Chemistry:Silver iodide

From HandWiki
Silver iodide
AgI powder.jpg
Silver iodide
Names
IUPAC name
Silver(I) iodide
Other names
Argentous iodide
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 232-038-0
UNII
Properties
AgI
Molar mass 234.77 g/mol
Appearance yellow, crystalline solid
Odor odorless
Density 5.68 g/cm3, solid[1]
Melting point 558 °C (1,036 °F; 831 K)[1]
Boiling point 1,506 °C (2,743 °F; 1,779 K)[1]
0.03 mg/L (20 °C)[1]
8.52 × 10 −17[2]
−80.0·10−6 cm3/mol[3]
Structure[5]
Hexagonal, hP4
P63mc, No. 186
a = 0.4591 nm, c = 0.7508 nm
α = 90°, β = 90°, γ = 120°
2
4.55 D[4]
Thermochemistry[6]
56.8 J·mol−1·K−1
115.5 J·mol−1·K−1
−61.8 kJ·mol−1
−66.2 kJ·mol−1
Hazards
Safety data sheet Sigma-Aldrich
GHS pictograms GHS09: Environmental hazard
GHS Signal word Warning
H410
NFPA 704 (fire diamond)
Flammability code 0: Will not burn. E.g. waterHealth code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformReactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no codeNFPA 704 four-colored diamond
0
2
0
Flash point Non-flammable
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references

Silver iodide is an inorganic compound with the formula AgI. The compound is a bright yellow solid, but samples almost always contain impurities of metallic silver that give a gray coloration. The silver contamination arises because some samples of AgI can be highly photosensitive. This property is exploited in silver-based photography. Silver iodide is also used as an antiseptic and in cloud seeding.

Structure

The structure adopted by silver iodide is temperature dependent:[8]

  • Below 420 K, the β phase of AgI, with the wurtzite structure, is most stable. This phase is encountered in nature as the mineral iodargyrite.
  • Above 420 K, the α phase becomes more stable. This motif is a body-centered cubic structure which has the silver centers distributed randomly between 6 octahedral, 12 tetrahedral and 24 trigonal sites.[9] At this temperature, Ag+ ions can move rapidly through the solid, allowing fast ion conduction. The transition between the β and α forms represents the melting of the silver (cation) sublattice. The entropy of fusion for α-AgI is approximately half that for sodium chloride (a typical ionic solid). This can be rationalized by considering the AgI crystalline lattice to have already "partly melted" in the transition between α and β polymorphs.
  • A metastable γ phase also exists below 420 K with the zinc blende structure.
The golden-yellow crystals on this mineral sample are iodargyrite, a naturally occurring form of β-AgI.

Preparation and properties

Silver iodide is prepared by reaction of an iodide solution (e.g., potassium iodide) with a solution of silver ions (e.g., silver nitrate). A yellowish solid quickly precipitates. The solid is a mixture of the two principal phases. Dissolution of the AgI in hydroiodic acid, followed by dilution with water precipitates β-AgI. Alternatively, dissolution of AgI in a solution of concentrated silver nitrate followed by dilution affords α-AgI.[10] Unless the preparation is conducted in dark conditions, the solid darkens rapidly, the light causing the reduction of ionic silver to metallic. The photosensitivity varies with sample purity.

Cloud seeding

Cessna 210 equipped with a silver iodide generator for cloud seeding

The crystalline structure of β-AgI is similar to that of ice, allowing it to induce freezing by the process known as heterogeneous nucleation. Approximately 50,000 kg are used for cloud seeding annually, each seeding experiment consuming 10–50 grams.[11] (see also Project Stormfury, Operation Popeye)[citation needed]

Safety

Extreme exposure can lead to argyria, characterized by localized discoloration of body tissue.[12]

References

  1. 1.0 1.1 1.2 1.3 Haynes, p. 4.84
  2. Haynes, p. 5.178
  3. Haynes, p. 4.130
  4. Haynes, p. 9.65
  5. Yoshiasa, A.; Koto, K.; Kanamaru, F.; Emura, S.; Horiuchi, H. (1987). "Anharmonic thermal vibrations in wurtzite-type AgI". Acta Crystallographica Section B: Structural Science 43 (5): 434–440. doi:10.1107/S0108768187097532. Bibcode1987AcCrB..43..434Y. 
  6. Haynes, p. 5.35
  7. "C&L Inventory". https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/104155. 
  8. Binner, J. G. P.; Dimitrakis, G.; Price, D. M.; Reading, M.; Vaidhyanathan, B. (2006). "Hysteresis in the β–α Phase Transition in Silver Iodine". Journal of Thermal Analysis and Calorimetry 84 (2): 409–412. doi:10.1007/s10973-005-7154-1. http://www.sump4.com/publications/paper047.pdf. 
  9. Hull, Stephen (2007). "Superionics: crystal structures and conduction processes". Rep. Prog. Phys. 67 (7): 1233–1314. doi:10.1088/0034-4885/67/7/R05. http://stacks.iop.org/RoPP/67/1233. 
  10. O. Glemser, H. Saur "Silver Iodide" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 1036-7.
  11. Phyllis A. Lyday "Iodine and Iodine Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005. doi:10.1002/14356007.a14_381
  12. "Silver Iodide". U.S. National Library of Medicine. http://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+2930. 

Cited sources

HI He
LiI BeI2 BI3 CI4 NI3 I2O4,
I2O5,
I4O9
IF,
IF3,
IF5,
IF7
Ne
NaI MgI2 AlI3 SiI4 PI3,
P2I4
S ICl,
ICl3
Ar
KI CaI2 Sc TiI4 VI3 CrI3 MnI2 FeI2 CoI2 NiI2 CuI ZnI2 Ga2I6 GeI2,
GeI4
AsI3 Se IBr Kr
RbI SrI2 YI3 ZrI4 NbI5 Mo Tc Ru Rh Pd AgI CdI2 InI3 SnI4,
SnI2
SbI3 TeI4 I Xe
CsI BaI2   HfI4 TaI5 W Re Os Ir Pt AuI Hg2I2,
HgI2
TlI PbI2 BiI3 Po AtI Rn
Fr RaI2   Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
La Ce Pr Nd Pm SmI2 Eu Gd TbI3 Dy Ho Er Tm Yb Lu
Ac ThI4 Pa UI3,
UI4
Np Pu Am Cm Bk Cf EsI3 Fm Md No Lr