29, 1988). "Standard electrode potentials and temperature coefficients in water at 298.15 K". Journal of Physical and Chemical Reference Data (American Institute of Physics) 18 (1): 1-21. 1989. doi:10.1063/1.555839. https://srd.nist.gov/jpcrdreprint/1.555839.pdf. 
  4. Jump up to: 4.0 4.1 4.2 4.3 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8. 
  5. Jump up to: 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12 5.13 5.14 5.15 5.16 Vanýsek, Petr (2011). "Electrochemical Series". in Haynes, William M.. CRC Handbook of Chemistry and Physics (92nd ed.). CRC Press. pp. 5–80–9. ISBN 978-1-4398-5512-6. https://books.google.com/books?id=pYPRBQAAQBAJ&pg=SA5-PA80. 
  6. Jump up to: 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 6.21 6.22 6.23 6.24 6.25 6.26 6.27 6.28 6.29 6.30 6.31 6.32 6.33 6.34 6.35 6.36 6.37 6.38 6.39 6.40 6.41 6.42 6.43 6.44 6.45 6.46 6.47 6.48 6.49 6.50 6.51 6.52 6.53 6.54 6.55 6.56 6.57 6.58 6.59 6.60 6.61 6.62 6.63 6.64 6.65 6.66 6.67 6.68 6.69 6.70 6.71 6.72 6.73 6.74 6.75 6.76 6.77 6.78 6.79 6.80 6.81 6.82 6.83 Atkins, Peter; Overton, Tina; Rourke, Jonathan; Weller, Mark; Armstrong, Fraser; Hagerman, Michael (2010). Inorganic Chemistry (5th ed.). New York: W. H. Freeman. ISBN 978-1-42-921820-7. 
  7. Jump up to: 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 7.12 Atkins, Peter W. (1997). Physical Chemistry (6th ed.). W.H. Freeman. ISBN 9780716734659. 
  8. Jump up to: 8.00 8.01 8.02 8.03 8.04 8.05 8.06 8.07 8.08 8.09 8.10 8.11 8.12 8.13 8.14 8.15 8.16 8.17 8.18 8.19 8.20 8.21 Petr Vanysek. "Electrochemical series". http://depa.fquim.unam.mx/amyd/archivero/TablasdepotencialesREDOX_26700.pdf. 
  9. David R. Lide, ed., CRC Handbook of Chemistry and Physics, Internet Version 2005, http://www.hbcpnetbase.com , CRC Press, Boca Raton, FL, 2005.
  10. Jump up to: 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 10.12 10.13 10.14 10.15 10.16 10.17 10.18 10.19 10.20 10.21 10.22 10.23 10.24 10.25 10.26 10.27 Vanýsek, Petr (2012). "Electrochemical Series". in Haynes, William M.. Handbook of Chemistry and Physics (93rd ed.). CRC Press. pp. 5–80. ISBN 9781439880494. https://books.google.com/books?id=-BzP7Rkl7WkC&pg=SA5-PA80. 
  11. Aylward, Gordon; Findlay, Tristan (2008). SI Chemical Data (6th ed.). Wiley. ISBN 978-0-470-81638-7. 
  12. Jump up to: 12.0 12.1 12.2 12.3 12.4 "compounds information". Iron. WebElements Periodic Table of the Elements. http://www.webelements.com/iron/compounds.html. 
  13. Jump up to: 13.00 13.01 13.02 13.03 13.04 13.05 13.06 13.07 13.08 13.09 13.10 13.11 13.12 13.13 13.14 13.15 13.16 13.17 13.18 13.19 13.20 Bard, Allen J.; Parsons, Roger; Jordan, Joseph (1985). Standard Potentials in Aqueous Solution. CRC Press. ISBN 978-0-8247-7291-8. https://books.google.com/books?id=fuJV1H18KtEC. 
  14. Brown, Susan A.; Brown, Paul L. (2020). "The pH-potential diagram for polonium". The Aqueous Chemistry of Polonium and the Practical Application of its Thermochemistry. Elsevier. doi:10.1016/b978-0-12-819308-2.00004-8. ISBN 978-0-12-819308-2. 
  15. Jump up to: 15.0 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 Bard, A.J.; Faulkner, L.R. (2001). Electrochemical Methods. Fundamentals and Applications (2nd ed.). Wiley. ISBN 9781118312803. 
  16. Jump up to: 16.00 16.01 16.02 16.03 16.04 16.05 16.06 16.07 16.08 16.09 16.10 16.11 Lee, J. L. (1983). A New Concise Inorganic Chemistry (3rd ed.). London / Wokingham, Berkshire: English Language Book Society & Van Nostrand Reinhold (UK). ISBN 0-442-30179-0. 
  17. Pourbaix, Marcel (1966). Atlas of Electrochemical Equilibria in Aqueous Solutions. Houston, Texas; Cebelcor, Brussels: NACE International. OCLC 475102548. 
  18. Jump up to: 18.0 18.1 18.2 Pang, Suh Cem; Chin, Suk Fun; Anderson, Marc A. (July 2007). "Redox equilibria of iron oxides in aqueous-based magnetite dispersions: Effect of pH and redox potential". J. Colloid Interface Sci. 311 (1): 94–101. doi:10.1016/j.jcis.2007.02.058. PMID 17395194. Bibcode2007JCIS..311...94P. https://www.academia.edu/9254087. Retrieved 2017-03-26. 
  19. Jump up to: 19.0 19.1 19.2 19.3 19.4 19.5 Greenwood and Earnshaw, p. 1077
  20. Jump up to: 20.0 20.1 20.2 Lavrukhina, Avgusta Konstantinovna; Pozdni︠a︡kov, Aleksandr Aleksandrovich (1970). Analytical chemistry of technetium, promethium, astatine and francium. Ann Arbor: Ann Arbor-Humphrey Science Publishers. p. 237. ISBN 0-250-39923-7. OCLC 186926. 
  21. Jump up to: 21.0 21.1 Champion, J.; Alliot, C.; Renault, E.; Mokili, B. M.; Chérel, M.; Galland, N.; Montavon, G. (2009-12-16). "Astatine Standard Redox Potentials and Speciation in Acidic Medium". The Journal of Physical Chemistry A (American Chemical Society (ACS)) 114 (1): 576–582. doi:10.1021/jp9077008. ISSN 1089-5639. PMID 20014840. http://hal.in2p3.fr/in2p3-00450771/file/JPCA_2010.pdf. 
  22. Rock, Peter A. (February 1966). "The Standard Oxidation Potential of the Ferrocyanide-Ferricyanide Electrode at 25° and the Entropy of Ferrocyanide Ion". The Journal of Physical Chemistry 70 (2): 576–580. doi:10.1021/j100874a042. ISSN 0022-3654. 
  23. Pavlishchuk, Vitaly V.; Addison, Anthony W. (January 2000). "Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C". Inorganica Chimica Acta 298 (1). doi:10.1016/S0020-1693(99)00407-7. 
  24. Toyoshima, A.; Kasamatsu, Y.; Tsukada, K.; Asai, M.; Kitatsuji, Y.; Ishii, Y.; Toume, H.; Nishinaka, I. et al. (8 July 2009). "Oxidation of element 102, nobelium, with flow electrolytic column chromatography on an atom-at-a-time scale". Journal of the American Chemical Society 131 (26): 9180–1. doi:10.1021/ja9030038. PMID 19514720. https://figshare.com/articles/Oxidation_of_Element_102_Nobelium_with_Flow_Electrolytic_Column_Chromatography_on_an_Atom_at_a_Time_Scale/2844817. 
  25. Jump up to: 25.0 25.1 25.2 25.3 25.4 25.5 25.6 "compounds information". Xenon. WebElements Periodic Table of the Elements. http://www.webelements.com/xenon/compounds.html. 
  26. Jump up to: 26.0 26.1 Cotton, F. Albert; Wilkinson, Geoffrey; Murillo, Carlos A.; Bochmann, Manfred (1999), Advanced Inorganic Chemistry (6th ed.), New York: Wiley-Interscience, ISBN 0-471-19957-5 .
  27. Jump up to: 27.0 27.1 27.2 27.3 27.4 Ghosh, Abhik; Berg, Steffen (2014). Arrow Pushing in Inorganic Chemistry: A logical approach to the chemistry of the main-group elements. Hoboken: Wiley. ISBN 978-1-118-17398-5. 
  28. Jump up to: 28.0 28.1 28.2 Appelman, Evan H. (1973-04-01). "Nonexistent compounds. Two case histories". Accounts of Chemical Research (American Chemical Society (ACS)) 6 (4): 113–117. doi:10.1021/ar50064a001. ISSN 0001-4842. 
  29. Courtney, Arlene. "Oxidation Reduction Chemistry of the Elements". Ch 412 Advanced Inorganic Chemistry: Reading Materials. Western Oregon University. https://people.wou.edu/~courtna/ch412/redox.htm. 
  30. Leszczyński, P.J.; Grochala, W. (2013). "Strong Cationic Oxidizers: Thermal Decomposition, Electronic Structure and Magnetism of Their Compounds". Acta Chim. Slov. 60 (3): 455–470. PMID 24169699. http://acta-arhiv.chem-soc.si/60/60-3-455.pdf. 

External links