Cyclotruncated 6-simplex honeycomb

From HandWiki
Cyclotruncated 6-simplex honeycomb
(No image)
Type Uniform honeycomb
Family Cyclotruncated simplectic honeycomb
Schläfli symbol t0,1{3[7]}
Coxeter diagram CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png
6-face types {35} 6-simplex t0.svg
t{35} 30px
2t{35} 30px
3t{35} 6-simplex t23.svg
Vertex figure Elongated 5-simplex antiprism
Symmetry [math]\displaystyle{ {\tilde{A}}_6 }[/math]×2, 3[7]
Properties vertex-transitive

In six-dimensional Euclidean geometry, the cyclotruncated 6-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 6-simplex, truncated 6-simplex, bitruncated 6-simplex, and tritruncated 6-simplex facets. These facet types occur in proportions of 2:2:2:1 respectively in the whole honeycomb.

Structure

It can be constructed by seven sets of parallel hyperplanes that divide space. The hyperplane intersections generate cyclotruncated 5-simplex honeycomb divisions on each hyperplane.

Related polytopes and honeycombs

This honeycomb is one of 17 unique uniform honeycombs[1] constructed by the [math]\displaystyle{ {\tilde{A}}_6 }[/math] Coxeter group, grouped by their extended symmetry of the Coxeter–Dynkin diagrams:

See also

Regular and uniform honeycombs in 6-space:

Notes

  1. * Weisstein, Eric W.. "Necklace". http://mathworld.wolfram.com/Necklace.html. , OEIS sequence A000029 18-1 cases, skipping one with zero marks

References

  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN:978-0-471-01003-6 [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
Fundamental convex regular and uniform honeycombs in dimensions 2-9
Space Family [math]\displaystyle{ {\tilde{A}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{C}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{B}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{D}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{G}}_2 }[/math] / [math]\displaystyle{ {\tilde{F}}_4 }[/math] / [math]\displaystyle{ {\tilde{E}}_{n-1} }[/math]
E2 Uniform tiling {3[3]} δ3 3 3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 4 4
E4 Uniform 4-honeycomb {3[5]} δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 6 6
E6 Uniform 6-honeycomb {3[7]} δ7 7 7 222
E7 Uniform 7-honeycomb {3[8]} δ8 8 8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 9 9 152251521
E9 Uniform 9-honeycomb {3[10]} δ10 10 10
En-1 Uniform (n-1)-honeycomb {3[n]} δn n n 1k22k1k21