Chemistry:Standard electrode potential (data page)

From HandWiki
Short description: Data values of standard electrode potential
Main page: Chemistry:Standard electrode potential

The data below tabulates standard electrode potentials (E°), in volts relative to the standard hydrogen electrode, at:

  • Temperature 298.15 K (25.00 °C; 77.00 °F);
  • Effective concentration 1 mol/L for each aqueous or amalgamated (mercury-alloyed) species;
  • Unit activity for each solvent and pure solid or liquid species; and
  • Absolute partial pressure 101.325 kPa (1.00000 atm; 1.01325 bar) for each gaseous reagent — the convention in most literature data but not the current standard state (100 kPa).

The Nernst equation adjusts for general concentrations, pressures, or temperatures.

Simultaneous half-reactions do not in general add voltages, but instead add Gibbs free energy change: the product of the voltage and the number of electrons transferred, typically the Faraday constant. For example, from FeTemplate:2+ + 2e ⇌ Fe(s) (–0.44 V), the energy to create one neutral atom of Fe(s) from one FeTemplate:2+ ion and two electrons is 2 × 0.44 eV = 0.88 eV, or 84 895 J/(mol e). That value is also the standard formation energy for an FeTemplate:2+ ion, since e and Fe(s) both have zero formation energy.

Data from different sources may cause table inconsistencies. For example: [math]\displaystyle{ \begin{alignat}{4} &\ce{Cu+ + e-} &{}\rightleftharpoons{}&\ce{Cu}(s)&\quad\quad E_1=+0.520\text{ V} \\ &\ce{Cu^2+ + 2e-}&{}\rightleftharpoons{}&\ce{Cu} &\quad\quad E_2=+0.337\text{ V} \\ &\ce{Cu^2+ + e-}&{}\rightleftharpoons{}&\ce{Cu+} &\quad\quad E_3=+0.159\text{ V} \end{alignat} }[/math] Additivity of Gibbs energy implies [math]\displaystyle{ E_3=\frac{2\cdot E_2-1\cdot E_1}{1}=0.154\text{ V,} }[/math] not the experimental 0.159 V.

Table of standard electrode potentials

Legend: (s) – solid; (l) – liquid; (g) – gas; (aq) – aqueous (default for all charged species); (Hg) – amalgam; bold – water electrolysis equations.

Element Half-reaction / V Electrons Ref.
Oxidant Reductant
Sr Sr+ + e Sr(s) -4.101 1 [1]
Ca Ca+ + e Ca(s) -3.8 1 [1]
Th Th4+ + e Th3+ -3.6 1 [2]
Pr Pr3+ + e Pr2+ -3.1 1 Estimated[3]
N 3N2(g) + 2H+ + 2e 2HN3(aq) -3.09 2 [4][5]
Li Li+ + e Li(s) -3.0401 1 [5][6]:153
N N2(g) + 4H
2
O
+ 2e
2NH2OH(aq) + 2OH -3.04 2 [4]
Cs Cs+ + e Cs(s) -3.026 1 [5]
Ca Ca(OH)2 + 2e Ca(s) + 2OH -3.02 2 [1]
Er Er3+ + e Er2+ -3 1 [1]
Ba Ba(OH)2 + 2e Ba(s) + 2OH -2.99 2 [1]
Rb Rb+ + e Rb(s) -2.98 1 [5]
K K+ + e K(s) -2.931 1 [5]
Ba Ba2+ + 2e Ba(s) -2.912 2 [5]
La La(OH)3(s) + 3e La(s) + 3OH -2.9 3 [5]
Fr Fr+ + e Fr(s) -2.9 1 [1]
Sr Sr2+ + 2e Sr(s) -2.899 2 [5]
Sr Sr(OH)2 + 2e Sr(s) + 2OH -2.88 2 [1]
Ca Ca2+ + 2e Ca(s) -2.868 2 [5][6]:153
Li Li+ + C6(s) + e LiC6(s) -2.84 1 [5]
Eu Eu2+ + 2e Eu(s) -2.812 2 [5]
Ra Ra2+ + 2e Ra(s) -2.8 2 [5]
Ho Ho3+ + e -2.8 1 [1]
Bk Bk3+ + e Bk2+ -2.8 1 [1]
Yb Yb2+ + 2e Yb(s) -2.76 2 [1]
Na Na+ + e Na(s) -2.71 1 [5][7]
Mg Mg+ + e Mg(s) -2.7 1 [1]
Nd Nd3+ + e Nd2+ -2.7 1 [1]
Mg Mg(OH)2 + 2e Mg(s) + 2OH -2.69 2 [1]
Sm Sm2+ + 2e Sm(s) -2.68 2 [1]
Be Be2O2−3 + 3H
2
O
+ 4e
2Be(s) + 6OH -2.63 4 [1]
Pm Pm3+ + e Pm2+ -2.6 1 [1]
Dy Dy3+ + e Dy2+ -2.6 1 [1]
No No2+ + 2e No -2.5 2 [1]
Hf HfO(OH)2 + H
2
O
+ 4e
Hf(s) + 4OH -2.5 4 [1]
Th Th(OH)4 + 4e Th(s) + 4OH -2.48 4 [1]
Md Md2+ + 2e Md -2.4 2 [1]
Tm Tm2+ + 2e Tm(s) -2.4 2 [1]
La La3+ + 3e La(s) -2.379 3 [5]
Y Y3+ + 3e Y(s) -2.372 3 [5]
Mg Mg2+ + 2e Mg(s) -2.372 2 [5]
Sc ScF
3
(aq) + 3H+ + 3e
Sc(s) + 3HF(aq) -2.37 3 [6]:792
Zr ZrO(OH)2(s) + H
2
O
+ 4e
Zr(s) + 4OH -2.36 4 [5]
Pr Pr3+ + 3e Pr(s) -2.353 3 [1]
Ce Ce3+ + 3e Ce(s) -2.336 3 [1]
Er Er3+ + 3e Er(s) -2.331 3 [1]
Ho Ho3+ + 3e Ho(s) -2.33 3 [1]
Al H2AlO3 + H
2
O
+ 3e
Al(s) + 4OH -2.33 3 [1]
Nd Nd3+ + 3e Nd(s) -2.323 3 [1]
Tm Tm3+ + 3e Tm(s) -2.319 3 [1]
Al Al(OH)3(s) + 3e Al(s) + 3OH -2.31 3 [8]
Sm Sm3+ + 3e Sm(s) -2.304 3 [1]
Fm FmTemplate:2+ + 2e Fm -2.3 2 [1]
Am Am3+ + e Am2+ -2.3 1 [1]
Dy Dy3+ + 3e Dy(s) -2.295 3 [1]
Lu Lu3+ + 3e Lu(s) -2.28 3 [1]
Sc ScF+2 + 2H+ + 3e Sc(s) + 2HF(l) -2.28 3 [6]:792
Tb Tb3+ + 3e Tb(s) -2.28 3 [1]
Gd Gd3+ + 3e Gd(s) -2.279 3 [1]
H H2(g) + 2e 2H -2.23 2 [1]
Es Es2+ + 2e Es(s) -2.23 2 [1]
Pm Pm2+ + 2e Pm(s) -2.2 2 [1]
Tm Tm3+ + e -2.2 1 [1]
Dy Dy2+ + 2e Dy(s) -2.2 2 [1]
Ac Ac3+ + 3e Ac(s) -2.2 3 [1]
Yb Yb3+ + 3e Yb(s) -2.19 3 [1]
Cf Cf2+ + 2e Cf(s) -2.12 2 [1]
Nd Nd2+ + 2e Nd(s) -2.1 2 [1]
Ho Ho2+ + 2e Ho(s) -2.1 2 [1]
Sc Sc3+ + 3e Sc(s) -2.077 3 [9]
Al AlF3−6 + 3e Al(s) + 6F -2.069 3 [1]
Cm Cm3+ + 3e Cm(s) -2.04 3 [1]
Pu Pu3+ + 3e Pu(s) -2.031 3 [1]
Pr Pr2+ + 2e Pr(s) -2 2 [1]
Er Er2+ + 2e Er(s) -2 2 [1]
Eu Eu3+ + 3e Eu(s) -1.991 3 [1]
Lr Lr3+ + 3e Lr -1.96 3 [1]
Cf Cf3+ + 3e Cf(s) -1.94 3 [1]
Es Es3+ + 3e Es(s) -1.91 3 [1]
Pa Pa4+ + e Pa3+ -1.9 1 [1]
Am Am2+ + 2e Am(s) -1.9 2 [1]
Th Th4+ + 4e Th(s) -1.899 4 [1]
Fm Fm3+ + 3e Fm -1.89 3 [1]
N N
2
(g) + 2H
2
O
(l) + 4H+ + 2e
2NH
3
OH+
-1.87 2 [6]:789
Np Np3+ + 3e Np(s) -1.856 3 [1]
Be Be2+ + 2e Be(s) -1.847 2 [1]
P H2PO2 + e P(s) + 2OH -1.82 1 [1]
U U3+ + 3e U(s) -1.798 3 [1]
Sr Sr2+ + 2e Sr(Hg) -1.793 2 [1]
B H2BO3 + H
2
O
+ 3e
B(s) + 4OH -1.79 3 [1]
Th ThO2 + 4H+ + 4e Th(s) + 2H
2
O
-1.789 4 [1]
Hf HfO2+ + 2H+ + 4e Hf(s) + H
2
O
-1.724 4 [1]
P HPO2−3 + 2H
2
O
+ 3e
P(s) + 5OH -1.71 3 [1]
Si SiO2−3 + 3H
2
O
+ 4e
Si(s) + 6OH -1.697 4 [1]
Al Al3+ + 3e Al(s) -1.662 3 [1]
Ti Ti2+ + 2e Ti(s) -1.63 2 [7]
Zr ZrO2(s) + 4H+ + 4e Zr(s) + 2H
2
O
-1.553 4 [10]
Zr Zr4+ + 4e Zr(s) -1.45 4 [10]
Ti Ti3+ + 3e Ti(s) -1.37 3 [11]
Ti TiO(s) + 2H+ + 2e Ti(s) + H
2
O
-1.31 2 [6]:792
B B(OH)4 + 4H
2
O
(l) + 8e
BH4 + 8OH -1.24 8 [6]:788
Ga GaO(OH)2 + H
2
O
(l) + 3e
Ga(s) + 3OH -1.22 3 [6]:788
Ti Ti2O3(s) + 2H+ + 2e 2TiO(s) + H
2
O
-1.23 2 [6]:792
Zn Zn(OH)2−4 + 2e Zn(s) + 4OH -1.199 2 [10]
Mn Mn2+ + 2e Mn(s) -1.185 2 [10]
Fe Fe(CN)4−6 + 6H+ + 2e Fe(s) + 6HCN(aq) -1.16 2 [12]
C C(s) + 3H
2
O
(l) + 2e
CH
3
OH
(l) + 2OH
-1.148 2 [6]:788
Cr Cr(CN)3−6 + e Cr(CN)4−6 -1.143 1 [6]:793
Te Te(s) + 2e Te2− -1.143 2 [13]
V V2+ + 2e V(s) -1.13 2 [13]
Nb Nb3+ + 3e Nb(s) -1.099 3 [8]
Sn Sn(s) + 4H+ + 4e SnH4(g) -1.07 4
Po Po(s) + 2e Po2− -1.021 2 [14]
Cr [Cr(edta)(H2O)] + e [Cr(edta)(H2O)]2− -0.99 1 [6]:793
P 2H
3
PO
4
(aq) + 2H+ + 2e
(H
2
PO
3
)
2
(aq) + H
2
O
(l)
-0.933 2 [6]:789
C CO2−3 + 3H+ + 2e HCO2 + H
2
O
(l)
-0.93 2 [6]:788
Ti TiO2+ + 2H+ + 4e Ti(s) + H
2
O
-0.93 4
Si SiO2(quartz) + 4H+ + 4e Si(s) + 2H
2
O
-0.909 4 [6]:788
Cr Cr2+ + 2e Cr(s) -0.9 2 [6]:793
B B(OH)3(aq) + 3H+ + 3e B(s) + 3H
2
O
-0.89 3 [6]:788
Fe Fe(OH)2(s) + 2e Fe(s) + 2OH -0.89 2 [12]
Fe Fe2O3(s) + 3H
2
O
+ 2e
2Fe(OH)2(s) + 2OH -0.86 2 [12]
H 2H
2
O
+ 2e
H2(g) + 2OH -0.8277 2 [10]
Bi Bi(s) + 3H+ + 3e BiH3 -0.8 3 [10]
Zn Zn2+ + 2e Zn(Hg) -0.7628 2 [10]
Zn Zn2+ + 2e Zn(s) -0.7618 2 [10]
Ta Ta2O5(s) + 10H+ + 10e 2Ta(s) + 5H
2
O
-0.75 10
Te 2Te(s) + 2e Te2−2 -0.74 2 [6]:790
Ni Ni(OH)2(s) + 2e Ni(s) + 2OH -0.72 2 [1]
Nb Nb
2
O
5
(s) + 10H+ + 10e
2Nb(s) + 5H
2
O
(l)
-0.7 10 [6]:793
Ag Ag2S(s) + 2e 2Ag(s) + S2−(aq) -0.69 2
Te Te2−2 + 4H+ + 2e 2H
2
Te
(g)
-0.64 2 [6]:790
Sb Sb(OH)4 + 3e Sb(s) + 4OH -0.639 3 [6]:789
Au [Au(CN)2] + e Au(s) + 2CN -0.6 1
Ta Ta3+ + 3e Ta(s) -0.6 3 [8]
Pb PbO(s) + H
2
O
+ 2e
Pb(s) + 2OH -0.580 2 [8]
Ti 2TiO2(s) + 2H+ + 2e Ti2O3(s) + H
2
O
-0.56 2 [6]:792
Ga Ga3+ + 3e Ga(s) -0.549 3 [8]
U U4+ + e U3+ -0.52 1 [15]
Sb Sb + 3e SbH3 -0.51 3 [6]:789
P H3PO2(aq) + H+ + e P(white)[note 1] + 2H
2
O
-0.508 1 [10]
P H3PO3(aq) + 2H+ + 2e H3PO2(aq) + H
2
O
-0.499 2 [10]
Ni NiO2(s) + 2H
2
O
+ 2e
Ni(OH)2(s) + 2OH -0.49 2 [1]
Sb Sb(OH)6 + 2e Sb(OH)4 + 2OH -0.465 2 [6]:789
P H3PO3(aq) + 3H+ + 3e P(red)[note 1] + 3H
2
O
-0.454 3 [10]
Bi Bi
2
O
3
(s) + 3H
2
O
(l) + 6e
Bi(s) + 6OH -0.452 6 [6]:789
Ta TaF2−7 + 7H+ + 5e Ta(s) + 7HF(l) -0.45 5 [6]:793
In In3+ + 2e In+
-0.444 2 [6]:788
Cu Cu(CN)2 + e Cu(s) + 2CN -0.44 1 [13]
Fe Fe2+ + 2e Fe(s) -0.44 2 [7]
C 2CO2(g) + 2H+ + 2e HOOCCOOH(aq) -0.43 2
Cr Cr3+ + e Cr2+ -0.407 1 [8]
Cd Cd2+ + 2e Cd(s) -0.4 2 [7]
Ti Ti3+ + e Ti2+ -0.37 1 [6]:792
Cu Cu2O(s) + H
2
O
+ 2e
2Cu(s) + 2OH -0.36 2 [10]
Pb PbSO4(s) + 2e Pb(s) + SO2−4 -0.3588 2 [10]
Pb PbSO4(s) + 2e Pb(Hg) + SO2−4 -0.3505 2 [10]
Eu Eu3+ + e Eu2+ -0.35 1 [15]
In In3+ + 3e In(s) -0.34 3 [13]
Tl Tl+ + e Tl(s) -0.34 1 [13]
Ge Ge(s) + 4H+ + 4e GeH4(g) -0.29 4
Co Co2+ + 2e Co(s) -0.28 2 [10]
P H3PO4(aq) + 2H+ + 2e H3PO3(aq) + H
2
O
-0.276 2 [10]
N N2(g) + 8H+ + 6e 2NH+4 -0.27 6 [16]
V V3+ + e V2+ -0.26 1 [7]
Ni Ni2+ + 2e Ni(s) -0.257 2 [8]
S 2HSO4 + 2H+ + 2e S2O2−6 + 2H
2
O
(l)
-0.253 2 [6]:790
As As(s) + 3H+ + 3e AsH3(g) -0.23 3 [13]
N N2(g) + 5H+ + 4e N2H+5 -0.23 4 [6]:789
Ga Ga+ + e Ga(s) -0.2 1 [8]
Ag AgI(s) + e Ag(s) + I -0.15224 1 [10]
Ge GeO2(s) + 4H+ + 4e Ge(s) + H2O(l) -0.15 4 [16]
Mo MoO2(s) + 4H+ + 4e Mo(s) + 2H
2
O
-0.15 4
Si Si(s) + 4H+ + 4e SiH4(g) -0.14 4
Sn Sn2+ + 2e Sn(s) -0.13 2
O O2(g) + H+ + e HO2(aq) -0.13 1
In In+
+ e
In(s) -0.126 1 [6]:788
Pb Pb2+ + 2e Pb(s) -0.126 2 [7]
W WO2(s) + 4H+ + 4e W(s) + 2H
2
O
-0.12 4
Ge GeO2(s) + 2H+ + 2e GeO(s) + H
2
O
-0.118 2 [8]
P P(red) + 3H+ + 3e PH3(g) -0.111 3 [10]
C CO2(g) + 2H+ + 2e HCOOH(aq) -0.11 2
Se Se(s) + 2H+ + 2e H2Se(g) -0.11 2 [6]:790
C CO2(g) + 2H+ + 2e CO(g) + H
2
O
-0.11 2
Sn α-SnO(s) + 2H+ + 2e Sn(s) + H
2
O
-0.104 2 [6]:788
Cu Cu(NH3)+2 + e Cu(s) + 2NH3(aq) -0.1 1 [13]
Nb Nb
2
O
5
(s) + 10H+ + 4e
2Nb3+ + 5H
2
O
(l)
-0.1 4 [6]:793
W WO3(aq) + 6H+ + 6e W(s) + 3H
2
O
-0.09 6 [13]
Sn SnO2(s) + 2H+ + 2e α-SnO(s) + H
2
O
-0.088 2 [6]:788
Fe Fe3O4(s) + 8H+ + 8e 3Fe(s) + 4H
2
O
-0.085 8 [17]
V VOH2+ + H+ + e V2+ + H
2
O
(l)
-0.082 1 [6]:793
P P(white) + 3H+ + 3e PH3(g) -0.063 3 [10]
N N
2
O
(g) + H
2
O
(l) + 6H+ + 4e
2NH
3
OH+
-0.05 4 [6]:789
Fe Fe3+ + 3e Fe(s) -0.04 3 [12]
C HCOOH(aq) + 2H+ + 2e HCHO(aq) + H
2
O
-0.034 2 [6]:788
H 2H+ + 2e H2(g) 0 2
Ag AgBr(s) + e Ag(s) + Br 0.07133 1 [10]
S S4O2−6 + 2e 2S2O2−3 0.08 2
N N2(g) + 2H
2
O
+ 6H+ + 6e
2NH4OH(aq) 0.092 6
Hg HgO(s) + H
2
O
+ 2e
Hg(l) + 2OH 0.0977 2
Cu Cu(NH3)2+4 + e Cu(NH3)+2 + 2NH3(aq) 0.1 1 [13]
Ru Ru(NH3)3+6 + e Ru(NH3)2+6 0.1 1 [15]
N N2H4(aq) + 4H
2
O
+ 2e
2NH+4 + 4OH 0.11 2 [4]
Mo H2MoO4(aq) + 6H+ + 6e Mo(s) + 4H
2
O
0.11 6
Ge Ge4+ + 4e Ge(s) 0.12 4
C C(s) + 4H+ + 4e CH4(g) 0.13 4 [13]
C HCHO(aq) + 2H+ + 2e CH3OH(aq) 0.13 2
S S(s) + 2H+ + 2e H2S(g) 0.144 2 [6]:790
Sb Sb2O3(s) + 6H+ + 6e 2Sb(s) + 3H2O 0.15 6 [6]:789
Sn Sn4+ + 2e Sn2+ 0.151 2 [8]
S HSO4 + 3H+ + 2e SO2(aq) + 2H
2
O
0.158 2 [6]:790
Cu Cu2+ + e Cu+ 0.159 1 [13]
U UO2+2 + e UO+2 0.163 1 [15]
S SO2−4 + 4H+ + 2e SO2(aq) + 2H
2
O
0.17 2
Ti TiO2+ + 2H+ + e Ti3+ + H
2
O
0.19 1
Sb SbO+ + 2H+ + 3e Sb(s) + H
2
O
0.2 3
Fe 3Fe2O3(s) + 2H+ + 2e 2Fe3O4(s) + H
2
O
0.22 2 [18]:p.100
Ag AgCl(s) + e Ag(s) + Cl 0.22233 1 [10]
As H3AsO3(aq) + 3H+ + 3e As(s) + 3H
2
O
0.24 3 [6]:789
Ru Ru3+(aq) + e Ru2+(aq) 0.249 1 [19]
Pb PbO
2
(s) + H
2
O
+ 2e
α-PbO(s) + 2OH 0.254 2 [6]:788
Ge GeO(s) + 2H+ + 2e Ge(s) + H
2
O
0.26 2
Hg Hg
2
Cl
2
(s) + 2e
2Hg(l) + 2Cl
0.27 2 [16]
U UO+2 + 4H+ + e U4+ + 2H
2
O
0.273 1 [15]
Re Re3+ + 3e Re(s) 0.300 3 [8]
At At + e At 0.3 1 [20]
Bi Bi3+ + 3e Bi(s) 0.308 3 [10]
C 2HCNO + 2H+ + 2e (CN)2 + 2H
2
O
0.330 2 [8]
Cu Cu2+ + 2e Cu(s) 0.337 2 [13]
V VO2+ + 2H+ + e V3+ + H
2
O
0.337 1 [6]:793
Sb Sb
2
O
4
(s) + 2H+ + 2e
Sb
2
O
3
(s) + H
2
O
(l)
0.342 2 [6]:789
At At+ + 2e At- 0.36 2 [21]
Fe [Fe(CN)6]3− + e [Fe(CN)6]4− 0.3704 1 [22]
C (CN)2 + 2H+ + 2e 2HCN 0.373 2 [8]
P (H
2
PO
3
)
2
(aq) + 2H+ + 2e
2H
3
PO
3
0.38 2 [6]:789
S 2SO2(aq) + 2H+ + 2e S2O2−3 + H2O(l) 0.4 2 [6]:790
O O2(g) + 2H
2
O
+ 4e
4OH(aq) 0.401 4 [7]
Mo H2MoO4 + 6H+ + 3e Mo3+ + 4H
2
O
0.43 3
Ru Ru2+(aq) + 2e Ru 0.455 2 [19]
V VO(OH)+
+ 2H+ + e
VOH2+ + H
2
O
(l)
0.481 1 [6]:793
C CH3OH(aq) + 2H+ + 2e CH4(g) + H
2
O
0.5 2
S SO2(aq) + 4H+ + 4e S(s) + 2H
2
O
0.5 4 [6]:790
S 4SO2(aq) + 4H+ + 8e S4O4−6 + 2H
2
O
(l)
0.51 8 [16]
Cu Cu+ + e Cu(s) 0.52 1 [13]
C CO(g) + 2H+ + 2e C(s) + H
2
O
0.52 2 [6]:788
I I3 + 2e 3I 0.53 2 [7]
Te TeO
2
(s) + 4H+ + 4e
Te(s) + 2H
2
O
(l)
0.53 4 [6]:790
Cu Cu2+ + Cl
+ e
CuCl(s) 0.54 1 [16]
I I2(s) + 2e 2I 0.54 2 [7]
Au [AuI4] + 3e Au(s) + 4I 0.56 3
As H3AsO4(aq) + 2H+ + 2e H3AsO3(aq) + H
2
O
0.56 2 [6]:789
S S2O2−6 + 4H+ + 2e 2H
2
SO
3
0.569 2 [6]:790
Au [AuI2] + e Au(s) + 2I 0.58 1
Mn MnO4 + 2H
2
O
+ 3e
MnO2(s) + 4OH 0.595 3 [1]
S S2O2−3 + 6H+ + 4e 2S(s) + 3H
2
O
0.6 4 [6]:790
Fe Fc+ + e Fc(s) 0.63 1 Substantial literature variation[23]
Mo H2MoO4(aq) + 2H+ + 2e MoO2(s) + 2H
2
O
0.65 2
N HN3(aq) + 11H+ + 8e 3NH+4 0.69 8 [16]
O O2(g) + 2H+ + 2e H2O2(aq) 0.695 2 [8]
Sb Sb
2
O
5
(s) + 4H+ + 4e
Sb
2
O
3
(s) + 2H
2
O
0.699 4 [6]:789
C 1,4-Benzochinon.svg + 2H+ + 2e Hydrochinon2.svg 0.6992 2 [10]
V H2V10O4−28 + 24H+ + 10e 10VO(OH)+
+ 8H
2
O
(l)
0.723 10 [6]:793
Pt PtCl2−6 + 2e PtCl2−4 + 2Cl 0.726 2 [15]
Fe Fe2O3(s) + 6H+ + 2e 2Fe2+ + 3H
2
O
0.728 2 [18]:p.100
Se H2SeO3(aq) + 4H+ + 4e Se(s) + 3H
2
O
0.74 4 [8]
At AtO+ + 2H+ + 2e At+ + H
2
O
0.74 2 [21]
Tl Tl3+ + 3e Tl(s) 0.741 3 [8]
No No3+ + e No2+ 0.75 1 [24]
Pt PtCl2−4 + 2e Pt(s) + 4Cl 0.758 2 [15]
Br BrO
+ H
2
O
(l) + 2e
Br
+ 2OH
0.76 2 [6]:791
Po Po4+ + 4e Po 0.76 4 [8]
S (SCN)2 + 2e 2SCN- 0.77 2 [8]
Fe Fe3+ + e Fe2+ 0.771 1 [8]
Hg Hg2+2 + 2e 2Hg(l) 0.7973 2 [8]
Ag Ag+ + e Ag(s) 0.7996 1 [10]
N 2NO3(aq) + 4H+ + 2e N2O4(g) + 2H
2
O
0.803 2 [6]:789
Fe 2FeO2−4 + 5H
2
O
+ 6e
Fe2O3(s) + 10OH 0.81 6 [12]
Au [AuBr4] + 3e Au(s) + 4Br 0.85 3
Hg Hg2+ + 2e Hg(l) 0.85 2
Ir [IrCl6]2− + e [IrCl6]3− 0.87 1 [6]:153
Mn MnO4 + H+ + e HMnO4 0.9 1
Po Po4+ + 2e Po2+ 0.9 2 [8]
Hg 2Hg2+ + 2e Hg2+2 0.91 2 [13]
Pd Pd2+ + 2e Pd(s) 0.915 2 [15]
Au [AuCl4] + 3e Au(s) + 4Cl 0.93 3
N NO3 + 3H+ + 2e HNO
2
(aq)
0.94 2 [6]:789
Mn MnO2(s) + 4H+ + e Mn3+ + 2H
2
O
0.95 1
N NO3(aq) + 4H+ + 3e NO(g) + 2H
2
O
(l)
0.958 3 [7]
Au [AuBr2] + e Au(s) + 2Br 0.96 1
Fe Fe3O4(s) + 8H+ + 2e 3Fe2+ + 4H
2
O
0.98 2 [18]:p.100
Xe [HXeO6]3− + 2H
2
O
+ 2e
[HXeO4] + 4OH 0.99 2 [6]:792[25]
N HNO
2
(aq) + H+ + e
NO(g) + H
2
O
(l)
0.996 1 [6]:789
At HAtO + H+ + e At + H
2
O
1.0 1 [20]
V [VO2]+(aq) + 2H+ + e [VO]2+(aq) + H
2
O
1 1 [26]
Te H6TeO6(aq) + 2H+ + 2e TeO2(s) + 4H
2
O
1.02 2 [26]
N NO2(g) + 2H+ + 2e NO(g) + H2O(l) 1.03 2 [16]
Br Br3 + 2e 3Br 1.05 2 [16]
Sb Sb
2
O
5
(s) + 2H+ + 2e
Sb
2
O
4
(s) + H
2
O
(l)
1.055 2 [6]:789
I ICl2 + e 2Cl + I(s) 1.06 1 [16]
Br Br2(l) + 2e 2Br 1.066 2 [10]
N N
2
O
4
(g) + 2H+ + 2e
2HNO
2
1.07 2 [6]:789
Br Br2(aq) + 2e 2Br 1.0873 2 [10]
Ru RuO2 + 4H+ + 2e Ru2+(aq) + 2H
2
O
1.120 2 [19]
Cu Cu2+ + 2CN + e Cu(CN)2 1.12 1 [13]
I IO3 + 5H+ + 4e HIO(aq) + 2H
2
O
1.13 4 [6]:791
O H
2
O
2
(aq) + H+ + e
H
2
O
(l) + HO•
1.14 1 [6]:790
Au [AuCl2] + e Au(s) + 2Cl 1.15 1
Se HSeO4 + 3H+ + 2e H2SeO3(aq) + H
2
O
1.15 2 [6]:790
Ag Ag2O(s) + 2H+ + 2e 2Ag(s) + H
2
O
1.17 2
Cl ClO3 + 2H+ + e ClO2(g) + H
2
O
1.175 1 [6]:791
Xe [HXeO6]3− + 5H
2
O
+ 8e
Xe(g) + 11OH 1.18 8 [25]
Pt Pt2+ + 2e Pt(s) 1.188 2 [15]
Cl ClO2(g) + H+ + e HClO2(aq) 1.19 1 [27]
I 2IO3 + 12H+ + 10e I2(s) + 6H
2
O
1.2 10 [16]
Mn MnO2(s) + 4H+ + 2e Mn2+ + 2H
2
O
1.224 2 [10]
O O2(g) + 4H+ + 4e 2H
2
O
1.229 4 [7]
N N2H+5 + 3H+ + 2e 2NH+4 1.28 2 [6]:789
Cl ClO4 + 2H+ + 2e ClO3 + H
2
O
1.23 2 [28]
Ru [Ru(bipy)3]3+ + e [Ru(bipy)3]2+ 1.24 1 [1]
Xe [HXeO4] + 3H
2
O
+ 6e
Xe(g) + 7OH 1.24 6 [6]:792[25]
N 2NO3 + 12H+ + 10e N
2
(g) + 6H
2
O
(l)
1.25 10 [6]:789
Tl Tl3+ + 2e Tl+ 1.25 2 [6]:788
N 2HNO
2
(aq) + 4H+ + 4e
N
2
O
(g) + 3H
2
O
(l)
1.297 4 [6]:789
Cr Cr2O2−7 + 14H+ + 6e 2Cr3+ + 7H
2
O
1.38 6 [6]:793
N NH
3
OH+
+ 2H+ + 2e
NH+4 + H
2
O
(l)
1.35 2 [6]:789
Cl Cl2(g) + 2e 2Cl 1.36 2 [7]
Ru RuO4(aq) + 8H+ + 5e Ru2+(aq) + 4H
2
O
1.368 5 [19]
Ru RuO4 + 4H+ + 4e RuO2 + 2H
2
O
1.387 4 [19]
Co CoO2(s) + 4H+ + e Co3+ + 2H
2
O
1.42 1
N 2NH3OH+ + H+ + 2e N2H+5 + 2H
2
O
1.42 2 [4]
I 2HIO(aq) + 2H+ + 2e I2(s) + 2H
2
O
1.44 2 [6]:791
Br BrO3 + 5H+ + 4e HBrO(aq) + 2H
2
O
1.447 4 [6]:791
Pb β-PbO2(s) + 4H+ + 2e Pb2+ + 2H
2
O
1.46 2 [13]
Pb α-PbO2(s) + 4H+ + 2e Pb2+ + 2H
2
O
1.468 2 [13]
Br 2BrO3 + 12H+ + 10e Br2(l) + 6H
2
O
1.48 10
At HAtO3 + 4H+ + 4e HAtO + 2H
2
O
1.5 4 [20]
Mn MnO4 + 8H+ + 5e Mn2+ + 4H
2
O
1.51 5 [16]
O HO2 + H+ + e H2O2(aq) 1.51 1
Au Au3+ + 3e Au(s) 1.52 3
Ru RuO2−4(aq) + 8H+ + 4e Ru2+(aq) + 4H
2
O
1.563 4 [19]
N 2NO(g) + 2H+ + 2e N
2
O
(g) + H
2
O
(l)
1.59 2 [6]:789
Ni NiO2(s) + 2H+ + 2e Ni2+ + 2OH 1.59 2
Ce Ce4+ + e Ce3+ 1.61 1
Cl 2HClO(aq) + 2H+ + 2e Cl2(g) + 2H
2
O
1.63 2 [27]
I IO4 + 2H+ + 2e IO3 + H
2
O
1.64 2 [28]
Ag Ag2O3(s) + 6H+ + 4e 2Ag+ + 3H
2
O
1.67 4
Cl HClO2(aq) + 2H+ + 2e HClO(aq) + H
2
O
1.67 2 [27]
Pb Pb4+ + 2e Pb2+ 1.69 2 [13]
Mn MnO4 + 4H+ + 3e MnO2(s) + 2H
2
O
1.7 3 [16]
Br BrO4 + 2H+ + 2e BrO3 + H
2
O
1.74 2 [28]
Ag AgO(s) + 2H+ + e Ag+ + H
2
O
1.77 1
N N
2
O
(g) + 2H+ + 2e
N
2
(g) + H
2
O
(l)
1.77 2 [6]:789
O H2O2(aq) + 2H+ + 2e 2H
2
O
1.78 2 [27]
Au Au+ + e Au(s) 1.83 1 [13]
Co Co3+ + e Co2+ 1.92 1 [8]
Ag Ag2+ + e Ag+ 1.98 1 [13]
O S2O2−8 + 2e 2SO2−4 2.01 2 [10]
O O3(g) + 2H+ + 2e O2(g) + H
2
O
2.075 2 [15]
Mn HMnO4 + 3H+ + 2e MnO2(s) + 2H
2
O
2.09 2
Xe XeO3(aq) + 6H+ + 6e Xe(g) + 3H
2
O
2.12 6 [6]:792[25]
Xe H4XeO6(aq) + 8H+ + 8e Xe(g) + 6H
2
O
2.18 8 [6]:792[25]
Fe FeO2−4 + 8H+ + 3e Fe3+ + 4H
2
O
2.2 3 [29]
Xe XeF2(aq) + 2H+ + 2e Xe(g) + 2HF(aq) 2.32 2 [25][27]
O HO• + H+ + e H
2
O
(l)
2.38 1 [6]:790
Xe H4XeO6(aq) + 2H+ + 2e XeO3(aq) + 3H
2
O
2.42 2 [25][6]:792
F F2(g) + 2e 2F 2.87 2 [6]:153[7][13]
Cm Cm4+ + e Cm3+ 3.0 1 Estimated[3]
F F2(g) + 2H+ + 2e 2HF(aq) 3.077 2 [3]
Tb Tb4+ + e Tb3+ 3.1 1 Estimated[3]
Pr Pr4+ + e Pr3+ 3.2 1 Estimated[3]
Kr KrF2(aq) + 2e Kr(g) + 2F(aq) 3.27 2 Estimated[30]

See also

Notes

  1. 1.0 1.1 Not specified in the indicated reference, but assumed due to the difference between the value −0.454 and that computed by (2×(−0.499) + (−0.508))/3 = −0.502, exactly matching the difference between the values for white (−0.063) and red (−0.111) phosphorus in equilibrium with PH3.

References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.40 1.41 1.42 1.43 1.44 1.45 1.46 1.47 1.48 1.49 1.50 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.69 1.70 1.71 1.72 1.73 Lide, David R., ed (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, FL: CRC Press. ISBN 0-8493-0487-3. 
  2. Greenwood and Earnshaw, p. 1263
  3. 3.0 3.1 3.2 3.3 3.4 Bratsch, Stephen G. (July 29, 1988). "Standard electrode potentials and temperature coefficients in water at 298.15 K". Journal of Physical and Chemical Reference Data (American Institute of Physics) 18 (1): 1-21. 1989. doi:10.1063/1.555839. https://srd.nist.gov/jpcrdreprint/1.555839.pdf. 
  4. 4.0 4.1 4.2 4.3 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8. 
  5. 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12 5.13 5.14 5.15 5.16 Vanýsek, Petr (2011). "Electrochemical Series". in Haynes, William M.. CRC Handbook of Chemistry and Physics (92nd ed.). CRC Press. pp. 5–80–9. ISBN 978-1-4398-5512-6. https://books.google.com/books?id=pYPRBQAAQBAJ&pg=SA5-PA80. 
  6. 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 6.21 6.22 6.23 6.24 6.25 6.26 6.27 6.28 6.29 6.30 6.31 6.32 6.33 6.34 6.35 6.36 6.37 6.38 6.39 6.40 6.41 6.42 6.43 6.44 6.45 6.46 6.47 6.48 6.49 6.50 6.51 6.52 6.53 6.54 6.55 6.56 6.57 6.58 6.59 6.60 6.61 6.62 6.63 6.64 6.65 6.66 6.67 6.68 6.69 6.70 6.71 6.72 6.73 6.74 6.75 6.76 6.77 6.78 6.79 6.80 6.81 6.82 6.83 Atkins, Peter; Overton, Tina; Rourke, Jonathan; Weller, Mark; Armstrong, Fraser; Hagerman, Michael (2010). Inorganic Chemistry (5th ed.). New York: W. H. Freeman. ISBN 978-1-42-921820-7. 
  7. 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 7.12 Atkins, Peter W. (1997). Physical Chemistry (6th ed.). W.H. Freeman. ISBN 9780716734659. 
  8. 8.00 8.01 8.02 8.03 8.04 8.05 8.06 8.07 8.08 8.09 8.10 8.11 8.12 8.13 8.14 8.15 8.16 8.17 8.18 8.19 8.20 8.21 Petr Vanysek. "Electrochemical series". http://depa.fquim.unam.mx/amyd/archivero/TablasdepotencialesREDOX_26700.pdf. 
  9. David R. Lide, ed., CRC Handbook of Chemistry and Physics, Internet Version 2005, http://www.hbcpnetbase.com , CRC Press, Boca Raton, FL, 2005.
  10. 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 10.12 10.13 10.14 10.15 10.16 10.17 10.18 10.19 10.20 10.21 10.22 10.23 10.24 10.25 10.26 10.27 Vanýsek, Petr (2012). "Electrochemical Series". in Haynes, William M.. Handbook of Chemistry and Physics (93rd ed.). CRC Press. pp. 5–80. ISBN 9781439880494. https://books.google.com/books?id=-BzP7Rkl7WkC&pg=SA5-PA80. 
  11. Aylward, Gordon; Findlay, Tristan (2008). SI Chemical Data (6th ed.). Wiley. ISBN 978-0-470-81638-7. 
  12. 12.0 12.1 12.2 12.3 12.4 "compounds information". Iron. WebElements Periodic Table of the Elements. http://www.webelements.com/iron/compounds.html. 
  13. 13.00 13.01 13.02 13.03 13.04 13.05 13.06 13.07 13.08 13.09 13.10 13.11 13.12 13.13 13.14 13.15 13.16 13.17 13.18 13.19 13.20 Bard, Allen J.; Parsons, Roger; Jordan, Joseph (1985). Standard Potentials in Aqueous Solution. CRC Press. ISBN 978-0-8247-7291-8. https://books.google.com/books?id=fuJV1H18KtEC. 
  14. Brown, Susan A.; Brown, Paul L. (2020). "The pH-potential diagram for polonium". The Aqueous Chemistry of Polonium and the Practical Application of its Thermochemistry. Elsevier. doi:10.1016/b978-0-12-819308-2.00004-8. ISBN 978-0-12-819308-2. 
  15. 15.0 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 Bard, A.J.; Faulkner, L.R. (2001). Electrochemical Methods. Fundamentals and Applications (2nd ed.). Wiley. ISBN 9781118312803. 
  16. 16.00 16.01 16.02 16.03 16.04 16.05 16.06 16.07 16.08 16.09 16.10 16.11 Lee, J. L. (1983). A New Concise Inorganic Chemistry (3rd ed.). London / Wokingham, Berkshire: English Language Book Society & Van Nostrand Reinhold (UK). ISBN 0-442-30179-0. 
  17. Pourbaix, Marcel (1966). Atlas of Electrochemical Equilibria in Aqueous Solutions. Houston, Texas; Cebelcor, Brussels: NACE International. OCLC 475102548. 
  18. 18.0 18.1 18.2 Pang, Suh Cem; Chin, Suk Fun; Anderson, Marc A. (July 2007). "Redox equilibria of iron oxides in aqueous-based magnetite dispersions: Effect of pH and redox potential". J. Colloid Interface Sci. 311 (1): 94–101. doi:10.1016/j.jcis.2007.02.058. PMID 17395194. Bibcode2007JCIS..311...94P. https://www.academia.edu/9254087. Retrieved 2017-03-26. 
  19. 19.0 19.1 19.2 19.3 19.4 19.5 Greenwood and Earnshaw, p. 1077
  20. 20.0 20.1 20.2 Lavrukhina, Avgusta Konstantinovna; Pozdni︠a︡kov, Aleksandr Aleksandrovich (1970). Analytical chemistry of technetium, promethium, astatine and francium. Ann Arbor: Ann Arbor-Humphrey Science Publishers. p. 237. ISBN 0-250-39923-7. OCLC 186926. 
  21. 21.0 21.1 Champion, J.; Alliot, C.; Renault, E.; Mokili, B. M.; Chérel, M.; Galland, N.; Montavon, G. (2009-12-16). "Astatine Standard Redox Potentials and Speciation in Acidic Medium". The Journal of Physical Chemistry A (American Chemical Society (ACS)) 114 (1): 576–582. doi:10.1021/jp9077008. ISSN 1089-5639. PMID 20014840. http://hal.in2p3.fr/in2p3-00450771/file/JPCA_2010.pdf. 
  22. Rock, Peter A. (February 1966). "The Standard Oxidation Potential of the Ferrocyanide-Ferricyanide Electrode at 25° and the Entropy of Ferrocyanide Ion". The Journal of Physical Chemistry 70 (2): 576–580. doi:10.1021/j100874a042. ISSN 0022-3654. 
  23. Pavlishchuk, Vitaly V.; Addison, Anthony W. (January 2000). "Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C". Inorganica Chimica Acta 298 (1). doi:10.1016/S0020-1693(99)00407-7. 
  24. Toyoshima, A.; Kasamatsu, Y.; Tsukada, K.; Asai, M.; Kitatsuji, Y.; Ishii, Y.; Toume, H.; Nishinaka, I. et al. (8 July 2009). "Oxidation of element 102, nobelium, with flow electrolytic column chromatography on an atom-at-a-time scale". Journal of the American Chemical Society 131 (26): 9180–1. doi:10.1021/ja9030038. PMID 19514720. https://figshare.com/articles/Oxidation_of_Element_102_Nobelium_with_Flow_Electrolytic_Column_Chromatography_on_an_Atom_at_a_Time_Scale/2844817. 
  25. 25.0 25.1 25.2 25.3 25.4 25.5 25.6 "compounds information". Xenon. WebElements Periodic Table of the Elements. http://www.webelements.com/xenon/compounds.html. 
  26. 26.0 26.1 Cotton, F. Albert; Wilkinson, Geoffrey; Murillo, Carlos A.; Bochmann, Manfred (1999), Advanced Inorganic Chemistry (6th ed.), New York: Wiley-Interscience, ISBN 0-471-19957-5 .
  27. 27.0 27.1 27.2 27.3 27.4 Ghosh, Abhik; Berg, Steffen (2014). Arrow Pushing in Inorganic Chemistry: A logical approach to the chemistry of the main-group elements. Hoboken: Wiley. ISBN 978-1-118-17398-5. 
  28. 28.0 28.1 28.2 Appelman, Evan H. (1973-04-01). "Nonexistent compounds. Two case histories". Accounts of Chemical Research (American Chemical Society (ACS)) 6 (4): 113–117. doi:10.1021/ar50064a001. ISSN 0001-4842. 
  29. Courtney, Arlene. "Oxidation Reduction Chemistry of the Elements". Ch 412 Advanced Inorganic Chemistry: Reading Materials. Western Oregon University. https://people.wou.edu/~courtna/ch412/redox.htm. 
  30. Leszczyński, P.J.; Grochala, W. (2013). "Strong Cationic Oxidizers: Thermal Decomposition, Electronic Structure and Magnetism of Their Compounds". Acta Chim. Slov. 60 (3): 455–470. PMID 24169699. http://acta-arhiv.chem-soc.si/60/60-3-455.pdf. 

External links