Chemistry:Tetracene

From HandWiki
Tetracene
Skeletal formula
Space-filling model of the tetracene molecule
Tetracene crystals
Names
Preferred IUPAC name
Tetracene[1]
Other names
Naphthacene
Benz[b]anthracene
2,3-Benzanthracene
Tetracyclo[8.8.0.03,8.012,17]octadeca-1,3,5,7,9,11,13,15,17-nonaene
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
UNII
Properties
C18H12
Molar mass 228.29 g/mol
Appearance Yellow to orange solid
Melting point 357 °C (675 °F; 630 K)
Boiling point 436.7 °C (818.1 °F; 709.8 K)
Insoluble
-168.0·10−6 cm3/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references

Tetracene, also called naphthacene, is a polycyclic aromatic hydrocarbon. It has the appearance of a pale orange powder. Tetracene is the four-ringed member of the series of acenes. Tetracene is a molecular organic semiconductor, used in organic field-effect transistors (OFETs) and organic light-emitting diodes (OLEDs). In May 2007, researchers from two Japanese universities, Tohoku University in Sendai and Osaka University, reported an ambipolar light-emitting transistor made of a single tetracene crystal.[2] Ambipolar means that the electric charge is transported by both positively charged holes and negatively charged electrons. Tetracene can be also used as a gain medium in dye lasers as a sensitiser in chemoluminescence.

German physicist Jan Hendrik Schön claimed to have developed an electrically pumped laser based on tetracene during his time at Bell Labs (1997–2002). However, his results could not be reproduced, and this is considered to be a scientific fraud.[3]

Napthacene is the main backbone component of the tetracycline class of antibiotics.

See also

Notes

References