Order-5 hexagonal tiling honeycomb

From HandWiki
Order-5 hexagonal tiling honeycomb
H3 635 FC boundary.png
Perspective projection view
from center of Poincaré disk model
Type Hyperbolic regular honeycomb
Paracompact uniform honeycomb
Schläfli symbol {6,3,5}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
CDel 635 index120.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 5g.pngCDel node g.png
Cells {6,3} Uniform tiling 63-t0.png
Faces hexagon {6}
Edge figure pentagon {5}
Vertex figure icosahedron
Dual Order-6 dodecahedral honeycomb
Coxeter group [math]\displaystyle{ \overline{HV}_3 }[/math], [5,3,6]
Properties Regular

In the field of hyperbolic geometry, the order-5 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell consists of a hexagonal tiling whose vertices lie on a horosphere, a flat plane in hyperbolic space that approaches a single ideal point at infinity.

The Schläfli symbol of the order-5 hexagonal tiling honeycomb is {6,3,5}. Since that of the hexagonal tiling is {6,3}, this honeycomb has five such hexagonal tilings meeting at each edge. Since the Schläfli symbol of the icosahedron is {3,5}, the vertex figure of this honeycomb is an icosahedron. Thus, 20 hexagonal tilings meet at each vertex of this honeycomb.[1]

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Symmetry

A lower-symmetry construction of index 120, [6,(3,5)*], exists with regular dodecahedral fundamental domains, and an icosahedral Coxeter-Dynkin diagram with 6 axial infinite-order (ultraparallel) branches.

Images

The order-5 hexagonal tiling honeycomb is similar to the 2D hyperbolic regular paracompact order-5 apeirogonal tiling, {∞,5}, with five apeirogonal faces meeting around every vertex.

H2 tiling 25i-1.png

Related polytopes and honeycombs

The order-5 hexagonal tiling honeycomb is a regular hyperbolic honeycomb in 3-space, and one of 11 which are paracompact.

There are 15 uniform honeycombs in the [6,3,5] Coxeter group family, including this regular form, and its regular dual, the order-6 dodecahedral honeycomb.

The order-5 hexagonal tiling honeycomb has a related alternation honeycomb, represented by CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png, with icosahedron and triangular tiling cells.

It is a part of sequence of regular hyperbolic honeycombs of the form {6,3,p}, with hexagonal tiling facets:

It is also part of a sequence of regular polychora and honeycombs with icosahedral vertex figures:

Rectified order-5 hexagonal tiling honeycomb

Rectified order-5 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols r{6,3,5} or t1{6,3,5}
Coxeter diagrams CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel branch 11.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png
Cells {3,5} Uniform polyhedron-53-t2.png
r{6,3} or h2{6,3}
40pxUniform tiling 333-t01.png
Faces triangle {3}
hexagon {6}
Vertex figure Rectified order-5 hexagonal tiling honeycomb verf.png
pentagonal prism
Coxeter groups [math]\displaystyle{ {\overline{HV}_3} }[/math], [5,3,6]
[math]\displaystyle{ {\overline{HP}_3} }[/math], [5,3[3]]
Properties Vertex-transitive, edge-transitive

The rectified order-5 hexagonal tiling honeycomb, t1{6,3,5}, CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png has icosahedron and trihexagonal tiling facets, with a pentagonal prism vertex figure.

H3 635 boundary 0100.png

It is similar to the 2D hyperbolic infinite-order square tiling, r{∞,5} with pentagon and apeirogonal faces. All vertices are on the ideal surface.

H2 tiling 25i-2.png

Truncated order-5 hexagonal tiling honeycomb

Truncated order-5 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t{6,3,5} or t0,1{6,3,5}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Cells {3,5} Uniform polyhedron-53-t2.png
t{6,3} Uniform tiling 63-t01.png
Faces triangle {3}
dodecagon {12}
Vertex figure Truncated order-5 hexagonal tiling honeycomb verf.png
pentagonal pyramid
Coxeter groups [math]\displaystyle{ {\overline{HV}}_3 }[/math], [5,3,6]
Properties Vertex-transitive

The truncated order-5 hexagonal tiling honeycomb, t0,1{6,3,5}, CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png has icosahedron and truncated hexagonal tiling facets, with a pentagonal pyramid vertex figure.

H3 635-1100.png

Bitruncated order-5 hexagonal tiling honeycomb

Bitruncated order-5 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol 2t{6,3,5} or t1,2{6,3,5}
Coxeter diagram CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node.png
Cells t{3,6} Uniform tiling 63-t12.png
t{3,5} Uniform polyhedron-53-t12.png
Faces pentagon {5}
hexagon {6}
Vertex figure Bitruncated order-5 hexagonal tiling honeycomb verf.png
digonal disphenoid
Coxeter groups [math]\displaystyle{ {\overline{HV}}_3 }[/math], [5,3,6]
[math]\displaystyle{ {\overline{HP}}_3 }[/math], [5,3[3]]
Properties Vertex-transitive

The bitruncated order-5 hexagonal tiling honeycomb, t1,2{6,3,5}, CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png has hexagonal tiling and truncated icosahedron facets, with a digonal disphenoid vertex figure.

H3 635-0110.png

Cantellated order-5 hexagonal tiling honeycomb

Cantellated order-5 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol rr{6,3,5} or t0,2{6,3,5}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
Cells r{3,5} Uniform polyhedron-53-t1.png
rr{6,3} 40px
{}x{5} Pentagonal prism.png
Faces triangle {3}
square {4}
pentagon {5}
hexagon {6}
Vertex figure Cantellated order-5 hexagonal tiling honeycomb verf.png
wedge
Coxeter groups [math]\displaystyle{ {\overline{HV}}_3 }[/math], [5,3,6]
Properties Vertex-transitive

The cantellated order-5 hexagonal tiling honeycomb, t0,2{6,3,5}, CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png has icosidodecahedron, rhombitrihexagonal tiling, and pentagonal prism facets, with a wedge vertex figure.

H3 635-1010.png

Cantitruncated order-5 hexagonal tiling honeycomb

Cantitruncated order-5 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol tr{6,3,5} or t0,1,2{6,3,5}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
Cells t{3,5} Uniform polyhedron-53-t12.png
tr{6,3} 40px
{}x{5} Pentagonal prism.png
Faces square {4}
pentagon {5}
hexagon {6}
dodecagon {12}
Vertex figure Cantitruncated order-5 hexagonal tiling honeycomb verf.png
mirrored sphenoid
Coxeter groups [math]\displaystyle{ {\overline{HV}}_3 }[/math], [5,3,6]
Properties Vertex-transitive

The cantitruncated order-5 hexagonal tiling honeycomb, t0,1,2{6,3,5}, CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png has truncated icosahedron, truncated trihexagonal tiling, and pentagonal prism facets, with a mirrored sphenoid vertex figure.

H3 635-1110.png

Runcinated order-5 hexagonal tiling honeycomb

Runcinated order-5 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t0,3{6,3,5}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
Cells {6,3} Uniform tiling 63-t0.png
{5,3} 40px
{}x{6} 40px
{}x{5} Pentagonal prism.png
Faces square {4}
pentagon {5}
hexagon {6}
Vertex figure Runcinated order-5 hexagonal tiling honeycomb verf.png
irregular triangular antiprism
Coxeter groups [math]\displaystyle{ {\overline{HV}}_3 }[/math], [5,3,6]
Properties Vertex-transitive

The runcinated order-5 hexagonal tiling honeycomb, t0,3{6,3,5}, CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png has dodecahedron, hexagonal tiling, pentagonal prism, and hexagonal prism facets, with an irregular triangular antiprism vertex figure.

H3 635-1001.png

Runcitruncated order-5 hexagonal tiling honeycomb

Runcitruncated order-5 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t0,1,3{6,3,5}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
Cells t{6,3} Uniform tiling 63-t01.png
rr{5,3} 40px
{}x{5} 40px
{}x{12} Dodecagonal prism.png
Faces triangle {3}
square {4}
pentagon {5}
dodecagon {12}
Vertex figure Runcitruncated order-5 hexagonal tiling honeycomb verf.png
isosceles-trapezoidal pyramid
Coxeter groups [math]\displaystyle{ {\overline{HV}}_3 }[/math], [5,3,6]
Properties Vertex-transitive

The runcitruncated order-5 hexagonal tiling honeycomb, t0,1,3{6,3,5}, CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png has truncated hexagonal tiling, rhombicosidodecahedron, pentagonal prism, and dodecagonal prism cells, with an isosceles-trapezoidal pyramid vertex figure.

H3 635-1101.png

Runcicantellated order-5 hexagonal tiling honeycomb

The runcicantellated order-5 hexagonal tiling honeycomb is the same as the runcitruncated order-6 dodecahedral honeycomb.

Omnitruncated order-5 hexagonal tiling honeycomb

Omnitruncated order-5 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t0,1,2,3{6,3,5}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
Cells tr{6,3} Uniform tiling 63-t012.png
tr{5,3} 40px
{}x{10} 40px
{}x{12} Dodecagonal prism.png
Faces square {4}
hexagon {6}
decagon {10}
dodecagon {12}
Vertex figure Omnitruncated order-5 hexagonal tiling honeycomb verf.png
irregular tetrahedron
Coxeter groups [math]\displaystyle{ {\overline{HV}}_3 }[/math], [5,3,6]
Properties Vertex-transitive

The omnitruncated order-5 hexagonal tiling honeycomb, t0,1,2,3{6,3,5}, CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png has truncated trihexagonal tiling, truncated icosidodecahedron, decagonal prism, and dodecagonal prism facets, with an irregular tetrahedral vertex figure.

H3 635-1111.png

Alternated order-5 hexagonal tiling honeycomb

Alternated order-5 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Semiregular honeycomb
Schläfli symbol h{6,3,5}
Coxeter diagram CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png
Cells {3[3]} Uniform tiling 333-t1.png
{3,5} Uniform polyhedron-53-t2.png
Faces triangle {3}
Vertex figure Uniform polyhedron-53-t12.png
truncated icosahedron
Coxeter groups [math]\displaystyle{ {\overline{HP}}_3 }[/math], [5,3[3]]
Properties Vertex-transitive, edge-transitive, quasiregular

The alternated order-5 hexagonal tiling honeycomb, h{6,3,5}, CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png, has triangular tiling and icosahedron facets, with a truncated icosahedron vertex figure. It is a quasiregular honeycomb.

Cantic order-5 hexagonal tiling honeycomb

Cantic order-5 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol h2{6,3,5}
Coxeter diagram CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node.png
Cells h2{6,3} Uniform tiling 333-t01.png
t{3,5} 40px
r{5,3} Uniform polyhedron-53-t1.png
Faces triangle {3}
pentagon {5}
hexagon {6}
Vertex figure Cantic order-5 hexagonal tiling honeycomb verf.png
triangular prism
Coxeter groups [math]\displaystyle{ {\overline{HP}}_3 }[/math], [5,3[3]]
Properties Vertex-transitive

The cantic order-5 hexagonal tiling honeycomb, h2{6,3,5}, CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node.png, has trihexagonal tiling, truncated icosahedron, and icosidodecahedron facets, with a triangular prism vertex figure.

Runcic order-5 hexagonal tiling honeycomb

Runcic order-5 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol h3{6,3,5}
Coxeter diagram CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node 1.png
Cells {3[3]} Uniform tiling 333-t1.png
rr{5,3} 40px
{5,3} 40px
{}x{3} Triangular prism.png
Faces triangle {3}
square {4}
pentagon {5}
Vertex figure Runcic order-5 hexagonal tiling honeycomb verf.png
triangular cupola
Coxeter groups [math]\displaystyle{ {\overline{HP}}_3 }[/math], [5,3[3]]
Properties Vertex-transitive

The runcic order-5 hexagonal tiling honeycomb, h3{6,3,5}, CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node 1.png, has triangular tiling, rhombicosidodecahedron, dodecahedron, and triangular prism facets, with a triangular cupola vertex figure.

Runcicantic order-5 hexagonal tiling honeycomb

Runcicantic order-5 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol h2,3{6,3,5}
Coxeter diagram CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node 1.png
Cells h2{6,3} Uniform tiling 333-t01.png
tr{5,3} 40px
t{5,3} 40px
{}x{3} Triangular prism.png
Faces triangle {3}
square {4}
hexagon {6}
decagon {10}
Vertex figure Runcicantic order-5 hexagonal tiling honeycomb verf.png
rectangular pyramid
Coxeter groups [math]\displaystyle{ {\overline{HP}}_3 }[/math], [5,3[3]]
Properties Vertex-transitive

The runcicantic order-5 hexagonal tiling honeycomb, h2,3{6,3,5}, CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node 1.png, has trihexagonal tiling, truncated icosidodecahedron, truncated dodecahedron, and triangular prism facets, with a rectangular pyramid vertex figure.

See also

  • Convex uniform honeycombs in hyperbolic space
  • Regular tessellations of hyperbolic 3-space
  • Paracompact uniform honeycombs

References

  1. Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III
  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapter 16-17: Geometries on Three-manifolds I, II)
  • Norman Johnson Uniform Polytopes, Manuscript
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
    • N.W. Johnson: Geometries and Transformations, (2018) Chapter 13: Hyperbolic Coxeter groups