Earth:Lopingian

From HandWiki
Short description: Third and final series of the Permian
Lopingian
259.51 ± 0.21 – 251.902 ± 0.024 Ma
Chronology
Permian graphical timeline
Subdivision of the Permian according to the ICS, as of 2021.[1]
Vertical axis scale: millions of years ago.
Etymology
Name formalityFormal
Synonym(s)Late/Upper Permian
Usage information
Celestial bodyEarth
Regional usageGlobal (ICS)
Time scale(s) usedICS Time Scale
Definition
Chronological unitEpoch
Stratigraphic unitSeries
Time span formalityFormal
Lower boundary definitionFAD of the Conodont Clarkina postbitteri postbitteri
Lower boundary GSSPPenglaitan Section, Laibin, Guangxi, China
[ ⚑ ] 23°41′43″N 109°19′16″E / 23.6953°N 109.3211°E / 23.6953; 109.3211
GSSP ratified2004[2]
Upper boundary definitionFAD of the Conodont Hindeodus parvus.
Upper boundary GSSPMeishan, Zhejiang, China
[ ⚑ ] 31°04′47″N 119°42′21″E / 31.0798°N 119.7058°E / 31.0798; 119.7058
GSSP ratified2001[3]

The Lopingian is the uppermost series/last epoch of the Permian.[4] It is the last epoch of the Paleozoic. The Lopingian was preceded by the Guadalupian and followed by the Early Triassic.

The Lopingian is often synonymous with the informal terms late Permian or upper Permian.

The name was introduced by Amadeus William Grabau in 1931 and derives from Leping, Jiangxi in China.[5] It consists of two stages/ages. The earlier is the Wuchiapingian and the later is the Changhsingian.[6]

The International Chronostratigraphic Chart (v2018/07)[4] provides a numerical age of 259.1 ±0.5 Ma. If a Global Boundary Stratotype Section and Point (GSSP) has been approved, the lower boundary of the earliest stage determines numerical age of an epoch. The GSSP for the Wuchiapingian has a numerical age of 259.8 ± 0.4 Ma.[7][8]

Evidence from Milankovitch cycles suggests that the length of an Earth day during this epoch was approximately 22 hours.[9]

Geography

During the Lopingian, most of the earth was in the supercontinent Pangaea. The Zechstein sea, would, at times, be connected to the Paleotethys; Other features of the earth during the time were the Microcontinent Cathaysia; And the Cimmerian superterrane, which divided the tethys realm into the paleotethys and the slowly expanding neotethys.

Life

The Lopingian ended with the Permian–Triassic extinction event, where over 95% of species went extinct.

The series follows the Guadalupian, which ended with the Capitanian mass extinction, during which many species of brachiopods, ammonoids and other groups went extinct.[10]

Conodonts would reach their all-time low during this period, despite this, they are recovered from most marine Permian localities.[11] Common conodonts from the Lopingian include the genera Clarkina and Hindeodus.

The Lopingian would see the decline of the Paleozoic ammonoid orders (Goniatitida and Prolecanitida) and the rise of the order Ceratitida, especially within the superfamily Xenodiscoidea.[12]

Only seven trilobites are known from the Lopingian, with only five by the end of the epoch. One of the last members of this clade was Kathwaia capitorosa.[13]

Eurypterids were nearly extinct by this point, consisting of the possibly Lopingian Campylocephalus permicus of Russia; and the Changhsingian ?Woodwardopterus freemanorum of Australia .[14]

On land, gorgonopsians would become the apex predators after the extinction of the Dinocephalians, Other predators include the Therocephalians. Herbivorous animals of the Lopingian include the pareiasaurs such as Scutosaurus or dicynodonts, such as Dicynodon.

Fossil gallery

See also

References

  1. "Chart/Time Scale". International Commission on Stratigraphy. http://www.stratigraphy.org/index.php/ics-chart-timescale. 
  2. Jin, Yugan; Shen, Shuzhong; Henderson, Charles; Wang, Xiangdong; Wang, Wei; Wang, Yue; Cao, Changqun; Shang, Qinghua (December 2006). "The Global Stratotype Section and Point (GSSP) for the boundary between the Capitanian and Wuchiapingian Stage (Permian)". Episodes 29 (4): 253–262. doi:10.18814/epiiugs/2006/v29i4/003. https://stratigraphy.org/gssps/files/wuchiapingian.pdf. Retrieved 13 December 2020. 
  3. Hongfu, Yin; Kexin, Zhang; Jinnan, Tong; Zunyi, Yang; Shunbao, Wu (June 2001). "The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary". Episodes 24 (2): 102–114. doi:10.18814/epiiugs/2001/v24i2/004. https://stratigraphy.org/gssps/files/induan.pdf. Retrieved 8 December 2020. 
  4. 4.0 4.1 International Commission on Stratigraphy. "Chart". http://www.stratigraphy.org/index.php/ics-chart-timescale. 
  5. Zhang, Shouxin (2009). Geological Formation Names of China (1866–2000). Beijing/Dordrecht: Higher Education Press/Springer. p. 681. ISBN 978-7-040-25475-4. 
  6. Allaby, Michael (2015). A Dictionary of Geology and Earth Sciences (4th ed.). Oxford University Press. doi:10.1093/acref/9780199653065.001.0001. ISBN 9780199653065. 
  7. International Commission on Stratigraphy. "GSSPs". http://www.stratigraphy.org/index.php/ics-gssps. 
  8. Gradstein, Felix M.; Ogg, James G.; Smith, Alan G. (2004). A Geologic Time Scale 2004. Cambridge University Press. ISBN 9780521786737. 
  9. Wu, Huaichun; Zhang, Shihong; Hinnov, Linda A.; Jiang, Ganqing; Feng, Qinglai; Li, Haiyan; Yang, Tianshui (13 September 2013). "Time-calibrated Milankovitch cycles for the late Permian". Nature Communications 4: 2452. doi:10.1038/ncomms3452. PMID 24030138. Bibcode2013NatCo...4.2452W. 
  10. Bond, David; Hilton, Jason; Wignall, Paul; Ali, Jason; Stevens, Liadan; Sun, Yadong; Lai, Xulong (2010). "The Middle Permian (Capitanian) mass extinction on land and in the oceans". Earth-Science Reviews 102 (1–2): 100–116. doi:10.1016/j.earscirev.2010.07.004. Bibcode2010ESRv..102..100B. 
  11. Wardlaw, R. B. (1995). "Permian Conodonts". The Permian of Northern Pangea. Berlin, Heidelberg: Springer. pp. 186–195. doi:10.1007/978-3-642-78593-1_12. ISBN 978-3-642-78595-5. 
  12. Leonova, T.B. (2016). "Major trends in the evolution of Permian ammonoids". Paleontological Journal 50: 131–140. doi:10.1134/S0031030116020039. 
  13. "The last Trilobites". https://www.trilobites.info/lasttrilos.htm. 
  14. Poschmann, Marjus J.; Rozefelds, Andrew. "The last eurypterid – a southern high-latitude record of sweep-feeding sea scorpion from Australia constrains the timing of their extinction". Historical Biology. doi:10.1080/08912963.2021.1998033. https://www.tandfonline.com/doi/abs/10.1080/08912963.2021.1998033.