Fischer group Fi23
Algebraic structure → Group theory Group theory |
---|
In the area of modern algebra known as group theory, the Fischer group Fi23 is a sporadic simple group of order
- 218 · 313 · 52 · 7 · 11 · 13 · 17 · 23
- = 4089470473293004800
- ≈ 4×1018.
History
Fi23 is one of the 26 sporadic groups and is one of the three Fischer groups introduced by Bernd Fischer (1971, 1976) while investigating 3-transposition groups.
The Schur multiplier and the outer automorphism group are both trivial.
Representations
The Fischer group Fi23 has a rank 3 action on a graph of 31671 vertices corresponding to 3-transpositions, with point stabilizer the double cover of the Fischer group Fi22. It has a second rank-3 action on 137632 points
The smallest faithful complex representation has dimension [math]\displaystyle{ 782 }[/math]. The group has an irreducible representation of dimension 253 over the field with 3 elements.
Generalized Monstrous Moonshine
Conway and Norton suggested in their 1979 paper that monstrous moonshine is not limited to the monster, but that similar phenomena may be found for other groups. Larissa Queen and others subsequently found that one can construct the expansions of many Hauptmoduln from simple combinations of dimensions of sporadic groups. For Fi23, the relevant McKay-Thompson series is [math]\displaystyle{ T_{3A}(\tau) }[/math] where one can set the constant term a(0) = 42 (OEIS: A030197),
- [math]\displaystyle{ \begin{align}j_{3A}(\tau) &=T_{3A}(\tau)+42\\ &=\left(\left(\tfrac{\eta(\tau)}{\eta(3\tau)}\right)^{6}+3^3 \left(\tfrac{\eta(2\tau)}{\eta(\tau)}\right)^{6}\right)^2\\ &=\frac{1}{q} + 42 + 783q + 8672q^2 +65367q^3+371520q^4+\dots \end{align} }[/math]
and η(τ) is the Dedekind eta function.
Maximal subgroups
(Kleidman Parker) found the 14 conjugacy classes of maximal subgroups of Fi23 as follows:
- 2.Fi22
- O8+(3):S3
- 22.U6(2).2
- S8(2)
- O7(3) × S3
- 211.M23
- 31+8.21+6.31+2.2S4
- [310].(L3(3) × 2)
- S12
- (22 × 21+8).(3 × U4(2)).2
- 26+8:(A7 × S3)
- S6(2) × S4
- S4(4):4
- L2(23)
References
- Aschbacher, Michael (1997), 3-transposition groups, Cambridge Tracts in Mathematics, 124, Cambridge University Press, doi:10.1017/CBO9780511759413, ISBN 978-0-521-57196-8, http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511759413 contains a complete proof of Fischer's theorem.
- Fischer, Bernd (1971), "Finite groups generated by 3-transpositions. I", Inventiones Mathematicae 13 (3): 232–246, doi:10.1007/BF01404633, ISSN 0020-9910 This is the first part of Fischer's preprint on the construction of his groups. The remainder of the paper is unpublished (as of 2010).
- Fischer, Bernd (1976), Finite Groups Generated by 3-transpositions, Preprint, Mathematics Institute, University of Warwick, https://books.google.com/books?id=PjezNwAACAAJ
- Kleidman, Peter B.; Parker, Richard A.; Wilson, Robert A. (1989), "The maximal subgroups of the Fischer group Fi₂₃", Journal of the London Mathematical Society, Second Series 39 (1): 89–101, doi:10.1112/jlms/s2-39.1.89, ISSN 0024-6107
- Wilson, Robert A. (2009), The finite simple groups, Graduate Texts in Mathematics 251, 251, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-84800-988-2, ISBN 978-1-84800-987-5
- Wilson, R. A. ATLAS of Finite Group Representations.
External links
Original source: https://en.wikipedia.org/wiki/Fischer group Fi23.
Read more |