Earth:Paleobiota of the Cañadón Asfalto Formation
The Cañadón Asfalto Formation is a geological formation which dates to the Toarcian age of the Early Jurassic period of Argentina . The rocks of the formation preserve a diverse biota, including plants, dinosaurs, invertebrates, mammals and pterosaurs, among others. The formation is divided into two members: the lower Las Chacritas Member, and the overlying Puesto Almada member, though the latter has also been assigned to the overlying Cañadón Calcáreo Formation by some authors. The members are typically composed of fluvial-lacustrine deposits consisting of sandstones and shales, with a limestone carbonate evaporitic sequence also being present in the lower of the two.
Invertebrates
Demospongiae
Palaeospongillidae reported from the Cañadon Asfalto Formation | ||||||
---|---|---|---|---|---|---|
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
Palaeospongilla[1] |
|
|
|
Isolated Specimens |
A freshwater (Lacustrine) member of Palaeospongillidae (Spongillida Sponges). Represents the main lacustrine bottom inhabitant of the Chacritas Paleolake |
Crustacea
Crustacea reported from the Cañadon Asfalto Formation | ||||||
---|---|---|---|---|---|---|
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
|
|
|
Isolated Valves |
A freshwater (Lacustrine) member of Eosestheriidae (Spinicaudatan). Originally identified as Cyzicus (Euestheria) taschi. This genus is found in identical alkaline lacustrine settings in the also Toarcian Mawson Formation of Antarctica |
||
|
|
|
Isolated Valves |
A freshwater (Lacustrine) member of Afrograptidae (Spinicaudatan). Given the stratigraphic uncertainty, it may come from the Cañadón Calcáreo Formation. |
||
|
|
|
Isolated Valves |
A freshwater (Lacustrine) member of Darwinulidae (Ostracod). |
||
|
|
|
Isolated Valves |
A freshwater (Lacustrine) member of Euestheriidae (Spinicaudatan). |
||
|
|
|
Isolated Valves |
A freshwater (Lacustrine) member of Fushunograptidae (Spinicaudatan). |
||
|
|
|
Isolated Valves |
A freshwater (Lacustrine) member of Limnocytheridae (Ostracodan). Given the stratigraphic uncertainty, it may come from the Cañadón Calcáreo Formation |
||
|
|
|
Isolated Valves |
A freshwater (Lacustrine) member of Loxoconchidae (Ostracodan). Given the stratigraphic uncertainty, it may come from the Cañadón Calcáreo Formation. |
||
|
|
|
Isolated Valves |
A freshwater (Lacustrine) member of Darwinulidae (Ostracodan). These species are characteristic of the Middle Jurassic of northern China and where used to correlate the age of the beds |
||
Pseudestherites[7] |
|
|
|
Isolated Valves |
A freshwater (Lacustrine) member of Antronestheriidae (Spinicaudatan). Given the stratigraphic uncertainty, it may come from the Cañadón Calcáreo Formation. |
|
|
|
|
Isolated Valves |
A freshwater (Lacustrine) member of Cytheroidea (Ostracodan). Given the stratigraphic uncertainty, it may come from the Cañadón Calcáreo Formation. |
||
|
|
|
Isolated Valves |
A freshwater (Lacustrine) member of Limnocytheridae (Ostracodan). Given the stratigraphic uncertainty, it may come from the Cañadón Calcáreo Formation. |
||
Wolfestheria[4] |
|
|
|
Isolated Valves |
A freshwater (Lacustrine) member of Fushunograptidae (Spinicaudatan). |
Mollusca
Mollusca reported from the Cañadon Asfalto Formation | ||||||
---|---|---|---|---|---|---|
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
|
|
|
Isolated Shells |
A freshwater (Lacustrine) member of Corbiculidae (Bivalve). |
||
Cyanocyclas[9] |
|
|
|
Conchas Aisladas |
A freshwater (Lacustrine) member of Corbiculidae (Bivalvo). |
|
|
|
|
Isolated Shells |
A freshwater (Lacustrine) member of Unionidae (Bivalve). The most abundant Bivalve genus on the Formation. Represents also some of the smallest-sized specimens recorded in the Mesozoic |
||
Nayadidae[11] |
Indeterminate |
|
|
Isolated Shells |
A freshwater (Lacustrine) member of Unionidae (Bivalve). |
|
|
|
|
Isolated Shells |
A freshwater (Lacustrine) member of Tateidae (Snail). |
||
Indeterminate |
|
|
Isolated Shells |
A freshwater (Lacustrine) member of Sphaeriida (Bivalve). |
||
|
|
|
Isolated Shells |
A freshwater (Lacustrine) member of Viviparidae (Snail). |
Insecta
Insect eggs of unknown affinity were reported from several layers of the Estancia Fossati locality.[1]
Insects reported from the Cañadon Asfalto Formation | ||||||
---|---|---|---|---|---|---|
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
Indeterminate |
|
|
Head capsules |
Indeterminate Bittacidae (Migdes) remains, associated with lacustrine facies. Given the stratigraphic uncertainty, it may come from the Cañadón Calcáreo Formation |
||
Indeterminate |
|
|
Elytra and body remains |
Indeterminate Beetle remains, associated with lacustrine facies |
||
Conchindusia isp. |
|
|
Imprints or compressed moulds of larval cases |
Indeterminate Trichoptera (Caddisflies) Ichnofossils, associated with lacustrine facies |
||
Indeterminate |
|
|
Fragmentary wings |
Indeterminate Heteroptera remains, associated with lacustrine facies |
||
Neorthophlebidae[13] |
Indeterminate |
|
|
Wings and parts of body |
Indeterminate Bittacidae (Scorpionfly) remains, associated with lacustrine facies. Given the stratigraphic uncertainty, it may come from the Cañadón Calcáreo Formation |
|
Ostracindusia isp. |
|
|
Imprints or compressed moulds of larval cases |
Indeterminate Trichoptera (Caddisflies) Ichnofossils, associated with lacustrine facies |
||
Terrindusia isp. |
|
|
Imprints or compressed moulds of larval cases |
Indeterminate Trichoptera (Caddisflies) Ichnofossils, associated with lacustrine facies |
||
Indeterminate |
|
|
Wings and larval cases |
Indeterminate Trichoptera (Caddisflies) remains, associated with lacustrine facies |
Vertebrates
Fish
Actinopteri reported from the Cañadon Asfalto Formation | ||||||
---|---|---|---|---|---|---|
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
Indeterminate |
|
|
Isolated large median fin & Isolated Scales |
A freshwater (Lacustrine) member of Archaeomaenidae (Teleostei). Maybe related to the genus Oreochima, coming from layers coeval, coregional, and of identical deposition of the Mawson Formation of Antarctica |
Amphibians
Amphibians reported from the Cañadon Asfalto Formation | ||||||
---|---|---|---|---|---|---|
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
|
Las Chacritas Member |
|
An early frog of the family Notobatrachidae. Notobatrachus degiustoi can be distinguished from N. reigsi by features of the skull. The presence of this anuran in several locations suggests local proliferation linked with lacustrine bodies |
Turtles
Turtles reported from the Cañadon Asfalto Formation | ||||||
---|---|---|---|---|---|---|
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
|
|
Las Chacritas Member |
|
A stem turtle (Mesochelydian) outside both extant groups, closely related with Kayentachelys aprix of North America and Indochelys spatulata of India. Likely occupied aquatic or semiaquatic niches.[21] |
||
Indeterminate |
|
Las Chacritas Member |
|
Indeterminate Turtle remains |
Lepidosaurs
Lepidosaurs reported from the Cañadon Asfalto Formation | ||||||
---|---|---|---|---|---|---|
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
Sphenocondor[23] |
Sphenocondor gracilis |
Queso Rallado |
Las Chacritas Member |
Dentary |
A Sphenodontian Rhynchocephalian, closely related with Godavarisaurus from the almost coeval Jurassic Kota Formation of India, maybe part of an endemic Gondwanan clade.[23] |
Crocodylomorpha
Crocodyliformes reported from the Cañadón Asfalto Formation | ||||||
---|---|---|---|---|---|---|
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
Indeterminate |
Queso Rallado |
Las Chacritas Member |
Several isolated remains |
Indeterminate crocodylomorph remains that represent among the most complete vertebrates linked with lacustrine facies. |
Pterosaurs
Pterosaurs reported from the Cañadón Asfalto Formation | ||||||
---|---|---|---|---|---|---|
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
Allkaruen koi |
Canadón Carrizal |
Las Chacritas Member |
A braincase, as well as a mandible and cervical vertebrae. |
A pterosaur either related with Breviquartossa or maybe even a sister group of monofenestratan (Wukongopteridae + Pterodactyloidea) pterosaurs |
||
Indeterminate |
Las Chacritas |
Las Chacritas Member |
Uncatalogued specimens, several mandibles, braincase, shoulder girdle, two humeri, several wing-finger phalanges |
Indeterminate remains of a pterosaur, possibly a Rhamphorhynchoidea. It seems to represent a rhamphorhynchoid pterosaur with a wingspan of about 1.5–2 meters. The morphology is very similar to that of the lower jaw of the Scaphognathinae.[27] |
Theropods
During a campaign conducted in early 2021, remains of a large theropod dinosaur were found near the town of Las Chacritas. In 2020 a new fossil locality was found, named Cañadón de las Huellas due to the large number of sauropod, and probably theropod, footprints on one of the canyon walls. In the same locality in 2021, articulated remains where recovered and represent at least one sauropod and one large theropod.[28] At least four theropod morphotypes, including one with ceratosaur and another with Piatnitzkysauridae affinities, are known from the Cañadón Bagual.[29]
Theropoda reported from the Cañadón Asfalto Formation | ||||||
---|---|---|---|---|---|---|
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
Asfaltovenator vialidadi |
Cerro Condor |
Las Chacritas Member |
Nearly compete skull and largely complete front half of the skeleton forward of the hips, distal pubis and fermur and proximal fibula and tibia, partial foot |
A probable early member of Allosauroidea |
||
Averostra[31] |
Indeterminate |
|
Las Chacritas Member |
Isolated teeth: MPEF BA 182/08, BA 40/08, BA 09/80, BA 88/08, BA 252G+165/08 A, BA 252G+165/08 B, BA 252G+165/08 C |
Theropod dinosaur teeth that resemble those assigned to the families Ceratosauridae, Megalosauridae and Abelisauridae |
|
Indeterminate |
Cerro Cóndor |
Las Chacritas Member |
A dentary with teeth in situ, MPEF-PV 6775 |
It resembles the dentary of Ceratosaurus |
||
Condorraptor currumili |
Las Chacritas |
Las Chacritas Member |
Partial articulated skeleton |
A relative of Piatnitzkysaurus from the same formation, and a possible junior synonym of it as well. |
||
Indeterminate |
|
Las Chacritas Member |
Isolated Teeth: MEPF BA 61/08, BA 103/08, BA 32/08 A, BA 32/08 B, BA 104/08, BA 226B/08, PV 3498, BA 29/08, BA51/08, BA 270/08 a, BA 270/08 b, BA 270/08 c |
Theropod dinosaur teeth that resemble those assigned to the family Dromaeosauridae. Alternatively, they could belong to basal members of Coelurosauria |
||
Eoabelisaurus mefi |
Jugo Luco |
Las Chacritas Member |
A nearly complete articulated skeleton |
A Neoceratosaur, that was suggested to be a basal member of Abelisauria, but also a member of Ceratosauridae |
||
Indeterminate |
|
Las Chacritas Member |
Isolated Teeth: MPEF PV 1175, BA 66/08, PV 1356, PV 1357 |
Theropod dinosaur teeth that resemble those assigned to the family Megalosauridae. |
||
Indeterminate |
|
Las Chacritas Member |
Isolated Teeth: MPEF BA 68/08, BA 92/08, PV 3499, BA 68/08, BA 183/08 |
Theropod dinosaur teeth that resemble those assigned to basal neotheropods, such as members of Coelophysoidea. |
||
Indeterminate |
|
Las Chacritas Member |
Isolated Teeth & Cranial remains: MPEF 1717 CC 205, PV 3440A A, PV 3440A B, PV 3440A C, PV 3440A D, PV 3440A E, PV 3440A F, PV 3440A G |
Theropod dinosaur teeth that resemble those assigned to members of Piatnitzkysauridae. |
||
Piatnitzkysaurus floresi |
Cerro Cóndor South |
Las Chacritas Member |
Two "fragmentary skulls with associated postcranium."[37] |
Possible senior synonym of Condorraptor from the same formation. |
||
Indeterminate |
|
Las Chacritas Member |
Isolated Teeth : MEPF PV 1350 |
Theropod dinosaur teeth resembling those assigned to members of Spinosauridae. Alternatively, they could belong to members of Ceratosauria |
||
Tetanurae[31] |
Indeterminate |
|
Las Chacritas Member |
Isolated Teeth : MEPF BA 84/08, BA 49/08 A, BA 49/08 B, BA 64/08, BA 65/08, BA 266/07 |
Theropod dinosaur teeth that resemble with those assigned to members of Megalosauridae and Dromaeosauridae |
|
Indeterminate |
|
Las Chacritas Member |
Isolated Teeth : MPEF PV 1640 |
"Outlier" tooth that doesn't fit in any previously known morphotype, maybe due to preservation |
||
Theropodipedia[38] |
Theropodipedia ichnog. indeterminate |
|
Las Chacritas Member |
Footprints |
Possible theropod footprints, unassigned to any concrete ichnogenus |
Sauropodomorphs
Sauropodiformes reported from the Cañadón Asfalto Formation | ||||||
---|---|---|---|---|---|---|
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
Bagualia alba |
Cañadon Bagual |
Las Chacritas Member |
The partial skeletons of three individuals |
An early member of Eusauropoda, related with the African genus Spinophorosaurus |
||
Indeterminate |
Cerro Condor Sur |
Las Chacritas Member |
MACN-CH 934: axial neural arches and spines, an ilium, a pubis, ?two or ?three ischia, and two maxillae |
This specimen shows strong Diplodocidae affinities, yet it has been considered either a derived non-neosauropodan eusauropod (having resemblance with Lapparentosaurus in some characters) or even a basal neosauropod (also resembling Haplocanthosaurus) |
||
Indeterminate |
Cerro Condor Sur |
Las Chacritas Member |
MACN-CH 230: three dorsal vertebrae |
Likely a eusauropod, possibly a cetiosaurid. Smaller than other sauropod taxa found in the formation. |
||
Patagosaurus fariasi |
Cerro Condor |
Las Chacritas Member |
Many specimens, including a partial skull. |
A non-neosauropodan eusauropodan member of Cetiosauridae. This genus represents the most abundant sauropod in the formation |
||
Sauropodiformes[44] |
Indeterminate |
Queso Rallado, near Cerro Cóndor |
Las Chacritas Member |
Isolated Teeth: MPEF-PV 10860 |
An indeterminate Sauropodiform or a very basal sauropod or even dental material of Volkheimeria.[45] |
|
Indeterminate |
Cerro Condor Sur |
Las Chacritas Member |
MACN-CH 219, 223(+221), 231 |
Too fragmentary to be ascribed to any taxon, currently classified as Sauropoda indet. |
||
Titanosauriformes[46] |
Indeterminate |
Queso Rallado, near Cerro Cóndor |
Las Chacritas Member |
Isolated Teeth: MPEF-PV 10606 |
An indeterminate Titanosauriform. It can be alternatively a basal Eusauropod. Possible relationships with Atlasaurus |
|
Volkheimeria chubutensis |
Cerro Cóndor South |
Las Chacritas Member |
"Partial skeleton consisting of presacral and sacral vertebrae, pelvis, [and] hindlimb." |
Either a gravisaur or a sister taxon of the Indian genus Barapasaurus |
Ornithischians
Ornithischians reported from the Cañadón Asfalto Formation | ||||||
---|---|---|---|---|---|---|
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
Indeterminate |
Queso Rallado |
Las Chacritas Member |
Isolated ungual phalanx and Isolated Teeth: MPEF-PV 3818, MPEF-PV 3824, MEPF-PV 3820, MEPF-PV 3825, MEPF-PV 10861, MPEF-PV 10823, MPEF-PV 3821 & MPEF-PV 10864 |
An indeterminate Cerapodan with resemblances with Hypsilophodon. Some of the referred remains have been reclassified as Manidens material |
||
Indeterminate |
Queso Rallado |
Las Chacritas Member |
Metapodials, caudal vertebrae, and isolated phalanges: MPEF-PV 3826 |
heterodontosaurid that cannot be compared with Manidens due to the lack of overlapping fossils. |
||
Manidens condorensis |
|
Las Chacritas Member |
Partial articulated specimen, skull & associated elements as well referred isolated teeth: MPEF-PV 3809, MPEF-PV 3211, MPEF-PV 3808, MPEF-PV 10867, MPEF-PV 1719, MPEF-PV 1786, MPEF-PV 1718, MPEF-PV 3810, MPEF-PV 3811, MPEF-PV 3812, MPEF-PV 3813, MPEF-PV 3814, MPEF-PV 3815, MPEF-PV 3816, MPEF-PV 10866 |
A primitive and small heterodontosaurid. Fossils attributed to this genus may have been at least partially arboreal. Principal component analysis found that the feet of Manidens were most similar to those of tree-perching birds.[49] |
||
Indeterminate |
|
Las Chacritas Member |
Isolated teeth: MPEF-PV 3817, MPEFPV 3819, MPEF-PV 3822. |
Not referable to any taxa beyond Ornithischia Indet. |
Mammals
Mammals reported from the Cañadón Asfalto Formation | ||||||
---|---|---|---|---|---|---|
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
Indeterminate |
Queso Rallado |
Las Chacritas Member |
Isolated Teeth |
An Allotherian whose affinities hasn't been tested |
||
Argentoconodon fariasorum |
Queso Rallado |
Las Chacritas Member |
MPEF-PV2362, fragmentary left maxilla, MPEF-PV2363 partial skeleton, MPEFPV2364 isolated complete right upper last molariform |
A volaticotherian (Alticonodontinae), closely related to the Asian genus Volaticotherium, having similar postcraneal appearance, indicating possible gliding capabilities, yet better material is needed to prove it.[51] |
||
Asfaltomylos patagonicus |
Queso Rallado |
Las Chacritas Member |
MPEF PV 1671, complete lower maxilla |
An Australosphenidan, related to Henosferus in Henosferidae. |
||
Condorodon spanios |
Queso Rallado |
Las Chacritas Member |
MPEF-PV 2365, isolated complete lower left molariform |
An "amphilestid" triconodont, related with the late jurassic African Tendagurodon.[50] |
||
|
|
Las Chacritas Member |
MPEF 2353 right lower jaw, MPEF 2354 Left lower jaw, MPEF 2357 Left lower jaw, referred MPEF 2355 isolated upper premolar |
An Australosphenidan, related to Asfaltomylos in Henosferidae, being twice as large as this last one.[53] |
Fungi
Genus | Species | Location | Stratigraphic position | Member | Material | Ecogroup | Palaeoclimate requirements | Notes |
---|---|---|---|---|---|---|---|---|
Annella[54] |
|
Central Patagonia |
|
|
Hypae and Miospores |
Unknown: either Aquatic (Freshwater) or Parasitic |
Unknown, suggested highly seasonality |
A Fungus of uncertain relationships. This species is recovered in both coal seams and proximal prodelta sediments, making the assignation of a biome complex.[54] |
Plants
According to a palynological study the dominant pollen was produced by the conifer families Cheirolepidiaceae (Classopollis) and Araucariaceae (mainly Araucariacites and Callialasporites), suggesting that warm-temperate and relatively humid conditions under highly seasonal climate prevailed during the depositional times of the unit. The abundance of Botryococcus supports the presence of a shallow lake with probably saline conditions.[55] Locally, the Cañadón Asfalto represents a more poor record of the floras seen in the undeliying Lonco Tapial Formation, with its closest floras found on the Antarctic Peninsula Sweeney Formation at Potter Peak, sharing Brachyphyllum spp. and Elatocladus confertus.[56]
Phytoplankton
Genus | Species | Location | Member | Material | Ecogroup | Palaeoclimate requirements | Notes | Images |
---|---|---|---|---|---|---|---|---|
|
|
|
Algae |
Aquatic (freshwater); Alkaline indicator |
Highly seasonal climate |
A freshwater algae of the family Botryococcaceae. This genus is the main indicator, due to its abundance, of the presence of a shallow lake with probably saline conditions, reaching in some samples about 96 to 70%.[55] |
||
|
|
|
Zygospores |
Aquatic (freshwater) |
Temperate to warm; seasonal climate |
Algae or Algae Acritarch of the family Prasinophyceae. |
||
|
|
|
Zygospores |
Aquatic (freshwater) |
Temperate to warm; seasonal climate |
Algae of the family Zygnemataceae |
Bryophyta
Genus | Species | Location | Member | Material | Ecogroup | Palaeoclimate requirements | Notes | Images |
---|---|---|---|---|---|---|---|---|
Antulsporites[55] |
|
|
|
Spores |
Upland and Riverside |
Can withstand long periods of drought; seasonal climate |
Affinities with the family Sphagnaceae in the Sphagnopsida. "Peat moss" spores, related to genera such as Sphagnum that can store large amounts of water. |
|
Neoraistrickia[55] |
|
|
|
Spores |
Upland and Lowland |
Warm to temperate, relatively wet |
Affinities with the family Selaginellaceae and Lycopodiaceae in the Lycopsida. |
|
|
|
|
Spores |
Upland and Riverside |
Can withstand long periods of drought; seasonal climate |
Affinities with Bryophyta. |
||
Retitriletes[55] |
|
|
|
Spores |
Upland and Lowland |
Warm to temperate, relatively wet |
Affinities with Bryophyta. |
|
Stereisporites[55] |
|
|
|
Spores |
Upland and Riverside |
Can withstand long periods of drought; seasonal climate |
Affinities with the family Sphagnaceae in the Sphagnopsida. |
Equisetales
Genus | Species | Location | Member | Material | Ecogroup | Palaeoclimate requirements | Notes | Images |
---|---|---|---|---|---|---|---|---|
|
|
|
Stems |
Lowland and Riverside |
Warm to temperate, relatively wet |
Plants of the group Equisetales. Usually linked with riversides |
Pteridophyta
Genus | Species | Location | Member | Material | Ecogroup | Palaeoclimate requirements | Notes | Images |
---|---|---|---|---|---|---|---|---|
Baculatisporites[57] |
|
|
|
Spores |
Lowland and Riverside |
Warm to temperate, relatively wet |
Affinities with the family Osmundaceae in the Polypodiopsida. Near fluvial current ferns, related to the modern Osmunda regalis. |
|
Biretisporites[55] |
|
|
|
Spores |
Lowland and Riverside |
Warm to temperate, relatively wet |
Affinities with the Marattiaceae in the Polypodiopsida. Fern spores from low herbaceous flora. |
|
Cadargasporites[55] |
|
|
|
Spores |
Lowland and Riverside |
Warm to temperate, relatively wet |
Uncertain affinity Fern Spores Filicopsida incertae sedis |
|
|
|
|
Isolated Pinnae |
Lowland and Riverside |
Warm to temperate, relatively wet |
Plants of the family Osmundaceae. |
||
Clavatisporites[55] |
|
|
|
Spores |
Lowland and Riverside |
Warm to temperate, relatively wet |
Filicopsida incertae sedis |
|
Deltoidospora[55] |
|
|
|
Spores |
Upland, Lowland and Riverside |
Warm to temperate, relatively wet |
Affinities with the families Cyatheaceae/Dicksoniaceae Dipteridaceae/Matoniaceae in the Polypodiopsida. |
|
|
|
|
Spores |
Lowland and Riverside |
Warm to temperate, relatively wet | |||
Gleichenites[59] |
|
|
|
Isolated Pinnae |
Lowland and Riverside |
Warm to temperate, relatively wet |
Plants of the family Gleicheniales. |
|
Ischyosporites[55] |
|
|
|
Spores |
Upland, Lowland Riverside |
Warm to temperate, relatively wet |
Affinities with the family Lygodiaceae and Schizaeaceae in the Polypodiopsida. Climbing or herbaceous fern spores. |
|
Klukisporites[55] |
|
|
|
Spores |
Upland, Lowland Riverside |
Warm to temperate, relatively wet | ||
Obtusisporis[55] |
|
|
|
Spores |
Lowland and Riverside |
Warm to temperate, relatively wet |
Filicopsida incertae sedis |
|
Rugulatisporites[57] |
|
|
|
Spores |
Lowland and Riverside |
Warm to temperate, relatively wet |
Affinities with the family Osmundaceae in the Polypodiopsida. |
|
|
|
|
Isolated Pinnae |
Upland, Lowland and Riverside |
Warm to temperate, relatively wet |
Plants of the group Sphenopteridae, whose affinity for mesozoic specimens is uncertain, yet has been suggested to be fronds of Dicksoniaceae affinity |
||
Todisporites[57] |
|
|
|
Spores |
Upland |
Warm to temperate, relatively wet. Can withstand long periods of drought; seasonal climate |
Affinities with the family Osmundaceae in the Polypodiopsida. |
|
Trilobosporites[55] |
|
|
|
Spores |
Upland, Lowland and Riverside |
Warm to temperate, relatively wet |
Affinities with the families Cyatheaceae/Dicksoniaceae Dipteridaceae/Matoniaceae in the Polypodiopsida. |
|
Verrucosisporites[57] |
|
|
|
Spores |
Upland |
Can withstand long periods of drought; seasonal climate |
Affinities with the family Osmundaceae in the Polypodiopsida. |
Peltaspermales
Genus | Species | Location | Member | Material | Ecogroup | Palaeoclimate requirements | Notes | Images |
---|---|---|---|---|---|---|---|---|
|
|
|
Pollen |
Riverside |
Warm, can withstand long periods of drought; seasonal climate |
Affinities with the families Peltaspermaceae, Corystospermaceae or Umkomasiaceae in the Peltaspermales. Pollen of uncertain provenance that can be derived from any of the members of the Peltaspermales. |
||
Antevsia[60] |
Antevsia sp. |
|
|
Pollen-bearing organs |
Lowland and Riverside |
Warm, can withstand long periods of drought; seasonal climate |
Plants of the group Peltaspermaceae. |
|
Archangelskya furcata |
|
|
Isolated Pinnae |
Lowland and Riverside |
Warm, can withstand long periods of drought; seasonal climate |
Plants of the group Pteridospermata |
||
Lepidopteris scassoi |
|
|
Isolated Pinnae |
Lowland and Riverside |
Warm, can withstand long periods of drought; seasonal climate |
Plants of the group Peltaspermaceae. This species represents the youngest record of the genus, by more than 20 Myr. |
||
Peltaspermum sp. |
|
|
Ovuliferous Cones |
Lowland and Riverside |
Warm, can withstand long periods of drought; seasonal climate |
Plants of the group Peltaspermaceae. |
||
Vitreisporites[55] |
|
|
|
Pollen |
Riverside |
Warm, relatively wet |
From the family Caytoniaceae in the Caytoniales. Caytoniaceae are a complex group of Mesozoic fossil floras that may be related to both Peltaspermales and Ginkgoaceae. |
Cycadeoidopsida
Genus | Species | Location | Member | Material | Ecogroup | Palaeoclimate requirements | Notes | Images |
---|---|---|---|---|---|---|---|---|
|
|
|
Leaflets |
Lowland and Riverside |
Warm to temperate, can withstand long periods of drought; seasonal climate |
Affinities with Bennettitales inside Cycadeoidopsida. |
Czekanowskiales
Genus | Species | Location | Member | Material | Ecogroup | Palaeoclimate requirements | Notes | Images |
---|---|---|---|---|---|---|---|---|
|
|
|
Pollen Organs |
Lowland and Riverside |
Warm to temperate, can withstand long periods of drought; seasonal climate |
Plants of the group Leptostrobales (Czekanowskiales). Gingko-like taxa |
Gnetopsida
Genus | Species | Location | Member | Material | Ecogroup | Palaeoclimate requirements | Notes | Images |
---|---|---|---|---|---|---|---|---|
|
|
|
Pollen |
Lowland and Riverside |
Warm to temperate, can withstand long periods of drought; seasonal climate |
A Pollen Grain, affinities with Ephedraceae inside Gnetopsida. |
Coniferophyta
Genus | Species | Location | Member | Material | Ecogroup | Palaeoclimate requirements | Notes | Images |
---|---|---|---|---|---|---|---|---|
|
|
|
Pollen |
Upland, Lowland and Riverside |
?Warm to temperate, relatively wet |
Affinities with the family Araucariaceae in the Pinales. Conifer pollen from medium to large arboreal plants. |
||
|
|
|
Ovuliferous scales |
Upland, Lowland and Riverside |
?Warm to temperate, relatively wet |
Plants of the family Araucariaceae. |
||
|
|
|
Branched shoots |
Upland |
?Warm to temperate, relatively wet |
Plants of the family Taxodiaceae |
||
|
|
|
Branched shoots & Ovuliferous cones |
Upland, Lowland and Riverside |
?Warm to temperate, relatively wet |
Plants of the family Cunninghamioideae. Along with the also Argentinian species A. minuta, this specimens represent the oldest fossil taxa that can be confidently assigned to Cupressaceae sensu lato |
||
Brachyoxylon currumilii |
|
|
Fossil Wood |
Upland, Lowland and Riverside |
?Warm to temperate, relatively wet |
Plants of the family Araucariaceae or Cheirolepidiaceae |
||
|
|
|
Branched shoots & Ovuliferous cones |
Upland, Lowland and Riverside |
?Warm to temperate, relatively wet |
Plants of the family Araucariaceae or Cheirolepidiaceae |
||
|
|
|
Pollen |
Upland, Lowland and Riverside |
?Warm to temperate, relatively wet |
Affinities with the family Araucariaceae in the Pinales. Conifer pollen from medium to large arboreal plants. |
||
|
|
|
Pollen |
Upland, Lowland and Riverside |
?Warm to temperate, relatively wet |
Affinities with both Sciadopityaceae and Miroviaceae in the Pinopsida. This pollen's resemblance to extant Sciadopitys suggest that Miroviaceae may be an extinct lineage of Sciadopityaceae-like plants.[65] |
||
|
|
|
Pollen |
Lowland and Coastal lake |
Warm to temperate, can withstand long periods of drought; seasonal climate |
Affinities with the Hirmeriellaceae in the Pinopsida. Classopollis is the most abundant component of the assemblage, with ranges from 73 to 81.6% to 89.6%-89.7% in some samples.[55] |
||
|
|
|
Branched shoots |
Upland and Lowland |
Warm to temperate, can withstand long periods of drought; seasonal climate |
Plants of the family Cupressaceae |
||
Exesipollenites[57] |
|
|
|
Pollen |
Lowland and Coastal lake |
Warm to temperate, can withstand long periods of drought; seasonal climate |
Affinities with the Hirmeriellaceae in the Pinopsida. Classopollis is the most abundant component of the assemblage, with ranges from 73 to 81.6% to 89.6%-89.7% in some samples.[55] |
|
Indusiisporites[55] |
|
|
|
Pollen |
Upland |
Temperate, relatively dry |
Affinities with the family Podocarpaceae. Pollen from diverse types of Podocarpaceous conifers, that include morphotypes similar to the low arbustive Microcachrys and the medium arbustive Lepidothamnus, likely linked with Upland settings |
|
Inaperturopollenites[55] |
|
|
|
Pollen |
Upland, Lowland and Riverside |
?Warm to temperate, relatively wet |
Affinities with the family Araucariaceae in the Pinales. Conifer pollen from medium to large arboreal plants. |
|
|
|
|
Pollen |
Upland |
Temperate, relatively dry |
Affinities with the family Podocarpaceae. Pollen from Podocarpaceous conifers similar to the low arbustive Microcachrys |
||
|
|
|
Branched shoots |
Lowland and Coastal lake |
Warm to temperate, can withstand long periods of drought; seasonal climate |
Plants of the family Araucariaceae or Cheirolepidiaceae |
||
|
|
|
Pollen Organs |
Lowland and Coastal lake |
Warm to temperate, can withstand long periods of drought; seasonal climate |
Incertae sedis inside Coniferales, suggested as a member of its own family, the "Pelourdeaceae". A hygrophytic riparian conifer with herbaceous or shrubby habit. Some specimens are difficult to identify. |
||
Perinopollenites[57] |
|
|
|
Pollen |
Upland and Lowland |
Warm to temperate; seasonal climate |
Affinities with the family Cupressaceae in the Pinopsida. Pollen that resembles that of extant genera such as the genus Actinostrobus and Austrocedrus, probably derived from Upland environments. |
|
Phrixipollenites[57] |
Phrixipollenites sp. |
|
|
Pollen |
Upland |
Temperate, relatively dry |
Affinities with the family Podocarpaceae. |
|
Pinuspollenites[55] |
|
|
|
Pollen |
Upland, Lowland and Riverside |
?Warm to temperate, relatively wet |
Affinities with the family Pinaceae in the Pinopsida. Conifer pollen from medium to large arboreal plants. |
|
|
|
|
Pollen |
Upland |
Temperate, relatively dry |
Affinities with the family Podocarpaceae. |
||
Podosporites[55] |
|
|
|
Pollen |
Upland |
Temperate, relatively dry |
See also
References
- ↑ 1.0 1.1 Cabaleri, N. G.; Benavente, C. A. (2013). "Sedimentology and paleoenvironments of the Las Chacritas carbonate paleolake, Cañadón Asfalto Formation (Jurassic), Patagonia, Argentina". Sedimentary Geology 284 (4): 91–105. doi:10.1016/j.sedgeo.2012.11.008. Bibcode: 2013SedG..284...91C. https://www.sciencedirect.com/science/article/pii/S0037073812003247. Retrieved 29 July 2022.
- ↑ Gallego, O.F.; Cabaleri, N.G. (2005). "Conchóstracos de la Formación Cañadón Asfalto (Jurásico Medio – Superior): análisis preliminar de su distribución estratigráfica". Ameghiniana: II Simposio Argentino del Jurásico (Buenos Aires) 42 (2): 51.
- ↑ 3.0 3.1 3.2 Tasch, P.; Volkheimer, W. (1970). "Jurassic conchostracans from Patagonia". The University of Kansas Paleontological Contributions 50 (3): 24–48. https://kuscholarworks.ku.edu/handle/1808/3693?show=full. Retrieved 29 July 2022.
- ↑ 4.0 4.1 4.2 4.3 4.4 Monferran, M. D.; Gallego, O. F.; Cabaleri, N. G. (2020). "Revision of Two Spinicaudatan Species from the Cañadón Asfalto Formation (Jurassic), Patagonia Argentina". Zoological Studies 59 (3): 112–123. doi:10.6620/ZS.2020.59-37. PMID 33262859.
- ↑ Gallego, O.F.; Shen, Y.B.; Cabaleri, N.G.; Hernández, M. (2010). "The genus Congestheriella Kobayashi, 1954 ("Conchostraca", Diplostraca, Afrograptioidea): redescription and new combination to Isaura olsoni Bock from Venezuela and a new species from Argentina (Upper Jurassic)". Alavesia 3 (6): 11–24. https://www.researchgate.net/publication/285785869. Retrieved 2022-07-29.
- ↑ 6.0 6.1 6.2 6.3 6.4 6.5 Musacchio, E.A. (1995). "Estratigrafía y micropalentología del Jurásico y el Cretácico en la comarca del Valle Medio del Río Chubut, Argentina". Actas 6º Congreso Argentino de Paleontología y Bioestratigrafía 6 (12): 179–187.
- ↑ 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 7.12 7.13 7.14 7.15 7.16 7.17 7.18 7.19 7.20 Cabaleria, Nora G.; Benavente, Cecilia A.; Monferranc, Mateo D.; Narváez, Paula L.; Volkheimer, Wolfgang; Gallego, Oscar F.; Do Campoa, Margarita D. (2011). "Sedimentology and palaeontology of the Upper Jurassic Puesto Almada Member (Cañadón Asfalto Formation, Fossati sub-basin), Patagonia Argentina: Palaeoenvironmental and climatic significance". Sedimentary Geology 296 (1): 103–121. doi:10.1016/j.sedgeo.2013.08.011. https://www.sciencedirect.com/science/article/pii/S0037073813001644.
- ↑ Ballent, S.C.; Díaz, A.R. (2011). "Contribution to the taxonomy, distribution and paleoecology of the early representatives of Penthesilenula Rossetti & Martens, 1998 (Crustacea, Ostracoda, Darwinulidae) from Argentina, with the description of a new species". Hydrobiologia 688 (10): 125–138. doi:10.1007/s10750-011-0658-8. https://link.springer.com/article/10.1007/s10750-011-0658-8. Retrieved 2022-07-29.
- ↑ 9.0 9.1 9.2 9.3 Martínez, S.; Gallego, O.F; Cabaleri, N. (2007). "Nueva fauna de moluscos de la Formación Cañadón Asfalto (Jurásico Medio a Superior) Chubut, Argentina". Ameghiniana 44 (4): 96. https://www.conicet.gov.ar/new_scp/detalle.php?keywords=&id=29994&congresos=yes&detalles=yes&congr_id=242977. Retrieved 2022-07-29.
- ↑ Monferran, Mateo Daniel; Cabaleri, Nora; Armella, Claudia; Martínez, Sergio; Gallego, Oscar; Zacarías, Iracema; Calathaki, Hugo Barrios (2023-01-31). "Freshwater bivalves and their environmental conditions in a Jurassic lacustrine system (Cañadón Asfalto Formation) from Patagonia, Argentina" (in en). Andean Geology 50 (2): 248. doi:10.5027/andgeoV50n2-3461. ISSN 0718-7106. http://www.andeangeology.cl/index.php/revista1/article/view/V50n2-3461.
- ↑ 11.0 11.1 11.2 11.3 11.4 Frenguelli, J. (1949). "Los estratos con "Estheria" en el Chubut (Patagonia)". Revista de la Asociación Geológica Argentina 4 (4): 11–24. https://revista.geologica.org.ar/raga/article/view/95. Retrieved 27 December 2021.
- ↑ Cabaleri, N.; Volkheimer, W.; Armella, C.; Gallego, O.; Silva Nieto, D.; Páez, M.; Koukharsky, M. (2010). "Estratigrafía, análisis de facies y paleoambientes de la Formación Cañadón Asfalto en el depocentro jurásico Cerro Cóndor, provincia del Chubut.". Revista de la Asociación Geológica Argentina 66 (3): 349–367. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0004-48222010000200006. Retrieved 2022-09-05.
- ↑ 13.0 13.1 Petrulevicius, F. (2007). "A new species of Bittacidae sensu lato (Mecoptera) from the Callovian-Oxfordian: new Jurassic locality of insect body fossils from Patagonia, Argentina". Proceedings of the 4th International Congress of Paleoentomology, International Palaeoentomological Society, Vitoria-Gasteiz, Diputación Forai de Álava, Spain 275 (4): 23. https://www.conicet.gov.ar/new_scp/detalle.php?keywords=&id=20273&congresos=yes&detalles=yes&congr_id=2939676. Retrieved 2022-07-29.
- ↑ 14.0 14.1 14.2 14.3 14.4 14.5 Andrade-Morraye, M.; Genise, J. (2005). "An association of fossil larval tubes and head capsules of Chironomidae (Diptera) from the Jurassic (Callovian–Oxfordian) Cañadón Asfalto Formation, Patagonia, Argentina". Proceedings of the Fossils X3, International Paleoentomological Society, Pretoria 3 (1): 5.
- ↑ 15.0 15.1 15.2 15.3 Gallego, O. F.; Cabaleri, N. G.; Armella, C.; Volkheimer, W.; Ballent, S. C.; Martínez, S.; Páez, M. A. (2011). "Paleontology, sedimentology and paleoenvironment of a new fossiliferous locality of the Jurassic Cañadón Asfalto Formation, Chubut Province, Argentina". Journal of South American Earth Sciences 31 (1): 54–68. doi:10.1016/j.jsames.2010.11.001. Bibcode: 2011JSAES..31...54G. https://www.sciencedirect.com/science/article/pii/S0895981110000830. Retrieved 2022-07-29.
- ↑ López-Arbarello, A.; Rauhut, O. W.; Moser, K. (2008). "Jurassic fishes of Gondwana". Revista de la Asociación Geológica Argentina 63 (4): 586–612. http://www.scielo.org.ar/img/revistas/raga/v63n4/html/v63n4a10.htm#fig14. Retrieved 29 July 2022.
- ↑ 17.0 17.1 17.2 Turazzini, G. F.; Appella-Guiscafre, L. S.; Lires, A. I.; Garberoglio, F.; Canessa Leandro, A.; Gómez, R. O.; Rougier, G. W. (2017). "Promising future: a new mammal-bearing microvertebrate locality from the Cañadón Asfalto formation (Jurassic; Chubut, Argentina)". Ameghiniana: Congreso; XI Congreso de la Asociación Paleontológica Argentina XI (1): 54–52. https://www.conicet.gov.ar/new_scp/detalle.php?keywords=&id=42024&congresos=yes&detalles=yes&congr_id=8078538. Retrieved 1 August 2022.
- ↑ 18.0 18.1 18.2 18.3 Escapa, I.H.; Sterli, J.; Pol, D.; Nicoli, L. (2008). "Jurassic Tetrapods and Flora of Cañadon Asfalto Formation in Cerro Cóndor Area, Chubut Province". Revista de la Asociación Geológica Argentina 63 (4): 613–624. http://mef.org.ar/~muspal/images/stories/investigacion/iescapa_docs/escapa_et_al_2008b.pdf. Retrieved 2014-09-17.
- ↑ Barcelos, L. A.; dos Santos, R. O. (2022). "The Lissamphibian Fossil Record of South America". Palaeobiodiversity and Palaeoenvironments 176 (4): 341–405. doi:10.1007/s12549-022-00536-0. https://link.springer.com/article/10.1007/s12549-022-00536-0. Retrieved 1 August 2022.
- ↑ Báez, A. M.; Nicoli, L. (2008). "A new species of Notobatrachus (Amphibia, Salientia) from the Middle Jurassic of northwestern Patagonia". Journal of Paleontology 82 (2): 372–376. doi:10.1666/06-117.1. Bibcode: 2008JPal...82..372B. https://ri.conicet.gov.ar/handle/11336/135748. Retrieved 1 August 2022.
- ↑ 21.0 21.1 Sterli, J.; De La Fuente, M. S.; Rougier, G. W. (2018). "New remains of Condorchelys antiqua (Testudinata) from the Early-Middle Jurassic of Patagonia: anatomy, phylogeny, and paedomorphosis in the early evolution of turtles". Journal of Vertebrate Paleontology 38 (4): (1)-(17). doi:10.1080/02724634.2018.1480112. Bibcode: 2018JVPal..38....1S. https://www.tandfonline.com/doi/abs/10.1080/02724634.2018.1480112. Retrieved 1 August 2022.
- ↑ 22.0 22.1 Sterli, J.; Vlachos, E.; Puerta, P.; Oriozabala, C.; Krause, M. (2021). "Contribution to the diversity of the fossil record of turtles (Testudinidata) from Chubut province (Argentina) and its significance in understanding the evolution of turtles in southern South America". Publicación Electrónica de la Asociación Paleontológica Argentina 21 (1): 118–160. https://www.peapaleontologica.org.ar/index.php/peapa/article/view/338. Retrieved 31 March 2022.
- ↑ 23.0 23.1 Apesteguía, S. N.; Gómez, R. L. O.; Rougier, G. W. (2012). "A basal sphenodontian (Lepidosauria) from the Jurassic of Patagonia: New insights on the phylogeny and biogeography of Gondwanan rhynchocephalians". Zoological Journal of the Linnean Society 166 (2): 342. doi:10.1111/j.1096-3642.2012.00837.x.
- ↑ Sterli, J.; Pol, D.; Rougier, G.; Rauhut, O.; Baez, A.; Carballido, J.; Nicoli, L. (2010). "Nuevos aportes a la diversidad taxonómica de vertebrados de la Formación Cañadón Asfalto (Jurásico Medio) de la provincia del Chubut, Argentina". IV Simposio del Jurásico y sus Límites, Bahía Blanca, Argentina 4 (1): 22. https://www.conicet.gov.ar/new_scp/detalle.php?keywords=&id=20345&congresos=yes&detalles=yes&congr_id=999472. Retrieved 2 August 2022.
- ↑ Codorniú, L.; Carabajal, A.P.; Pol, D.; Unwin, D.; Rauhut, O.W.M (2016). "A Jurassic pterosaur from Patagonia and the origin of the pterodactyloid neurocranium". PeerJ 4: e2311. doi:10.7717/peerj.2311. PMID 27635315.
- ↑ 26.0 26.1 Rauhut, O.W.M. (2005). "Osteology and relationships of a new theropod dinosaur from the Middle Jurassic of Patagonia". Palaeontology 48 (1): 87–110. doi:10.1111/j.1475-4983.2004.00436.x. Bibcode: 2005Palgy..48...87R.
- ↑ 27.0 27.1 Unwin, D. M.; Rauhut, O. W. M.; Haluza, A. (2004). "The first "rhamphorhynchoid" from South America and the early history of pterosaurs". Geobiologie 74 (4): 235–237. https://www.researchgate.net/publication/233386525. Retrieved 17 April 2023.
- ↑ Gomez, K. L. (2023). "Diversidad, evolución y diversificación temprana de los Eusaurópodos basales durante el Jurásico Temprano-Medio en Patagonia". Tesis de Postgrado: 1–645. http://rdi.uncoma.edu.ar/handle/uncomaid/17143. Retrieved 28 May 2023.
- ↑ Ezcurra, M. D.; Pol, D. (2009). "Theropod remains from a new bone–bed of the Cañadón Asfalto Formation (Middle Jurassic), Chubut Province, Argentina". XXIV Jornadas Argentinas de Paleontología de Vertebrados, San Rafael, Mendoza, Argentina 14 (1): 31. https://www.conicet.gov.ar/new_scp/detalle.php?keywords=&id=48036&congresos=yes&detalles=yes&congr_id=2461462. Retrieved 28 May 2023.
- ↑ Oliver W. M. Rauhut; Diego Pol (2019). "Probable basal allosauroid from the early Middle Jurassic Cañadón Asfalto Formation of Argentina highlights phylogenetic uncertainty in tetanuran theropod dinosaurs". Scientific Reports 9 (1): Article number 18826. doi:10.1038/s41598-019-53672-7. PMID 31827108. Bibcode: 2019NatSR...918826R.
- ↑ 31.0 31.1 31.2 31.3 31.4 31.5 31.6 31.7 Castiblanco Ramírez, P. M. (2016). "Estudio de la diversidad taxonómica de dinosaurios terópodos de la formación cañadón asfalto, en la provincia del Chubut, Argentina, a partir de un análisis morfométrico de sus dientes". Tesis Propuesta Como Cumplimiento de los Requisitos Para el Pregrado de Geociencias, Universidad de los Andes 1 (1): 1–41. https://repositorio.uniandes.edu.co/bitstream/handle/1992/24359/u728601.pdf?sequence=1. Retrieved 1 August 2022.
- ↑ Pradelli, L. A.; Pol, D.; Ezcurra, M. D. (2022). "Restos de Theropoda (Averostra: Ceratosauria) aumentan la diversidad taxonómica del grupo en la Formación Cañadón Asfalto (Jurásico Temprano), provincia del Chubut, Argentina". XXXV Jornadas Argentinasde Paleontología de Vertebrados XXXV (1): 54. https://www.peapaleontologica.org.ar/index.php/peapa/article/view/439/755. Retrieved 6 March 2023.
- ↑ 33.0 33.1 Novas, Fernando (2009). The Age of Dinosaurs in South America. Indiana University Press. p. 118. ISBN 978-0253352897. https://books.google.com/books?id=dXYi6j7QQ-YC.
- ↑ Diego Pol & Oliver W. M. Rauhut (2012). "A Middle Jurassic abelisaurid from Patagonia and the early diversification of theropod dinosaurs". Proceedings of the Royal Society B: Biological Sciences 279 (1804): 3170–5. doi:10.1098/rspb.2012.0660. PMID 22628475.
- ↑ Rauhut, O. W. (2007). "A fragmentary theropod skull from the Middle Jurassic of Patagonia". Ameghiniana 44 (2): 479–483. http://www.scielo.org.ar/scielo.php?pid=S0002-70142007000200019&script=sci_arttext&tlng=es. Retrieved 11 July 2023.
- ↑ Rauhut, O. W. (2004). "Braincase structure of the Middle Jurassic theropod dinosaur Piatnitzkysaurus". Canadian Journal of Earth Sciences 41 (9): 1109–1122. doi:10.1139/e04-053. Bibcode: 2004CaJES..41.1109R. https://www.researchgate.net/publication/235907348. Retrieved 1 August 2022.
- ↑ "Table 4.1," in Weishampel, et al. (2004). Page 72.
- ↑ Leonardi, G. (1994). "Annotated Atlas of South America Tetrapod Footprints (Devonian to Holocene) with an Appendix on Mexico and Central America". Journal of Vertebrate Paleontology (Brasília: República Federativa do Brasil, Ministério de Minas e Energia, Secretaria de Minas e Metalurgia, Companhia de Pesquisa de Recursos Minerais) 16 (3): 599. doi:10.1080/02724634.1996.10011348. https://www.tandfonline.com/doi/pdf/10.1080/02724634.1996.10011348. Retrieved 10 August 2022.
- ↑ D. Pol; J. Ramezani; K. Gomez; J. L. Carballido; A. Paulina Carabajal; O. W. M. Rauhut; I. H. Escapa; N. R. Cúneo (2020). "Extinction of herbivorous dinosaurs linked to Early Jurassic global warming event". Proceedings of the Royal Society B: Biological Sciences 287 (1939): Article ID 20202310. doi:10.1098/rspb.2020.2310. PMID 33203331.
- ↑ Holwerda, F. M.; Pol, D.; Rauhut, O. W. (2015). "Using dental enamel wrinkling to define sauropod tooth morphotypes from the Cañadón Asfalto Formation, Patagonia, Argentina". PLOS ONE 10 (2): e0118100. doi:10.1371/journal.pone.0118100. PMID 25692466. Bibcode: 2015PLoSO..1018100H.
- ↑ 41.0 41.1 41.2 41.3 Holwerda, F. M. (2019). "Revision of basal sauropods from the Middle Jurassic of Patagonia and the early evolution of sauropods". (Doctoral dissertation, lmu) Ludwig- Maximilians-Universität München 2 (1): 1–250. https://edoc.ub.uni-muenchen.de/25483/1/Holwerda_Femke.pdf. Retrieved 1 August 2022.
- ↑ Rahut, O.W.M. (2003). "A Dentary of Patagosaurus (Sauropoda) from the Middle Jurassic of Patagonia". Ameghiniana 40 (3): 425–432. ISSN 0002-7014. https://www.researchgate.net/publication/235907157.
- ↑ Holwerda, F. M.; Rauhut, O. W.; Pol, D. (2021). "Osteological revision of the holotype of the Middle Jurassic sauropod dinosaur Patagosaurus fariasi Bonaparte, 1979 (Sauropoda: Cetiosauridae)". Geodiversitas 43 (16): 575–643. doi:10.5252/geodiversitas2021v43a16.
- ↑ Becerra, M. G.; Carballido, J. L.; Pol, D. (2016). "Primer registro de un Sauropoda no-Eusauropoda del Toarciano bajo-medio de Cañadón Asfalto[First report of a non-Eusauropoda Sauropoda from the lower-middle Toarcian of Cañadón Asfalto"]. XXX Jornadas Argentinas de Paleontología de Vertebrados. Resúmenes. Ameghiniana 53 (6): 8. https://www.researchgate.net/publication/308879954. Retrieved 31 March 2022.
- ↑ Becerra, M. G.; Gomez, K. L.; Pol, D. (2017). "A sauropodomorph tooth increases the diversity of dental morphotypes in the Cañadón Asfalto Formation (Early–Middle Jurassic) of Patagonia". Comptes Rendus Palevol 16 (8): 832–840. doi:10.1016/j.crpv.2017.08.005. Bibcode: 2017CRPal..16..832B. https://www.sciencedirect.com/science/article/pii/S1631068317301082. Retrieved 2 August 2022.
- ↑ Carballido, J. L.; Holwerda, F. M.; Pol, D.; Rauhut, O. W. (2017). "An Early Jurassic sauropod tooth from Patagonia (Cañadón Asfalto Formation): implications for sauropod diversity". Publicación Electrónica de la Asociación Paleontológica Argentina 17 (2): 50–57. https://ri.conicet.gov.ar/handle/11336/74496. Retrieved 31 March 2022.
- ↑ 47.0 47.1 47.2 47.3 Becerra, M. G. (2016). "Dinosaurios ornitisquios de la Formación Cañadón Asfalto (Jurásico temprano a medio), Chubut, Argentina: anatomía y relaciones filogenéticas". (Doctoral Dissertation, Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales).: 1–649. https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n5967_Becerra.pdf. Retrieved 15 October 2021.
- ↑ Pol, D.; Rauhut, O.W.M.; Becerra, M. (2011). "A Middle Jurassic heterodontosaurid dinosaur from Patagonia and the evolution of heterodontosaurids". Naturwissenschaften 98 (5): 369–379. doi:10.1007/s00114-011-0780-5. PMID 21452054. Bibcode: 2011NW.....98..369P.
- ↑ Becerra, M.C.; Pol, D.; Rauhut, O.W.M.; Cerda, I.A. (2016). "New heterodontosaurid remains from the Cañadón Asfalto Formation: cursoriality and the functional importance of the pes in small heterodontosaurids". Journal of Paleontology 90 (3): 555–577. doi:10.1017/jpa.2016.24. https://www.cambridge.org/core/journals/journal-of-paleontology/article/div-classtitlenew-heterodontosaurid-remains-from-the-canadon-asfalto-formation-cursoriality-and-the-functional-importance-of-the-pes-in-small-heterodontosauridsdiv/7E5BA9BACC6FD50F167845272C05391D.
- ↑ 50.0 50.1 50.2 Gaetano, L. C.; Rougier, G. W. (2012). "First amphilestid from South America: a molariform from the Jurassic Cañadón Asfalto Formation, Patagonia, Argentina". Journal of Mammalian Evolution 19 (4): 235–248. doi:10.1007/s10914-012-9194-1. https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s10914-012-9194-1&casa_token=jKpGiiJJLSQAAAAA:v_vA6-IAZHxZXyfJuOiKHQ2n6bamJbPXdRGh-MnYu3HH60qH-7L4UuDnmxgkJzrk8wQUkwgIhadvoM_Cj8w. Retrieved 1 August 2022.
- ↑ 51.0 51.1 Gaetano, L.C.; Rougier, G.W. (2011). "New materials of Argentoconodon fariasorum (Mammaliaformes, Triconodontidae) from the Jurassic of Argentina and its bearing on triconodont phylogeny". Journal of Vertebrate Paleontology 31 (4): 829–843. doi:10.1080/02724634.2011.589877. Bibcode: 2011JVPal..31..829G. https://bibliotecadigital.exactas.uba.ar/greenstone3/exa/collection/paper/document/paper_02724634_v31_n4_p829_Gaetano. Retrieved 1 August 2022.
- ↑ Martin, T.; Rauhut, O. W. (2005). "Mandible and dentition of Asfaltomylos patagonicus (Australosphenida, Mammalia) and the evolution of tribosphenic teeth". Journal of Vertebrate Paleontology 25 (2): 414–425. doi:10.1671/0272-4634(2005)025[0414:MADOAP2.0.CO;2]. https://www.researchgate.net/publication/235907341. Retrieved 1 August 2022.
- ↑ 53.0 53.1 Rougier, G. W.; Martinelli, A. G.; Forasiepi, A. M.; Novacek, M. J. (2007). "New Jurassic mammals from Patagonia, Argentina: a reappraisal of australosphenidan morphology and interrelationships.". American Museum Novitates (3): 1–54. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.693.6352&rep=rep1&type=pdf. Retrieved 1 August 2022.
- ↑ 54.0 54.1 Olivera, D. E.; Quattrocchio, M. E.; Zavattieri, A. M. (2015). "The fungal spore Annella capitata Srivastava from the Jurassic (Late Toarcian–Late Bajocian) Cañadón Asfalto Formation of Patagonia, Argentina". Palynology 39 (2): 258–269. doi:10.1080/01916122.2014.955616. Bibcode: 2015Paly...39..258O. https://www.academia.edu/download/37614130/Olivera_et_al.__2014_Palynology_Annella.pdf. Retrieved 29 July 2022.
- ↑ 55.00 55.01 55.02 55.03 55.04 55.05 55.06 55.07 55.08 55.09 55.10 55.11 55.12 55.13 55.14 55.15 55.16 55.17 55.18 55.19 55.20 55.21 55.22 55.23 55.24 55.25 55.26 55.27 55.28 55.29 55.30 55.31 Olivera, D. E.; Zavattieri, A. M.; Quattrocchio, M. E. (2015). "The palynology of the Cañadón Asfalto formation (Jurassic), Cerro Cóndor depocentre, Cañadón Asfalto Basin, Patagonia, Argentina: palaeoecology and palaeoclimate based on ecogroup analysis". Palynology 39 (3): 362–386. doi:10.1080/01916122.2014.988382. Bibcode: 2015Paly...39..362O. https://www.tandfonline.com/doi/abs/10.1080/01916122.2014.988382. Retrieved 4 September 2023.
- ↑ Hunter, M. A.; Riley, T. R.; Cantrill, D. J.; Flowerdew, M. J.; Millar, I. L. (2006). "A new stratigraphy for the Latady Basin, Antarctic Peninsula: Part 1, Ellsworth land volcanic group". Geological Magazine 143 (6): 777–796. doi:10.1017/S0016756806002597. Bibcode: 2006GeoM..143..777H. https://www.cambridge.org/core/services/aop-cambridge-core/content/view/48AAB48BE2DAAB2D7B0D052D0FDED7A9/S0016756806002597a.pdf/new_stratigraphy_for_the_latady_basin_antarctic_peninsula_part_1_ellsworth_land_volcanic_group.pdf. Retrieved 5 September 2022.
- ↑ 57.00 57.01 57.02 57.03 57.04 57.05 57.06 57.07 57.08 57.09 57.10 57.11 57.12 57.13 57.14 57.15 57.16 57.17 57.18 57.19 57.20 57.21 57.22 57.23 57.24 57.25 57.26 57.27 57.28 Volkheimer, W.; Quattrocchio, M.; Cabaleri, N.; García, V. (2011). "Palynology and paleoenvironment of the Jurassic lacustrine Cañadón Asfalto Formation at Cañadón Lahuincó locality, Chubut Province, Central Patagonia, Argentina". Revista Española de Micropaleontología 40 (1–2): 77–96. ISSN 0556-655X. https://dialnet.unirioja.es/servlet/articulo?codigo=2741009.
- ↑ 58.0 58.1 58.2 58.3 58.4 58.5 58.6 58.7 58.8 Escapa, I.H. (2009). "La tafoflora de la Formación Cañadón Asfalto, Jurasico Medio superior de Chubut. Taxonomía, bioestratigrafia y paleofitogeografia". PhD Thesis. Universidad del Comahue, Bariloche.
- ↑ 59.00 59.01 59.02 59.03 59.04 59.05 59.06 59.07 59.08 59.09 59.10 59.11 59.12 59.13 59.14 Escapa, Ignacio H.; Elgorriaga, Andres; Nunes, Giovanni Cristián; Cunéo, Rubèn; Scasso, Roberto A (2021). "Megafloras del Jurásico en la Cuenca de Cañadón Asfalto: Biomas en transformación". In book: Relatorio XXI Congreso Geológico Argentino - Geología y Recursos Naturales de la Provincia del ChubutPublisher: Asociación Geológica Argentina 21 (6): 887–890. https://www.researchgate.net/publication/356645494. Retrieved 8 September 2022.
- ↑ Elgorriaga, A.; Escapa, I.; Cuneo, R. (2016). "Peltaspermales from the Jurassic of Canadón Asfalto Basin. In Chubut Province, Argentina". Boletın de la Asociacion Latinoamericana de Paleobotanica y Palinologıa: XIV International Palynological Congress–X International Organisation of Palaeobotany Conference 16 (1): 203–204. https://www.researchgate.net/publication/313425533. Retrieved 22 July 2023.
- ↑ 61.0 61.1 61.2 61.3 61.4 Sender, L.M.; Escapa, I.H.; Elgorriaga, A.; Cúneo, R.; Scasso, R.A. (2016). "Diversidad macroflorísticadel yacimiento 'Pomelo' (Toarciano-Aaleniano) en el área de Cerro Cóndor (Chubut, Argentina)". VI Simposio Argentino del Jurásico 6 (37).
- ↑ Elgorriaga, A.; Escapa, I.; Cúneo, N. R. (2019). "Relictual Lepidopteris (Peltaspermales) from the Early Jurassic Cañadón Asfalto Formation, Patagonia, Argentina". International Journal of Plant Sciences 180 (6): 578–596. doi:10.1086/703461. https://www.researchgate.net/publication/333623398. Retrieved 27 December 2021.
- ↑ Contreras, D.L.; Escapa, I.; Cúneo, N. R.; Iribarren, R. C. (2019). "Reconstructing the early evolution of the cupressaceae: A whole-plant description of a new austrohamia species from the cañadón asfalto formation (early Jurassic), Argentina". International Journal of Plant Sciences 180 (8): 834–868. doi:10.1086/704831. https://www.researchgate.net/publication/335628079. Retrieved 27 December 2021.
- ↑ Bodnar, J.; Escapa, I.; Cúneo, N. R.; Gnaedinger, S. (2013). "First Record of Conifer Wood from the Cañadón Asfalto Formation (Early-Middle Jurassic), Chubut Province, Argentina". Ameghiniana 50 (2): 227–239. doi:10.5710/AMGH.26.04.2013.620. https://ameghiniana.org.ar/index.php/ameghiniana/article/download/620/1837. Retrieved 27 December 2021.
- ↑ Hofmann, Christa-Ch.; Odgerel, Nyamsambuu; Seyfullah, Leyla J. (2021). "The occurrence of pollen of Sciadopityaceae Luerss. through time". Fossil Imprint 77 (2): 271–281. doi:10.37520/fi.2021.019. https://www.biotaxa.org/AMNPSBHN/article/view/73112. Retrieved 27 December 2021.
Original source: https://en.wikipedia.org/wiki/Paleobiota of the Cañadón Asfalto Formation.
Read more |