Earth:Mesoarchean

From HandWiki
Short description: Third era of the Archean Eon
Mesoarchean
3200 – 2800 Ma
3000 Ma paleoglobe.png
A reconstruction of the Earth's continents during the middle Mesoarchean, c. 3 Ga.
Archean.png
Artist impression of the Archean eon
Banded iron formation (Goldman Meadows Formation, Mesoarchean; Atlantic City Iron Mine, South Pass, Wyoming, USA) 2 (30749219994).jpg
Banded iron formation created during the Mesoarchean era
Chronology
Proposed redefinition(s)3490–2780 Ma
Gradstein et al., 2012
Proposed subdivisionsVaalbaran Period, 3490–3020 Ma

Gradstein et al., 2012
Pongolan Period, 3020–2780 Ma

Gradstein et al., 2012
Etymology
Name formalityFormal
Alternate spelling(s)Mesoarchaean
Usage information
Celestial bodyEarth
Regional usageGlobal (ICS)
Time scale(s) usedICS Time Scale
Definition
Chronological unitEra
Stratigraphic unitErathem
Time span formalityFormal
Lower boundary definitionDefined Chronometrically
Upper boundary definitionDefined Chronometrically

The Mesoarchean (/ˌmz.ɑːrˈkən, ˌmɛz-/ MEE-zoh-ar-KEE-ən, MEZ-oh-, also spelled Mesoarchaean) is a geologic era in the Archean Eon, spanning 3,200 to 2,800 million years ago, which contains the first evidence of modern-style plate subduction and expansion of microbial life. The era is defined chronometrically and is not referenced to a specific level in a rock section on Earth.

Tectonics

Hypothesized supercontinent Vaalbara during the Mesoarchean era, breaking up in the Neoarchean era
Alternative configuration of Vaalbara

The Mesoarchean era is thought to be the birthplace of modern-style plate subduction, based on geologic evidence from the Pilbara Craton in western Australia .[1][2] A convergent margin with a modern-style oceanic arc existed at the boundary between West and East Pilbara approximately 3.12 Ga. By 2.97 Ga, the West Pilbara Terrane converged with and accreted onto the East Pilbara Terrane.[2] A supercontinent, Vaalbara, may have existed in the Mesoarchean.[3]

Environmental conditions

Analysis of oxygen isotopes in Mesoarchean cherts has been helpful in reconstructing Mesoarchean surface temperatures.[4] These cherts led researchers to draw an estimate of an oceanic temperature around 55-85°C[5] while other studies of weathering rates postulate average temperatures below 50°C.

The Mesoarchean atmosphere contained high levels of atmospheric methane and carbon dioxide, which could be an explanation for the high temperatures during this era.[4] Atmospheric dinitrogen content in the Mesoarchean is thought to have been similar to today, suggesting that nitrogen did not play an integral role in the thermal budget of ancient Earth.[6]

The Pongola glaciation occurred around 2.9 Ga, from which there is evidence of ice extending to a palaeolatitude (latitude based on the magnetic field recorded in the rock) of 48 degrees. This glaciation was likely not triggered by the evolution of photosynthetic cyanobacteria, which likely occurred in the interval between the Huronian glaciations and the Makganyene glaciation.[7]

Early microbial life

Microbial life with diverse metabolisms expanded during the Mesoarchean era and produced gases that influenced early Earth's atmospheric composition. Cyanobacteria produced oxygen gas, but oxygen did not begin to accumulate in the atmosphere until later in the Archean.[8] Small oases of relatively oxygenated water did exist in some nearshore shallow marine environments by this era, however.[9]

See also

References

  1. Mints, M.V.; Belousova, E.A.; Konilov, A.N.; Natapov, L.M.; Shchipansky, A.A.; Griffin, W.L.; O'Reilly, S.Y.; Dokukina, K.A. et al. (2010). "Mesoarchean subduction processes: 2.87 Ga eclogites from the Kola Peninsula, Russia". Geology 38 (8): 739–742. doi:10.1130/G31219.1. ISSN 0091-7613. Bibcode2010Geo....38..739M. https://doi.org/10.1130/G31219.1. 
  2. 2.0 2.1 Smithies, R. H.; Van Kranendonk, M. J.; Champion, D. C. (2007). "The Mesoarchean emergence of modern-style subduction". Gondwana Research. Island Arcs: Past and Present 11 (1): 50–68. doi:10.1016/j.gr.2006.02.001. ISSN 1342-937X. Bibcode2007GondR..11...50S. https://www.sciencedirect.com/science/article/pii/S1342937X06000669. 
  3. de Kock, Michiel O.; Evans, David A. D.; Beukes, Nicolas J. (2009). "Validating the existence of Vaalbara in the Neoarchean". Precambrian Research 174 (1): 145–154. doi:10.1016/j.precamres.2009.07.002. ISSN 0301-9268. Bibcode2009PreR..174..145D. https://www.sciencedirect.com/science/article/pii/S0301926809001429. 
  4. 4.0 4.1 Sleep, Norman H.; Hessler, Angela M. (2006). "Weathering of quartz as an Archean climatic indicator". Earth and Planetary Science Letters 241 (3–4): 594–602. doi:10.1016/j.epsl.2005.11.020. Bibcode2006E&PSL.241..594S. https://doi.org/10.1016/j.epsl.2005.11.020. 
  5. Knauth, L. Paul; Lowe, Donald R. (2003). "High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa". Geological Society of America Bulletin 115: 566–580. doi:10.1130/0016-7606(2003)115<0566:HACTIF>2.0.CO;2. ISSN 0016-7606. Bibcode2003GSAB..115..566K. https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/115/5/566/183983/High-Archean-climatic-temperature-inferred-from?redirectedFrom=fulltext. 
  6. Marty, Bernard; Zimmermann, Laurent; Pujol, Magali; Burgess, Ray; Philippot, Pascal (2013). "Nitrogen isotopic composition and density of the Archean atmosphere". Science 342 (6154): 101–104. doi:10.1126/science.1240971. PMID 24051244. Bibcode2013Sci...342..101M. https://www.science.org/doi/10.1126/science.1240971. 
  7. Kopp, Robert E.; Kirschvink, Joseph L.; Hilburn, Isaac A.; Nash, Cody Z. (2005). "The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis". Proc. Natl. Acad. Sci. U.S.A. 102 (32): 11131–6. doi:10.1073/pnas.0504878102. PMID 16061801. Bibcode2005PNAS..10211131K. 
  8. Lepot, Kevin (2020). "Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon". Earth-Science Reviews 209: 103296. doi:10.1016/j.earscirev.2020.103296. ISSN 0012-8252. Bibcode2020ESRv..20903296L. 
  9. Eickmann, Benjamin; Hofmann, Axel; Wille, Martin; Bui, Thi Hao; Wing, Boswell A.; Schoenberg, Ronny (15 January 2018). "Isotopic evidence for oxygenated Mesoarchaean shallow oceans". Nature Geoscience 11 (2): 133–138. doi:10.1038/s41561-017-0036-x. https://www.nature.com/articles/s41561-017-0036-x?error=cookies_not_supported&code=54e99c94-9890-439d-a813-c26d056ce863. Retrieved 28 December 2022. 

External links