Order-5 apeirogonal tiling

From HandWiki
Order-5 apeirogonal tiling
Order-5 apeirogonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex configuration 5
Schläfli symbol {∞,5}
Wythoff symbol 5 | ∞ 2
Coxeter diagram
Symmetry group [∞,5], (*∞52)
Dual Infinite-order pentagonal tiling
Properties Vertex-transitive, edge-transitive, face-transitive edge-transitive

In geometry, the order-5 apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,5}.

Symmetry

The dual to this tiling represents the fundamental domains of [∞,5*] symmetry, orbifold notation *∞∞∞∞∞ symmetry, a pentagonal domain with five ideal vertices.

120px

The order-5 apeirogonal tiling can be uniformly colored with 5 colored apeirogons around each vertex, and coxeter diagram: , except ultraparallel branches on the diagonals.

This tiling is also topologically related as a part of sequence of regular polyhedra and tilings with five faces per vertex, starting with the icosahedron, with Schläfli symbol {n,5}, and Coxeter diagram , with n progressing to infinity.

Spherical Hyperbolic tilings [v · d · e]

{2,5}

{3,5}

{4,5}

{5,5}

{6,5}

{7,5}

{8,5}
...
{∞,5}

See also

  • Tilings of regular polygons
  • List of uniform planar tilings
  • List of regular polytopes

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8.