Astronomy:TX Ursae Majoris

From HandWiki
Short description: Eclipsing binary star system in the constellation of Ursa Major
TX Ursae Majoris
TXUMaLightCurve.png
A light curve for TX Ursae Majoris, plotted from TESS data[1]
Observation data
Equinox J2000.0]] (ICRS)
Constellation Ursa Major
Right ascension  10h 45m 20.504s[2]
Declination +45° 33′ 58.71″[2]
Apparent magnitude (V) 6.97[3]
Characteristics
Spectral type B8V + G0III-IV[4]
B−V color index −0.003±0.026[3]
Variable type β Per[5]
Astrometry
Radial velocity (Rv)−13.2±0.9[6] km/s
Proper motion (μ) RA: 9.595[2] mas/yr
Dec.: 4.412[2] mas/yr
Parallax (π)4.1849 ± 0.0841[2] mas
Distance780 ± 20 ly
(239 ± 5 pc)
Absolute magnitude (MV)0.60[3]
Orbit[7] (1990)
Period (P)3.063 d
Semi-major axis (a)≥ 3.315 R
Eccentricity (e)0.0134
Argument of periastron (ω)
(secondary)
324.7°
Semi-amplitude (K1)
(primary)
54.8 km/s
Details
TX UMa A
Mass4.76±0.16[8] M
Radius2.83[8] R
Luminosity182+18
−16
[9] L
Surface gravity (log g)4.2±0.15[8] cgs
Temperature12,900±300[8] K
Rotational velocity (v sin i)69±3[8] km/s
TX UMa B
Mass1.18±0.06[8] M
Radius4.24[8] R
Luminosity13.5+6.0
−4.2
[9] L
Surface gravity (log g)3.3±0.3[8] cgs
Temperature5,500±500[8] K
Rotational velocity (v sin i)72±5[8] km/s
Other designations
TX Uma, BD+46 1659, GC 14783, HD 93033, HIP 52599, SAO 43460, PPM 52052[10]
Database references
SIMBADdata

TX Ursae Majoris is an eclipsing binary star system in the northern circumpolar constellation of Ursa Major. With a combined apparent visual magnitude of 6.97,[3] the system is too faint to be readily viewed with the naked eye. The pair orbit each other with a period of 3.063 days in a circular orbit,[7] with their orbital plane aligned close to the line of sight from the Earth. During the primary eclipse, the net brightness decreases by 1.74 magnitudes, while the secondary eclipse results in a drop of just 0.07 magnitude.[5] TX UMa is located at a distance of approximately 780 light years from the Sun based on parallax measurements,[2] but is drifting closer with a mean radial velocity of −13 km/s.[6]

In 1931, H. Rügemer and H. Schneller independently discovered this is an eclipsing binary system of the Algol type.[11] Rügemer later found that the eclipse period was not constant,[12] a behavior that was subsequently explained as apsidal precession.[13] B. Cester and associates in 1977 confirmed this is a semidetached binary system consisting of a main sequence primary star and an evolved giant companion.[14] A study of the system by J. M. Kreiner and J. Tremko in 1980 disproved that changes in the eclipse period are due to apsidal motion.[12]

The light curve of this system shows little impact from proximity effects between the two stars, making it only weakly interacting. The primary eclipse is very deep with less than 5% of the brighter star's light appearing at central eclipse,[15] allowing the spectrum of the fainter secondary to be directly examined.[16] In addition to a steady decrease in the system orbital period, multiple irregular changes in the period were observed between 1903 and 1996.[17] The slowing orbit may be due in part from magnetic breaking of the mass-donor secondary, causing a transfer of angular momentum to the system. An accretion disk may be a contributing factor.[18] Spectral evidence supports an accretion disk in orbit around the primary that is sustained by mass transfer.[19] A faint emission from the system is evidence of a circumbinary ionized shell.[20]

The cooler secondary component is the more evolved member of the pair with a stellar classification of G0III-I,[4] having previously exhausted the supply of hydrogen at its core and evolved off the main sequence. This star has filled its Roche lobe and is contributing mass to the primary.[8] It now has 1.2 times the Sun's mass but has expanded to 4.2 times the solar radius.[8] The secondary is rotating synchronously with its orbit.[8] The primary component of this system is a B-type main-sequence star with a stellar classification of B8V.[4] It is rotating 1.5[8] times as fast as the orbital rate due to the impact of mass accretion from the secondary.[4] The primary has 4.8 times the mass and 2.8 times the radius of the Sun.[8]

References

  1. "MAST: Barbara A. Mikulski Archive for Space Telescopes". Space Telescope Science Institute. https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html. 
  2. 2.0 2.1 2.2 2.3 2.4 Brown, A. G. A. (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics 649: A1. doi:10.1051/0004-6361/202039657. Bibcode2021A&A...649A...1G.  Gaia EDR3 record for this source at VizieR.
  3. 3.0 3.1 3.2 3.3 Anderson, E.; Francis, Ch. (2012), "XHIP: An extended hipparcos compilation", Astronomy Letters 38 (5): 331, doi:10.1134/S1063773712050015, Bibcode2012AstL...38..331A. 
  4. 4.0 4.1 4.2 4.3 Komžík, R. et al. (June 2008), "Asynchronous rotation of the mass gaining component in the Algol-type binary TX UMa", Contributions of the Astronomical Observatory Skalnaté Pleso 38 (3): 538–544, Bibcode2008CoSka..38..538K. 
  5. 5.0 5.1 Samus', N. N et al. (2017), "General catalogue of variable stars", Astronomy Reports, GCVS 5.1 61 (1): 80, doi:10.1134/S1063772917010085, Bibcode2017ARep...61...80S. 
  6. 6.0 6.1 Wilson, Ralph Elmer (1953), "General Catalogue of Stellar Radial Velocities", Carnegie Institute Washington D.C. Publication (Washington: Carnegie Institution of Washington), Bibcode1953GCRV..C......0W. 
  7. 7.0 7.1 Hric, Ladislav et al. (July 1990), "Spectral Behaviour of the Eclipsing Binary Tx-Ursae around Primary Minimum", Astrophysics and Space Science 169 (1–2): 241–243, doi:10.1007/BF00640723, Bibcode1990Ap&SS.169..241H. 
  8. 8.00 8.01 8.02 8.03 8.04 8.05 8.06 8.07 8.08 8.09 8.10 8.11 8.12 8.13 8.14 Glazunova, L. V. et al. (August 2011), "TX UMa: new orbit, spin rotation and chemical composition of components", Monthly Notices of the Royal Astronomical Society 415 (3): 2238–2244, doi:10.1111/j.1365-2966.2011.18854.x, Bibcode2011MNRAS.415.2238G. 
  9. 9.0 9.1 Malkov, Oleg Yu (February 2020), "Semidetached double-lined eclipsing binaries: Stellar parameters and rare classes", Monthly Notices of the Royal Astronomical Society 491 (4): 5489–5497, doi:10.1093/mnras/stz3363, Bibcode2020MNRAS.491.5489M. 
  10. "TX UMa". SIMBAD. Centre de données astronomiques de Strasbourg. http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=TX+UMa. 
  11. Komzik, R. et al. (December 1992), "Spectroscopic and Photometric Detection of Interacting Processes and Their Evolution in the Eclipsing Binary Tx-Ursae", Astrophysics and Space Science 198 (1): 149–159, doi:10.1007/BF00644309, Bibcode1992Ap&SS.198..149K. 
  12. 12.0 12.1 Kreiner, J. M.; Tremko, J. (1980), "Analysis of the Change of Period and the Photometry of the Minima of the Eclipsing Binary System TX Ursae Maioris", Bulletin of the Astronomical Institute of Czechoslovakia 31: 343, Bibcode1980BAICz..31..343K. 
  13. Plavec, M. (1960), "Influence of precession and nutation on the period of eclipsing variables", Bulletin of the Astronomical Institute of Czechoslovakia 11: 197, Bibcode1960BAICz..11..197P. 
  14. Cester, B. et al. (November 1977), "Revised photometric elements of 12 semi-detached systems", Astronomy and Astrophysics 61: 469–475, Bibcode1977A&A....61..469C. 
  15. Hill, Graham; Hutchings, J. B. (January 1973), "The Synthesis of Close-Binary Light Curves IV. An Application to TX Ursae Majoris and MR Cygni", Astrophysics and Space Science 20 (1): 123–148, doi:10.1007/BF00645591, Bibcode1973Ap&SS..20..123H. 
  16. Grygar, J. et al. (November 1991), "Direct Detection of the Secondary Spectrum of the Interacting Eclipsing Binary Tx-Ursae", Astrophysics and Space Science 185 (2): 189–193, doi:10.1007/BF00643187, Bibcode1991Ap&SS.185..189G. 
  17. Qian, Shengbang (November 2001), "Possible Mass and Angular Momentum Loss in Algol-Type Binaries. V. RT Persei and TX Ursae Majoris", The Astronomical Journal 122 (5): 2686–2691, doi:10.1086/323455, Bibcode2001AJ....122.2686Q. 
  18. Chen, Wen-Cong et al. (October 2006), "Orbital Evolution of Algol Binaries with a Circumbinary Disk", The Astrophysical Journal 649 (2): 973–978, doi:10.1086/506433, Bibcode2006ApJ...649..973C 
  19. Iliev, L. (December 2010), Prša, Andrej; Zejda, Miloslav, eds., "Spectral Evidence of Circumstellar Material in the Eclipsing Binary TX UMa", Binaries - Key to Comprehension of the Universe. Proceedings of a conference held June 8-12, 2009 in Brno, Czech Republic (San Francisco: Astronomical Society of the Pacific) 435: p. 345, Bibcode2010ASPC..435..345I. 
  20. Taranova, O. G.; Shenavrin, V. I. (November 1997), "Search for dust shells in W Ser binaries and similar object: RX Cassiopeiae and TX Ursae Majoris", Astronomy Letters 23 (6): 698–703, Bibcode1997AstL...23..698T. 

Further reading

  • Screech, James (June 2020), "Algol type eclipsing binary TX UMa. Can all sources have the correct period?", British Astronomical Association Variable Star Section Circular 184 (184): 36–37, Bibcode2020BAAVC.184...36S. 
  • Maxted, P. F. L. et al. (September 1995), "Studies of early-type variable stars. XIII. Spectroscopic orbit and absolute parameters of TX Ursae Majoris", Astronomy and Astrophysics 301: 135, Bibcode1995A&A...301..135M. 
  • Kang, Young W.; Oh, Kyu D. (March 1993), "Simultaneous Solutions for Photometric and Spectroscopic Observations of Tx-Ursae", Astrophysics and Space Science 201 (2): 177–189, doi:10.1007/BF00627192, Bibcode1993Ap&SS.201..177K. 
  • Hric, L.; Komzik, R. (March 1992), "The Eclipsing Binary TX UMa - a Period Change again", Information Bulletin on Variable Stars 3698 (1): 1, Bibcode1992IBVS.3698....1H. 
  • Oh, Kyu-Dong (June 1986), "Photometric Orbit of TX UMa", Journal of Astronomy and Space Science 3 (1): 41–51, Bibcode1986JASS....3...41O. 
  • Koch, R. H. (June 1961), "Departures from the Russell model in TX Ursae Majoris", Astronomical Journal 66: 230–242, doi:10.1086/108401, Bibcode1961AJ.....66..230K. 
  • Pearce, J. A. (November 1932), "The Spectroscopic Elements of the Eclipsing Variable TX Ursae Majoris", Journal of the Royal Astronomical Society of Canada 26: 382, Bibcode1932JRASC..26..382P.