Geometric process
From HandWiki
In probability, statistics and related fields, the geometric process is a counting process, introduced by Lam in 1988.[1] It is defined as
The geometric process. Given a sequence of non-negative random variables :[math]\displaystyle{ \{X_k,k=1,2, \dots\} }[/math], if they are independent and the cdf of [math]\displaystyle{ X_k }[/math] is given by [math]\displaystyle{ F(a^{k-1}x) }[/math] for [math]\displaystyle{ k=1,2, \dots }[/math], where [math]\displaystyle{ a }[/math] is a positive constant, then [math]\displaystyle{ \{X_k,k=1,2,\ldots\} }[/math] is called a geometric process (GP).
The GP has been widely applied in reliability engineering[2]
Below are some of its extensions.
- The α- series process.[3] Given a sequence of non-negative random variables:[math]\displaystyle{ \{X_k,k=1,2, \dots\} }[/math], if they are independent and the cdf of [math]\displaystyle{ \frac{X_k}{k^a} }[/math] is given by [math]\displaystyle{ F(x) }[/math] for [math]\displaystyle{ k=1,2, \dots }[/math], where [math]\displaystyle{ a }[/math] is a positive constant, then [math]\displaystyle{ \{X_k,k=1,2,\ldots\} }[/math] is called an α- series process.
- The threshold geometric process.[4] A stochastic process [math]\displaystyle{ \{Z_n, n = 1,2, \ldots\} }[/math] is said to be a threshold geometric process (threshold GP), if there exists real numbers [math]\displaystyle{ a_i \gt 0, i = 1,2, \ldots , k }[/math] and integers [math]\displaystyle{ \{1 = M_1 \lt M_2 \lt \cdots \lt M_k \lt M_{k+1} = \infty\} }[/math] such that for each [math]\displaystyle{ i = 1, \ldots , k }[/math], [math]\displaystyle{ \{a_i^{n-M_i}Z_n, M_i \le n \lt M_{i+1}\} }[/math] forms a renewal process.
- The doubly geometric process.[5] Given a sequence of non-negative random variables :[math]\displaystyle{ \{X_k,k=1,2, \dots\} }[/math], if they are independent and the cdf of [math]\displaystyle{ X_k }[/math] is given by [math]\displaystyle{ F(a^{k-1}x^{h(k)}) }[/math] for [math]\displaystyle{ k=1,2, \dots }[/math], where [math]\displaystyle{ a }[/math] is a positive constant and [math]\displaystyle{ h(k) }[/math] is a function of [math]\displaystyle{ k }[/math] and the parameters in [math]\displaystyle{ h(k) }[/math] are estimable, and [math]\displaystyle{ h(k)\gt 0 }[/math] for natural number [math]\displaystyle{ k }[/math], then [math]\displaystyle{ \{X_k,k=1,2,\ldots\} }[/math] is called a doubly geometric process (DGP).
- The semi-geometric process.[6] Given a sequence of non-negative random variables [math]\displaystyle{ \{X_k, k=1,2,\dots\} }[/math], if [math]\displaystyle{ P\{X_k \lt x|X_{k-1}=x_{k-1}, \dots , X_1=x_1\} = P\{X_k \lt x|X_{k-1}=x_{k-1}\} }[/math] and the marginal distribution of [math]\displaystyle{ X_k }[/math] is given by [math]\displaystyle{ P\{X_k \lt x\}=F_k (x)(\equiv F(a^{k-1} x)) }[/math], where [math]\displaystyle{ a }[/math] is a positive constant, then [math]\displaystyle{ \{X_k, k=1,2,\dots\} }[/math] is called a semi-geometric process
- The double ratio geometric process.[7] Given a sequence of non-negative random variables [math]\displaystyle{ \{Z_k^D,k=1,2, \dots\} }[/math], if they are independent and the cdf of [math]\displaystyle{ Z_k^D }[/math] is given by [math]\displaystyle{ F_k^D(t)=1-\exp\{-\int_0^{t} b_k h(a_k u) du\} }[/math] for [math]\displaystyle{ k=1,2, \dots }[/math], where [math]\displaystyle{ a_k }[/math] and [math]\displaystyle{ b_k }[/math] are positive parameters (or ratios) and [math]\displaystyle{ a_1=b_1=1 }[/math]. We call the stochastic process the double-ratio geometric process (DRGP).
References
- ↑ Lam, Y. (1988). Geometric processes and replacement problem. Acta Mathematicae Applicatae Sinica. 4, 366–377
- ↑ Lam, Y. (2007). Geometric process and its applications. World Scientific, Singapore MATH. ISBN:978-981-270-003-2.
- ↑ Braun, W. J., Li, W., & Zhao, Y. Q. (2005). Properties of the geometric and related processes. Naval Research Logistics (NRL), 52(7), 607–616.
- ↑ Chan, J.S., Yu, P.L., Lam, Y. & Ho, A.P. (2006). Modelling SARS data using threshold geometric process. Statistics in Medicine. 25 (11): 1826–1839.
- ↑ Wu, S. (2018). Doubly geometric processes and applications. Journal of the Operational Research Society, 69(1) 66-77. doi:10.1057/s41274-017-0217-4.
- ↑ Wu, S., Wang, G. (2017). The semi-geometric process and some properties. IMA J Management Mathematics, 1–13.
- ↑ Wu, S. (2022) The double ratio geometric process for the analysis of recurrent events. Naval Research Logistics, 69(3) 484-495.
Original source: https://en.wikipedia.org/wiki/Geometric process.
Read more |