6-simplex
In geometry, a 6-simplex is a self-dual regular 6-polytope. It has 7 vertices, 21 edges, 35 triangle faces, 35 tetrahedral cells, 21 5-cell 4-faces, and 7 5-simplex 5-faces. Its dihedral angle is cos−1(1/6), or approximately 80.41°.
Alternate names
It can also be called a heptapeton, or hepta-6-tope, as a 7-facetted polytope in 6-dimensions. The name heptapeton is derived from hepta for seven facets in Greek and -peta for having five-dimensional facets, and -on. Jonathan Bowers gives a heptapeton the acronym hop.[1]
As a configuration
This configuration matrix represents the 6-simplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces and 5-faces. The diagonal numbers say how many of each element occur in the whole 6-simplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. This self-dual simplex's matrix is identical to its 180 degree rotation.[2][3]
[math]\displaystyle{ \begin{bmatrix}\begin{matrix}7 & 6 & 15 & 20 & 15 & 6 \\ 2 & 21 & 5 & 10 & 10 & 5 \\ 3 & 3 & 35 & 4 & 6 & 4 \\ 4 & 6 & 4 & 35 & 3 & 3 \\ 5 & 10 & 10 & 5 & 21 & 2 \\ 6 & 15 & 20 & 15 & 6 & 7 \end{matrix}\end{bmatrix} }[/math]
Coordinates
The Cartesian coordinates for an origin-centered regular heptapeton having edge length 2 are:
- [math]\displaystyle{ \left(\sqrt{1/21},\ \sqrt{1/15},\ \sqrt{1/10},\ \sqrt{1/6},\ \sqrt{1/3},\ \pm1\right) }[/math]
- [math]\displaystyle{ \left(\sqrt{1/21},\ \sqrt{1/15},\ \sqrt{1/10},\ \sqrt{1/6},\ -2\sqrt{1/3},\ 0\right) }[/math]
- [math]\displaystyle{ \left(\sqrt{1/21},\ \sqrt{1/15},\ \sqrt{1/10},\ -\sqrt{3/2},\ 0,\ 0\right) }[/math]
- [math]\displaystyle{ \left(\sqrt{1/21},\ \sqrt{1/15},\ -2\sqrt{2/5},\ 0,\ 0,\ 0\right) }[/math]
- [math]\displaystyle{ \left(\sqrt{1/21},\ -\sqrt{5/3},\ 0,\ 0,\ 0,\ 0\right) }[/math]
- [math]\displaystyle{ \left(-\sqrt{12/7},\ 0,\ 0,\ 0,\ 0,\ 0\right) }[/math]
The vertices of the 6-simplex can be more simply positioned in 7-space as permutations of:
- (0,0,0,0,0,0,1)
This construction is based on facets of the 7-orthoplex.
Images
Ak Coxeter plane | A6 | A5 | A4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [7] | [6] | [5] |
Ak Coxeter plane | A3 | A2 | |
Graph | |||
Dihedral symmetry | [4] | [3] |
Related uniform 6-polytopes
The regular 6-simplex is one of 35 uniform 6-polytopes based on the [3,3,3,3,3] Coxeter group, all shown here in A6 Coxeter plane orthographic projections.
Notes
- ↑ Klitzing, Richard. "6D uniform polytopes (polypeta) x3o3o3o3o3o — hop". https://bendwavy.org/klitzing/dimensions/polypeta.htm.
- ↑ Coxeter 1973, §1.8 Configurations
- ↑ Coxeter, H.S.M. (1991). Regular Complex Polytopes (2nd ed.). Cambridge University Press. pp. 117. ISBN 9780521394901. https://books.google.com/books?id=9BY9AAAAIAAJ&pg=PA117.
References
- Coxeter, H.S.M.:
- Sherk, F. Arthur; McMullen, Peter; Thompson, Anthony C. et al., eds (1995). Kaleidoscopes: Selected Writings of H.S.M. Coxeter. Wiley. ISBN 978-0-471-01003-6. https://books.google.com/books?id=fUm5Mwfx8rAC&pg=PP1.
- (Paper 22)
- (Paper 23)
- (Paper 24)
- (Paper 22)
- Conway, John H.; Burgiel, Heidi; Goodman-Strauss, Chaim (2008). "26. Hemicubes: 1n1". The Symmetries of Things. pp. 409. ISBN 978-1-56881-220-5.
- Johnson, Norman (1991). Uniform Polytopes. Norman Johnson (mathematician).
- Johnson, N.W. (1966). The Theory of Uniform Polytopes and Honeycombs (PhD). University of Toronto. OCLC 258527038.
External links
- Olshevsky, George. "Simplex". Glossary for Hyperspace. Archived from the original on 4 February 2007. https://web.archive.org/web/20070204075028/members.aol.com/Polycell/glossary.html#Simplex.
- Polytopes of Various Dimensions
- Multi-dimensional Glossary
Fundamental convex regular and uniform polytopes in dimensions 2–10
| ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | An | Bn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform 4-polytope | 5-cell | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds |
Original source: https://en.wikipedia.org/wiki/6-simplex.
Read more |