Telegraph process

From HandWiki
Revision as of 07:40, 27 June 2023 by HamTop (talk | contribs) (linkage)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Memoryless continuous-time stochastic process that shows two distinct values

In probability theory, the telegraph process is a memoryless continuous-time stochastic process that shows two distinct values. It models burst noise (also called popcorn noise or random telegraph signal). If the two possible values that a random variable can take are [math]\displaystyle{ c_1 }[/math] and [math]\displaystyle{ c_2 }[/math], then the process can be described by the following master equations:

[math]\displaystyle{ \partial_t P(c_1, t|x, t_0)=-\lambda_1 P(c_1, t|x, t_0)+\lambda_2 P(c_2, t|x, t_0) }[/math]

and

[math]\displaystyle{ \partial_t P(c_2, t|x, t_0)=\lambda_1 P(c_1, t|x, t_0)-\lambda_2 P(c_2, t|x, t_0). }[/math]

where [math]\displaystyle{ \lambda_1 }[/math] is the transition rate for going from state [math]\displaystyle{ c_1 }[/math] to state [math]\displaystyle{ c_2 }[/math] and [math]\displaystyle{ \lambda_2 }[/math] is the transition rate for going from going from state [math]\displaystyle{ c_2 }[/math] to state [math]\displaystyle{ c_1 }[/math]. The process is also known under the names Kac process (after mathematician Mark Kac),[1] and dichotomous random process.[2]

Solution

The master equation is compactly written in a matrix form by introducing a vector [math]\displaystyle{ \mathbf{P}=[P(c_1, t|x, t_0),P(c_2, t|x, t_0)] }[/math],

[math]\displaystyle{ \frac{d\mathbf P}{dt}=W\mathbf P }[/math]

where

[math]\displaystyle{ W=\begin{pmatrix} -\lambda_1 & \lambda_2 \\ \lambda_1 & -\lambda_2 \end{pmatrix} }[/math]

is the transition rate matrix. The formal solution is constructed from the initial condition [math]\displaystyle{ \mathbf{P}(0) }[/math] (that defines that at [math]\displaystyle{ t=t_0 }[/math], the state is [math]\displaystyle{ x }[/math]) by

[math]\displaystyle{ \mathbf{P}(t) = e^{Wt}\mathbf{P}(0) }[/math].

It can be shown that[3]

[math]\displaystyle{ e^{Wt}= I+ W\frac{(1-e^{-2\lambda t})}{2\lambda} }[/math]

where [math]\displaystyle{ I }[/math] is the identity matrix and [math]\displaystyle{ \lambda=(\lambda_1+\lambda_2)/2 }[/math] is the average transition rate. As [math]\displaystyle{ t\rightarrow \infty }[/math], the solution approaches a stationary distribution [math]\displaystyle{ \mathbf{P}(t\rightarrow \infty)=\mathbf{P}_s }[/math] given by

[math]\displaystyle{ \mathbf{P}_s= \frac{1}{2\lambda}\begin{pmatrix} \lambda_2 \\ \lambda_1 \end{pmatrix} }[/math]

Properties

Knowledge of an initial state decays exponentially. Therefore, for a time [math]\displaystyle{ t\gg (2\lambda)^{-1} }[/math], the process will reach the following stationary values, denoted by subscript s:

Mean:

[math]\displaystyle{ \langle X \rangle_s = \frac {c_1\lambda_2+c_2\lambda_1}{\lambda_1+\lambda_2}. }[/math]

Variance:

[math]\displaystyle{ \operatorname{var} \{ X \}_s = \frac {(c_1-c_2)^2\lambda_1\lambda_2}{(\lambda_1+\lambda_2)^2}. }[/math]

One can also calculate a correlation function:

[math]\displaystyle{ \langle X(t),X(u)\rangle_s = e^{-2\lambda |t-u|}\operatorname{var} \{ X \}_s. }[/math]

Application

This random process finds wide application in model building:

See also

References

  1. 1.0 1.1 Bondarenko, YV (2000). "Probabilistic Model for Description of Evolution of Financial Indices". Cybernetics and Systems Analysis 36 (5): 738–742. doi:10.1023/A:1009437108439. 
  2. Margolin, G; Barkai, E (2006). "Nonergodicity of a Time Series Obeying Lévy Statistics". Journal of Statistical Physics 122 (1): 137–167. doi:10.1007/s10955-005-8076-9. Bibcode2006JSP...122..137M. 
  3. Balakrishnan, V. (2020). Mathematical Physics: Applications and Problems. Springer International Publishing. pp. 474