Biology:Formins

From HandWiki
Revision as of 10:20, 10 February 2024 by CodeMe (talk | contribs) (link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
formin 1
Identifiers
SymbolFMN1
Alt. symbolsLD, FMN
NCBI gene342184
HGNC3768
OMIM136535
RefSeqNM_001103184
UniProtQ68DA7
Other data
LocusChr. 15 q13-q14
Formin Homology Region 1
Identifiers
SymbolDrf_FH1
PfamPF06346
InterProIPR009408
Domain structure of formin proteins across phyla.[1]
Formin Homology 2 Domain
PDB 1ux4 EBI.jpg
crystal structures of a formin homology-2 domain reveal a tethered-dimer architecture
Identifiers
SymbolFH2
PfamPF02181
InterProIPR015425
SMARTFH2
SCOP21ux5 / SCOPe / SUPFAM
Diaphanous FH3 Domain
PDB 1z2c EBI.jpg
crystal structure of mdia1 gbd-fh3 in complex with rhoc-gmppnp
Identifiers
SymbolDrf_FH3
PfamPF06367
Pfam clanCL0020
InterProIPR010472
DRF Autoregulatory Domain
PDB 2bap EBI.jpg
crystal structure of the n-terminal mdia1 armadillo repeat region and dimerisation domain in complex with the mdia1 autoregulatory domain (dad)
Identifiers
SymbolDrf_DAD
PfamPF06345
InterProIPR010465
Diaphanous GTPase-binding Domain
PDB 1z2c EBI.jpg
crystal structure of mdia1 gbd-fh3 in complex with rhoc-gmppnp
Identifiers
SymbolDrf_GBD
PfamPF06371
Pfam clanCL0020
InterProIPR010473

Formins (formin homology proteins) are a group of proteins that are involved in the polymerization of actin and associate with the fast-growing end (barbed end) of actin filaments.[2] Most formins are Rho-GTPase effector proteins. Formins regulate the actin and microtubule cytoskeleton [3][4] and are involved in various cellular functions such as cell polarity, cytokinesis, cell migration and SRF transcriptional activity.[5] Formins are multidomain proteins that interact with diverse signalling molecules and cytoskeletal proteins, although some formins have been assigned functions within the nucleus.

Diversity

Formins have been found in all eukaryotes studied.[1] In humans, 15 different formin proteins are present that have been classified in 7 subgroups.[6] By contrast, yeasts contain only 2-3 formins.[7]

Structure and interactions

Formins are characterized by the presence of three formin homology (FH) domains (FH1, FH2 and FH3), although members of the formin family do not necessarily contain all three domains.[8][9] In addition, other domains are usually present, such as PDZ, DAD, WH2, or FHA domains.

The proline-rich FH1 domain mediates interactions with a variety of proteins, including the actin-binding protein profilin,[10] SH3 (Src homology 3) domain proteins,[11] and WW domain proteins. The actin nucleation-promoting activity of S. cerevisiae formins has been localized to the FH2 domain.[4] The FH2 domain is required for the self-association of formin proteins through the ability of FH2 domains to directly bind each other, and may also act to inhibit actin polymerization.[12][13] The FH3 domain is less well conserved and is required for directing formins to the correct intracellular location, such as the mitotic spindle, or the projection tip during conjugation.[14][15] In addition, some formins can contain a GTPase-binding domain (GBD) required for binding to Rho small GTPases, and a C-terminal conserved Dia-autoregulatory domain (DAD). The GBD is a bifunctional autoinhibitory domain that interacts with and is regulated by activated Rho family members. Mammalian Drf3 contains a CRIB-like motif within its GBD for binding to Cdc42, which is required for Cdc42 to activate and guide Drf3 towards the cell cortex where it remodels the actin skeleton.[16] The DAD binds the N-terminal GBD; this link is broken when GTP-bound Rho binds to the GBD and activates the protein. The addition of the DAD to mammalian cells induces actin filament formation, stabilizes microtubules, and activates SRF mediated transcription.[16] Another commonly found domain is an armadillo repeat region (ARR) located in the FH3 domain.

The FH2 domain, has been shown by X-ray crystallography to have an elongated, crescent shape containing three helical subdomains.[17][18]

Formins also directly bind to microtubules via their FH2 domain. This interaction is important in promoting the capture and stabilization of a subset of microtubules oriented towards the leading edge of migrating cells. Formins also promote the capture of microtubules by the kinetochore during mitosis and for aligning microtubules along actin filaments.[19][20]

See also

References

  1. 1.0 1.1 "Origins and evolution of the formin multigene family that is involved in the formation of actin filaments". Molecular Biology and Evolution 25 (12): 2717–33. December 2008. doi:10.1093/molbev/msn215. PMID 18840602. 
  2. "Formins: signaling effectors for assembly and polarization of actin filaments". Journal of Cell Science 116 (Pt 13): 2603–11. July 2003. doi:10.1242/jcs.00611. PMID 12775772. 
  3. "The evolution of compositionally and functionally distinct actin filaments". Journal of Cell Science 128 (11): 2009–19. June 2015. doi:10.1242/jcs.165563. PMID 25788699. 
  4. 4.0 4.1 "Mechanism and function of formins in the control of actin assembly". Annual Review of Biochemistry 76: 593–627. 2007. doi:10.1146/annurev.biochem.75.103004.142647. PMID 17373907. 
  5. "Staying in shape with formins". Developmental Cell 10 (6): 693–706. June 2006. doi:10.1016/j.devcel.2006.05.001. PMID 16740473. 
  6. "Phylogenetic analysis of the formin homology 2 domain". Molecular Biology of the Cell 16 (1): 1–13. January 2005. doi:10.1091/mbc.E04-07-0565. PMID 15509653. 
  7. "ForC, a novel type of formin family protein lacking an FH1 domain, is involved in multicellular development in Dictyostelium discoideum". Journal of Cell Science 116 (Pt 4): 711–23. February 2003. doi:10.1242/jcs.00265. PMID 12538772. 
  8. "The formins: active scaffolds that remodel the cytoskeleton". Trends in Cell Biology 13 (8): 435–46. August 2003. doi:10.1016/S0962-8924(03)00153-3. PMID 12888296. 
  9. Uetz, Peter (1997). Biochemische Studien am limb deformity-Protein der Vertebraten: Inaugural-Dissertation zur Erlangung der Doktorwürde der Naturwissenschaftlich-Mathematischen Gesamtfakultät der Ruprecht-Karls-Universität Heidelberg. Developmental Biology, European Molecular Biology Laboratory. Heidelberg: European Molecular Biology Laboratory. https://libcatalog.embl.de/cgi-bin/koha/opac-detail.pl?biblionumber=8953. 
  10. "Molecular interaction between limb deformity proteins (formins) and Src family kinases". The Journal of Biological Chemistry 271 (52): 33525–30. December 1996. doi:10.1074/jbc.271.52.33525. PMID 8969217. 
  11. "Fhos, a mammalian formin, directly binds to F-actin via a region N-terminal to the FH1 domain and forms a homotypic complex via the FH2 domain to promote actin fiber formation". Journal of Cell Science 116 (Pt 22): 4567–75. November 2003. doi:10.1242/jcs.00769. PMID 14576350. 
  12. "The core FH2 domain of diaphanous-related formins is an elongated actin binding protein that inhibits polymerization". Molecular Cell 13 (4): 511–22. February 2004. doi:10.1016/S1097-2765(04)00059-0. PMID 14992721. 
  13. "Localization of a mammalian homolog of diaphanous, mDia1, to the mitotic spindle in HeLa cells". Journal of Cell Science 114 (Pt 4): 775–84. February 2001. doi:10.1242/jcs.114.4.775. PMID 11171383. 
  14. "FH3, a domain found in formins, targets the fission yeast formin Fus1 to the projection tip during conjugation". The Journal of Cell Biology 141 (5): 1217–28. June 1998. doi:10.1083/jcb.141.5.1217. PMID 9606213. 
  15. 16.0 16.1 "Disruption of the Diaphanous-related formin Drf1 gene encoding mDia1 reveals a role for Drf3 as an effector for Cdc42". Current Biology 13 (7): 534–45. April 2003. doi:10.1016/S0960-9822(03)00170-2. PMID 12676083. 
  16. "Crystal structures of a Formin Homology-2 domain reveal a tethered dimer architecture". Cell 116 (5): 711–23. March 2004. doi:10.1016/S0092-8674(04)00210-7. PMID 15006353. 
  17. "FMNL3 FH2-actin structure gives insight into formin-mediated actin nucleation and elongation". Nature Structural & Molecular Biology 20 (1): 111–8. January 2013. doi:10.1038/nsmb.2462. PMID 23222643. 
  18. "mDia mediates Rho-regulated formation and orientation of stable microtubules". Nature Cell Biology 3 (8): 723–9. August 2001. doi:10.1038/35087035. PMID 11483957. 
  19. "Formins and microtubules". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1803 (2): 164–73. February 2010. doi:10.1016/j.bbamcr.2009.07.006. PMID 19631698. 

External links

This article incorporates text from the public domain Pfam and InterPro: IPR010472
This article incorporates text from the public domain Pfam and InterPro: IPR015425
This article incorporates text from the public domain Pfam and InterPro: IPR010465
This article incorporates text from the public domain Pfam and InterPro: IPR010473