Janko group J3

From HandWiki
Short description: Sporadic group


In the area of modern algebra known as group theory, the Janko group J3 or the Higman-Janko-McKay group HJM is a sporadic simple group of order

   27 · 35 ·· 17 · 19 = 50232960.

History and properties

J3 is one of the 26 Sporadic groups and was predicted by Zvonimir Janko in 1969 as one of two new simple groups having 21+4:A5 as a centralizer of an involution (the other is the Janko group J2). J3 was shown to exist by Graham Higman and John McKay (1969).

In 1982 R. L. Griess showed that J3 cannot be a subquotient of the monster group.[1] Thus it is one of the 6 sporadic groups called the pariahs.

J3 has an outer automorphism group of order 2 and a Schur multiplier of order 3, and its triple cover has a unitary 9-dimensional representation over the finite field with 4 elements. (Weiss 1982) constructed it via an underlying geometry. It has a modular representation of dimension eighteen over the finite field with 9 elements. It has a complex projective representation of dimension eighteen.

Presentations

In terms of generators a, b, c, and d its automorphism group J3:2 can be presented as [math]\displaystyle{ a^{17} = b^8 = a^ba^{-2} = c^2 = b^cb^3 = (abc)^4 = (ac)^{17} = d^2 = [d, a] = [d, b] = (a^3b^{-3}cd)^5 = 1. }[/math]

A presentation for J3 in terms of (different) generators a, b, c, d is [math]\displaystyle{ a^{19} = b^9 = a^ba^2 = c^2 = d^2 = (bc)^2 = (bd)^2 = (ac)^3 = (ad)^3 = (a^2ca^{-3}d)^3 = 1. }[/math]

Constructions

J3 can be constructed by many different generators.[2] Two from the ATLAS list are 18x18 matrices over the finite field of order 9, with matrix multiplication carried out with finite field arithmetic:

[math]\displaystyle{ \left( \begin{matrix} 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 \\ 3 & 7 & 4 & 8 & 4 & 8 & 1 & 5 & 5 & 1 & 2 & 0 & 8 & 6 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 \\ 4 & 8 & 6 & 2 & 4 & 8 & 0 & 4 & 0 & 8 & 4 & 5 & 0 & 8 & 1 & 1 & 8 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 \\ \end{matrix} \right) }[/math]

and

[math]\displaystyle{ \left( \begin{matrix} 4 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 4 & 4 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 \\ 2 & 7 & 4 & 5 & 7 & 4 & 8 & 5 & 6 & 7 & 2 & 2 & 8 & 8 & 0 & 0 & 5 & 0 \\ 4 & 7 & 5 & 8 & 6 & 1 & 1 & 6 & 5 & 3 & 8 & 7 & 5 & 0 & 8 & 8 & 6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 8 & 2 & 5 & 5 & 7 & 2 & 8 & 1 & 5 & 5 & 7 & 8 & 6 & 0 & 0 & 7 & 3 & 8 \\ \end{matrix} \right) }[/math]

Maximal subgroups

(Finkelstein Rudvalis) found the 9 conjugacy classes of maximal subgroups of J3 as follows:

  • PSL(2,16):2, order 8160
  • PSL(2,19), order 3420
  • PSL(2,19), conjugate to preceding class in J3:2
  • 24: (3 × A5), order 2880
  • PSL(2,17), order 2448
  • (3 × A6):22, order 2160 - normalizer of subgroup of order 3
  • 32+1+2:8, order 1944 - normalizer of Sylow 3-subgroup
  • 21+4:A5, order 1920 - centralizer of involution
  • 22+4: (3 × S3), order 1152

References

  1. Griess (1982): p. 93: proof that J3 is a pariah.
  2. ATLAS page on J3
  • Finkelstein, L.; Rudvalis, A. (1974), "The maximal subgroups of Janko's simple group of order 50,232,960", Journal of Algebra 30: 122–143, doi:10.1016/0021-8693(74)90196-3, ISSN 0021-8693 
  • R. L. Griess, Jr., The Friendly Giant, Inventiones Mathematicae 69 (1982), 1-102. p. 93: proof that J3 is a pariah.
  • Higman, Graham; McKay, John (1969), "On Janko's simple group of order 50,232,960", Bull. London Math. Soc. 1: 89–94; correction p. 219, doi:10.1112/blms/1.1.89 
  • Z. Janko, Some new finite simple groups of finite order, 1969 Symposia Mathematica (INDAM, Rome, 1967/68), Vol. 1 pp. 25–64 Academic Press, London, and in The theory of finite groups (Edited by Brauer and Sah) p. 63-64, Benjamin, 1969.MR0244371
  • Weiss, Richard (1982). "A Geometric Construction of Janko's Group J3". Mathematische Zeitschrift (179): 91–95. 

External links