Cyclotruncated simplectic honeycomb

From HandWiki

In geometry, the cyclotruncated simplectic honeycomb (or cyclotruncated n-simplex honeycomb) is a dimensional infinite series of honeycombs, based on the symmetry of the [math]\displaystyle{ {\tilde{A}}_n }[/math] affine Coxeter group. It is given a Schläfli symbol t0,1{3[n+1]}, and is represented by a Coxeter-Dynkin diagram as a cyclic graph of n+1 nodes with two adjacent nodes ringed. It is composed of n-simplex facets, along with all truncated n-simplices. It is also called a Kagome lattice in two and three dimensions, although it is not a lattice.

In n-dimensions, each can be seen as a set of n+1 sets of parallel hyperplanes that divide space. Each hyperplane contains the same honeycomb of one dimension lower.

In 1-dimension, the honeycomb represents an apeirogon, with alternately colored line segments. In 2-dimensions, the honeycomb represents the trihexagonal tiling, with Coxeter graph CDel branch 11.pngCDel split2.pngCDel node.png. In 3-dimensions it represents the quarter cubic honeycomb, with Coxeter graph CDel branch 11.pngCDel 3ab.pngCDel branch.png filling space with alternately tetrahedral and truncated tetrahedral cells. In 4-dimensions it is called a cyclotruncated 5-cell honeycomb, with Coxeter graph CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png, with 5-cell, truncated 5-cell, and bitruncated 5-cell facets. In 5-dimensions it is called a cyclotruncated 5-simplex honeycomb, with Coxeter graph CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png, filling space by 5-simplex, truncated 5-simplex, and bitruncated 5-simplex facets. In 6-dimensions it is called a cyclotruncated 6-simplex honeycomb, with Coxeter graph CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png, filling space by 6-simplex, truncated 6-simplex, bitruncated 6-simplex, and tritruncated 6-simplex facets.

n [math]\displaystyle{ {\tilde{A}}_n }[/math] Name
Coxeter diagram
Vertex figure Image and facets
1 [math]\displaystyle{ {\tilde{A}}_1 }[/math] Apeirogon
CDel node 1.pngCDel infin.pngCDel node 1.png
Uniform apeirogon.png
Yellow and cyan line segments
2 [math]\displaystyle{ {\tilde{A}}_2 }[/math] Trihexagonal tiling
CDel branch 11.pngCDel split2.pngCDel node.png
Trihexagonal tiling vertfig.png
Rectangle
Uniform tiling 333-t01.png
With yellow and blue equilateral triangles,
and red hexagons
3 [math]\displaystyle{ {\tilde{A}}_3 }[/math] quarter cubic honeycomb
CDel branch 11.pngCDel 3ab.pngCDel branch.png
T01 quarter cubic honeycomb verf.png
Elongated
triangular antiprism
Bitruncated alternated cubic tiling.png160px
With yellow and blue tetrahedra,
and red and purple truncated tetrahedra
4 [math]\displaystyle{ {\tilde{A}}_4 }[/math] Cyclotruncated 5-cell honeycomb
CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png
Truncated 5-cell honeycomb verf.png
Elongated
tetrahedral antiprism
5-cell, truncated 5-cell,
bitruncated 5-cell
5 [math]\displaystyle{ {\tilde{A}}_5 }[/math] Cyclotruncated 5-simplex honeycomb
CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png
Truncated 5-simplex honeycomb verf.png 5-simplex, truncated 5-simplex,
bitruncated 5-simplex
6 [math]\displaystyle{ {\tilde{A}}_6 }[/math] Cyclotruncated 6-simplex honeycomb
CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png
6-simplex, truncated 6-simplex,
bitruncated 6-simplex, tritruncated 6-simplex
7 [math]\displaystyle{ {\tilde{A}}_7 }[/math] Cyclotruncated 7-simplex honeycomb
CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png
7-simplex, truncated 7-simplex,
bitruncated 7-simplex
8 [math]\displaystyle{ {\tilde{A}}_8 }[/math] Cyclotruncated 8-simplex honeycomb
CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png
8-simplex, truncated 8-simplex,
bitruncated 8-simplex, tritruncated 8-simplex,
quadritruncated 8-simplex

Projection by folding

The cyclotruncated (2n+1)- and 2n-simplex honeycombs and (2n-1)-simplex honeycombs can be projected into the n-dimensional hypercubic honeycomb by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same vertex arrangement:

[math]\displaystyle{ {\tilde{A}}_3 }[/math] CDel branch.pngCDel 3ab.pngCDel branch 11.png [math]\displaystyle{ {\tilde{A}}_5 }[/math] CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.png [math]\displaystyle{ {\tilde{A}}_7 }[/math] CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.png [math]\displaystyle{ {\tilde{A}}_9 }[/math] CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.png [math]\displaystyle{ {\tilde{A}}_{11} }[/math] CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.png ...
[math]\displaystyle{ {\tilde{A}}_2 }[/math] CDel node.pngCDel split1.pngCDel branch 11.png [math]\displaystyle{ {\tilde{A}}_4 }[/math] CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.png [math]\displaystyle{ {\tilde{A}}_6 }[/math] CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.png [math]\displaystyle{ {\tilde{A}}_8 }[/math] CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.png [math]\displaystyle{ {\tilde{A}}_{10} }[/math] CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.png ...
[math]\displaystyle{ {\tilde{A}}_3 }[/math] CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node 1.png [math]\displaystyle{ {\tilde{A}}_5 }[/math] CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png [math]\displaystyle{ {\tilde{A}}_7 }[/math] CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png [math]\displaystyle{ {\tilde{A}}_9 }[/math] CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png ...
[math]\displaystyle{ {\tilde{C}}_1 }[/math] CDel node.pngCDel infin.pngCDel node 1.png [math]\displaystyle{ {\tilde{C}}_2 }[/math] CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png [math]\displaystyle{ {\tilde{C}}_3 }[/math] CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png [math]\displaystyle{ {\tilde{C}}_4 }[/math] CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png [math]\displaystyle{ {\tilde{C}}_5 }[/math] CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png ...

See also

References

  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)
  • Branko Grünbaum, Uniform tilings of 3-space. Geombinatorics 4(1994), 49 - 56.
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN:0-486-61480-8
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN:978-0-471-01003-6 [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
Fundamental convex regular and uniform honeycombs in dimensions 2-9
Space Family [math]\displaystyle{ {\tilde{A}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{C}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{B}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{D}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{G}}_2 }[/math] / [math]\displaystyle{ {\tilde{F}}_4 }[/math] / [math]\displaystyle{ {\tilde{E}}_{n-1} }[/math]
E2 Uniform tiling {3[3]} δ3 3 3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 4 4
E4 Uniform 4-honeycomb {3[5]} δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 6 6
E6 Uniform 6-honeycomb {3[7]} δ7 7 7 222
E7 Uniform 7-honeycomb {3[8]} δ8 8 8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 9 9 152251521
E9 Uniform 9-honeycomb {3[10]} δ10 10 10
En-1 Uniform (n-1)-honeycomb {3[n]} δn n n 1k22k1k21