Biology:2023 in paleobotany
This paleobotany list records new fossil plant taxa that were to be described during the year 2023, as well as notes other significant paleobotany discoveries and events which occurred during 2023.
Algae
Charophytes
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Chara chhindwaraensis[1] |
Sp. nov |
Valid |
Khosla et al. |
Late Cretaceous-Paleocene transition |
India |
A species of Chara. |
|||
Hornichara jianglingensis[2] |
Comb. nov |
(Wang) |
Eocene |
China |
A member of the family Characeae. Moved from Obtusochara jianglingensis Wang (1978). |
||||
Microchara shivarudrappai[1] |
Sp. nov |
Valid |
Khosla et al. |
Late Cretaceous-Paleocene transition |
Deccan Intertrappean Beds |
India |
|||
Platychara closasi[1] |
Sp. nov |
Valid |
Khosla et al. |
Late Cretaceous-Paleocene transition |
Deccan Intertrappean Beds |
India |
Chlorophytes
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Bucur, Enos & Minzoni |
Middle Triassic |
China |
A green alga belonging to the group Dasycladales. |
||||
Archaeochaeta[4] |
Gen. et sp. nov |
Valid |
Maloney et al. |
Dolores Creek Formation |
Canada |
The type species is A. guncho. |
|||
Sp. nov |
Kröger & Tinn in Kröger et al. |
Ordovician (Sandbian) |
Vasalemma Formation |
Estonia |
|||||
Sp. nov |
Kröger & Tinn in Kröger et al. |
Ordovician (Sandbian) |
Vasalemma Formation |
Estonia |
|||||
Kantia granieri[3] |
Sp. nov |
Valid |
Bucur, Enos & Minzoni |
Middle Triassic |
China |
A green alga belonging to the group Dasycladales. |
|||
Kantia intusannulata[3] |
Sp. nov |
Valid |
Bucur, Enos & Minzoni |
Middle Triassic |
China |
A green alga belonging to the group Dasycladales. |
|||
Kantia muxinanii[3] |
Sp. nov |
Valid |
Bucur, Enos & Minzoni |
Middle Triassic |
China |
A green alga belonging to the group Dasycladales. |
|||
Palaeoulvaria[6] |
Gen. et sp. nov |
Valid |
Kolosov |
Ediacaran |
Byuk Formation |
Russia |
A green alga belonging to the group Ulvales. The type species is P. plate. |
||
Sphaeroplea striatocristata[7] |
Sp. nov |
Perez Loinaze et al. |
Late Cretaceous (Maastrichtian) |
Argentina |
A species of Sphaeroplea. |
||||
Voronocladus[8] |
Gen. et sp. nov |
In press |
Skompski et al. |
Silurian |
Ukraine |
Originally described as a green alga belonging to the group Dasycladales and the family Triploporellaceae; subsequently argued by LoDuca (2024) to be a member of Bryopsidales.[9] Genus includes new species V. dryganti. |
Phycological research
- Harvey (2023) interprets a well-preserved assemblage of acritarchs from the Cambrian Stage 4 Forteau Formation (Canada ) as fossil material of planktic green algae with coenobial colony formation.[10]
- Yang et al. (2023) reinterpret Protomelission as an early dasycladalean green alga;[11] however, Xiang et al. (2023) subsequently interpret Protomelission as a scleritome of Cambroclavus, which in turn is considered by the authors to be a probable epitheliozoan-grade eumetazoan like the contemporaneous chancelloriids, unrelated to bryozoans or to dasycladalean algae.[12]
Lycophytes
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Nothostigma sepeensis[13] |
Sp nov |
Spiekermann, Jasper, Guerra-Sommer & D. Uhl |
Brazil |
An herbaceous lycopsid |
|||||
Selaginella quatsinoense[14] |
Sp. nov |
Valid |
Rothwell & Stockey |
Early Cretaceous (Valanginian) |
Longarm Formation |
Canada |
A species of Selaginella. |
||
Thomasites[15] |
Gen., sp. et comb. nov |
Bek et al. |
Carboniferous |
Czech Republic |
A herbaceous lycophyte. |
Lycophyte research
- A study on the ground-level trunk vasculature of Sigillaria approximata from the Pennsylvanian Calhoun Coal of Illinois (United States ) is published by D'Antonio (2023), who finds evidence indicating that wood growth at the base of the trunk was different from the arborescent lycopsid wood growth model of Cichan (1985).[16][17]
- Turner et al. (2023) report diverse phyllotaxis in leaves of the lycopod Asteroxylon mackiei from the Devonian Rhynie chert (United Kingdom ), including whorls and spirals, and interpret this finding as suggesting that Fibonacci-style patterning was not ancestral to living land plants, as well as indicative of developmental similarities between lycophyte leaves and reproductive structures.[18]
Ferns and fern allies
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Botryopteridium sinensis[19] |
Sp. nov |
Zhou et al. |
Permian |
China |
A botryopterid fern. |
||||
Conustheca[20] |
Gen. et comb. nov |
Fernández & Césari |
Carboniferous-Permian transition |
Argentina |
A member of Equisetales. The type species is Tchernovia? velizensis Durán, Hünicken & Antón (1997). |
||||
Diplazites campbellii[21] |
Sp. nov |
Pšenička et al. |
Carboniferous |
Canada |
A psaroniaceous marattialean fern. |
||||
Dizeugotheca saudica[22] |
Comb. nov |
(Wagner, Hill & El-Khayal) |
Permian |
Saudi Arabia |
A member of the family Marattiaceae. Moved from Gemellitheca saudica Wagner, Hill & El-Khayal (1985). |
||||
Dryopterites beishanensis[23] |
Sp nov |
Ren & Sun |
Chijinbao Formation |
China |
A fern |
||||
Equisetum kekeense[24] |
Sp. nov |
Zhang & Xie in Cao et al. |
Miocene |
Youshashan Formation |
China |
A species of Equisetum. |
|||
Equisetum siwalikum[25] |
Sp. nov |
Kundu, Hazra & Khan in Kundu et al. |
Miocene |
India |
A species of Equisetum. |
||||
Equisetum wulanense[24] |
Sp. nov |
Zhang & Xie in Cao et al. |
Miocene |
Youshashan Formation |
China |
A species of Equisetum. |
|||
Goeppertella unicyclica[26] |
Sp. nov |
Escapa & Yañez in Yañez, Escapa & Choo |
Early Jurassic (Pliensbachian) |
Argentina |
A member of the family Dipteridaceae. |
||||
Microlepia burmasia[27] |
Sp. nov |
In press |
Long, Wang, & Shi |
Cretaceous |
Burmese amber |
Myanmar |
|||
Palaeosorum siwalikum[28] |
Sp. nov |
Valid |
Kundu, Hazra & Khan in Kundu et al. |
Miocene |
India |
A member of the family Polypodiaceae. Announced in 2023; the final version of the article naming it was published in 2024. |
|||
Prosperifilix[29] |
Gen. et sp. nov |
In press |
Wang, Shi & Engel in et al. |
Cretaceous |
Burmese amber |
Myanmar |
A member of the family Dryopteridaceae. |
||
Qasimia archangelskyi[22] |
Sp. nov |
Kerp et al. |
Permian |
Jordan |
A member of the family Marattiaceae. |
||||
Szea yunnanensis[30] |
Sp. nov |
Guo, Zhou & Feng in Guo et al. |
Permian (Lopingian) |
Xuanwei Formation |
China |
A leptosporangiate fern. |
|||
Todea minutacaulis[31] |
Sp. nov |
Walker, Rothwell & Stockey |
Early Cretaceous (Valanginian) |
Canada |
A species of Todea. |
||||
Trichomanes angustum[32] |
Comb. nov |
(Li & Wang) |
Cretaceous (Albian-Cenomanian) |
Burmese amber |
Myanmar |
A member of the family Hymenophyllaceae, a species of Trichomanes sensu lato. Moved from Hymenophyllites angustus Li & Wang (2022). |
Pteridological research
- A study on fossils of Pecopteris from the Mazon Creek fossil beds (Illinois, United States ), indicative of association of a suite of saturated phytohopanoid and aromatised terpenoid diagenetic biomarker products with true fern fossils, is published by Tripp et al. (2023).[33]
- Blanco-Moreno & Buscalioni (2023) identify Sphenopteris wonnacottii as a junior synonym of Coniopteris laciniata, provide whole plant reconstruction of C. laciniata, and interpret the variability of the pinnules of C. laciniata as likely caused by the submersion of the apical part of fronds in water during their development.[34]
Ginkgophytes
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Austroginkgoxylon[35] |
Gen. et sp. nov |
Martínez & Leppe in Martínez et al. |
Late Cretaceous (Maastrichtian) |
Chile |
A member of Ginkgoales. The type species is A. dutrae. |
||||
Eretmophyllum polypapillosum[36] |
Sp. nov |
Valid |
Frolov & Mashchuk |
Jurassic |
Prisayan Formation |
Russia |
|||
Eretmophyllum yershowskiensis[36] |
Sp. nov |
Valid |
Frolov & Mashchuk |
Jurassic |
Prisayan Formation |
Russia |
|||
Sp. nov |
Valid |
Li & Xu in Li et al. |
Paleocene |
Dazhang Formation |
China |
A species of Ginkgo. |
|||
Karkenia archangelskiana[38] |
Sp. nov |
Nosova in Nosova, Kostina & Afonin |
Early Cretaceous (Aptian–Albian) |
Mongolia |
A member of the family Karkeniaceae. |
||||
Sp. nov |
Nosova, Kostina & Afonin |
Early Cretaceous (Aptian–Albian) |
Khuren Dukh Formation |
Mongolia |
Conifers
Cheirolepidiaceae
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Classostrobus archangelskyi[39] |
Sp. nov |
Kvaček, Mendes & Tekleva |
Cretaceous |
Figueira da Foz Formation |
Portugal |
||||
Sp. nov |
Jin et al. |
Early Cretaceous |
Laiyang Formation |
China |
|||||
Pseudofrenelopsis dinisii[41] |
Sp. nov |
Mendes, Kvaček & Doyle |
Cretaceous |
Santa Susana Formation |
Portugal |
A cheirolepidiaceous foliage morphospecies |
|||
Pseudofrenelopsis zlatkoi[42] |
Sp. nov |
Kvaček & Mendes |
Cretaceous |
Figueira da Foz Formation |
Portugal |
A cheirolepidiaceous foliage morphospecies |
Cordaitaceae
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Florinanthus bussacensis[43] |
Sp. nov |
Correia et al. |
Carboniferous (Gzhelian) |
Portugal |
|||||
Florinanthus longiantheratus[44] |
Sp. nov |
Bureš et al. |
Carboniferous (Moscovian) |
Plzeň Basin |
Czech Republic |
Pollen-bearing organs of a member of Cordaitales. |
Cupressaceae
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Juniperus chifengensis[45] |
Sp. nov |
Xiao & Guo in Guo et al. |
Miocene |
China |
A species of Juniper. |
||||
Mukawastrobus arnoldii[46] |
Sp. nov |
Valid |
Rothwell, Stockey & Smith |
Late Cretaceous |
United States |
A taiwanioid cupressaceous conifer. |
Pinaceae
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Keteleeria farjonii[47] |
Sp. nov |
Valid |
Wheeler, Manchester & Baas |
Eocene |
John Day Formation |
United States |
A species of Keteleeria. |
||
Keteleeria huolinhensis[48] |
Sp. nov |
Zhu et al. |
Early Cretaceous |
Huolinhe Formation |
China |
A species of Keteleeria. |
|||
Pinus bukatkinii[49] |
Sp. nov |
Valid |
Bazhenova et al. |
Middle Jurassic |
A pine. |
||||
Tsuga weichangensis[50] |
Sp. nov |
In press |
Li et al. |
Miocene |
China |
A species of Tsuga. |
Podocarpaceae
Name | Novelty | Status | Authors | Age | Type locality | Location | Synonymy | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Acmopyle grayae[51] |
Sp. nov |
Andruchow-Colombo et al. |
Eocene |
Argentina |
A species of Acmopyle. |
||||
Dacrycarpus engelhardti[51] |
Comb. nov |
(Berry) |
Eocene |
Argentina |
A species of Dacrycarpus. Moved from Podocarpus engelhardti Berry (1938). |
||||
Phyllocladoxylon antarcticum[52] |
Sp. nov |
valid |
Pujana et al. |
Oligocene |
San José Formation |
Chile |
A podocarpaceous wood morphospecies |
||
Podocarpoxylon paradoxi[35] |
Sp. nov |
Martínez & Leppe in Martínez et al. |
Late Cretaceous (Maastrichtian) |
Dorotea Formation |
Chile |
A podocarpaceous wood morphospecies. |
|||
Podocarpoxylon resinosum[52] |
Sp. nov |
valid |
Pujana et al. |
Oligocene |
San José Formation |
Chile |
A podocarpaceous wood morphospecies |
Voltziales
Name | Novelty | Status | Authors | Age | Type locality | Location | Synonymy | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Hexicladia[53] |
Gen. et sp. nov |
Valid |
Wang et al. |
Permian (Cisuralian) |
Shanxi Formation |
China |
A voltzialean conifer. |
Other conifers
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Brachyoxylon qijiangense[54] |
Sp. nov |
Xie, Wang & Tian in Xie et al. |
Middle Jurassic |
China |
A member of Pinales of uncertain affinities. |
||||
Sp. nov |
Morales-Toledo & Cevallos-Ferriz |
Middle Jurassic |
Mexico |
Coniferous foliage of uncertain affinities. |
|||||
Mirovia oskolica[56] |
Sp. nov |
Nosova in Nosova & Lyubarova |
Middle Jurassic (Bajocian–Callovian) |
Coniferous leaves assigned to the family Miroviaceae. |
|||||
Parnaiboxylon wangi[57] |
Sp. nov |
Wang et al. |
Carboniferous |
Benxi Formation |
China |
A coniferous petrified wood. |
|||
Platycladium mexicana[55] |
Sp. nov |
Morales-Toledo & Cevallos-Ferriz |
Middle Jurassic |
Otlaltepec Formation |
Mexico |
||||
Secrospiroxylon[58] |
Gen. et sp. nov |
Valid |
Cai, Zhang & Feng in Cai et al. |
Permian |
Mongolia |
A coniferous stem. The type species is S. tolgoyensis. |
|||
Yiwupitys[59] |
Gen. et sp. nov |
Gou & Feng in Gou et al. |
Middle Jurassic |
Xishanyao Formation |
China |
A conifer stem of uncertain affinities. The type species is Y. elegans. |
Conifer research
- Trümper et al. (2023) report the discovery of fossil trees from the Athesian Volcanic Group (Italy) interpreted as remains of a Permian (Kungurian) forest where conifers were the major arborescent plants, substantiating the presence of coniferopsids in wetlands around the Carboniferous/Permian boundary.[60]
- Slodownik et al. (2023) describe new fossil material (including the first putative female reproductive remains) of Araucarioides linearis from the Eocene Macquarie Harbour Formation (Australia ), interpret Araucarioides sinuosa to be a junior synonym of A. linearis, and consider A. linearis to be a non-Agathis agathioid belonging to an extinct lineage that originated in the Cretaceous, lived in high paleolatitudes and had adaptations to seasonal environments which allowed it to survive the Cretaceous–Paleogene extinction event.[61]
- Andruchow-Colombo et al. (2023) review the fossil record of Podocarpaceae, and argue that the earliest reliable occurrences of members of this family are from the Jurassic of both hemispheres.[62]
Flowering plants
Monocots
Alismatales
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Appianospadix[63] |
Gen. et sp. nov |
Valid |
Stockey et al. |
Eocene |
Canada |
A member of the family Araceae. The type species is A. bogneri |
|||
Nichima[64] |
Gen. et 2 sp. nov |
Hernández-Sandoval, Cevallos-Ferriz & Hernández-Damián |
Oligocene-Miocene |
Mexico |
A member of the family Alismataceae. Genus includes N. magalloniae and N. gonzalez-medranoi. |
Arecales
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Palmocarpon dicellaformis[65] |
Comb. nov |
(Berry) |
Oligocene |
Peru |
synonymy
|
A palm fruit with affinities to extant Bactridinae. |
Basal eudicots
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Comb. nov |
(Ward) |
Paleocene |
United States |
Moved from Platanus basilobata Ward (1887). |
|||||
Macginitiea rannii[66] |
Sp. nov |
Huegele & Correa Narvaez |
Eocene |
United States |
|||||
Macginitiea rileyi[66] |
Comb. nov |
(Ball) |
Eocene |
United States |
Moved from Platanus rileyi Ball (1939). |
||||
Megahertzia paleoamplexicaulis[67] |
Sp. nov |
Valid |
Carpenter & Rozefelds |
Eocene |
Salt Creek Formation |
Australia |
A species of Megahertzia |
||
Notocyamus[68] |
Gen. et sp. nov |
Gobo et al in Gobo et al. |
Early Cretaceous |
Brazil |
A Nelumbonaceous lotus. |
||||
Palaeosinomenium oisensis[69] |
Sp. nov |
Kara et al. |
Paleocene |
France |
A member of the family Menispermaceae. |
Basal eudicot research
- Evidence from the palynomorph fossil record, interpreted as indicating that members of the family Proteaceae reached South African Cape in the Late Cretaceous from North-Central Africa rather than from Australia across the Indian Ocean, is presented by Lamont, He & Cowling (2023).[70]
Superasterids
Apiales
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Plerandreoxylon oskolskii[47] |
Sp. nov |
Valid |
Wheeler, Manchester & Baas |
Eocene |
John Day Formation |
United States |
A member of the family Araliaceae. |
Boraginales
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Cordioxylon indicum[71] |
Sp. nov |
Bhatia, Srivastava & Mehrotra |
Miocene |
Tipam Sandstone |
India |
Fossil wood of a member of the genus Cordia. |
Ericales
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Comb nov |
Valid |
(Casp.) Sadowski & Hofmann |
Baltic Amber |
Europe |
A Symplocaceous flower species. |
Icacinales
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Palaeophytocrene ga[73] |
Sp. nov |
Poore, Jud & Gandolfo |
Paleocene (Danian) |
Argentina |
A member of the family Icacinaceae belonging to the tribe Phytocreneae. |
Lamiales
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Phillyreoxylon phillyreoides[74] |
Sp. nov |
Akkemik & Mantzouka in Akkemik et al. |
Neogene |
Turkey |
Fossil wood of a member of the genus Phillyrea. |
Solanales
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Eophysaloides[75] |
Gen. et sp. nov |
Valid |
Deanna et al. |
Eocene |
Esmeraldas Formation |
Colombia |
A member of the family Solanaceae. The type species is E. inflata. |
||
Lycianthoides[75] |
Gen. et sp. nov |
Valid |
Deanna et al. |
Eocene |
United States |
A member of the family Solanaceae. The type species is L. calycina. |
General Superasterid research
Superrosids
Cucurbitales
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Parvaspicula[76] |
Gen. et comb. nov |
Valid |
Correa Narvaez et al. |
Eocene |
United States |
A tetramelaceous leaf morphotype |
|||
Punctaphyllum[76] |
Gen. et comb. nov |
Valid |
Correa Narvaez et al. |
Eocene |
Green River Formation |
United States |
A tetramelaceous seed morphotype |
Fabales
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Acacia haominiae[80] |
Sp. nov |
Wang et al. |
Miocene |
Fotan Group |
China |
A species of Acacia. |
|||
Albizia yenbaiensis[81] |
Sp. nov |
Valid |
Nguyen, Su & J. Huang in Nguyen et al. |
Miocene |
Yen Bai Basin |
Vietnam |
An Albizia species. |
||
Anthonotha shimaglae[82] |
Sp. nov |
Valid |
Pan et al. |
Miocene |
Mush Valley |
Ethiopia |
A species of Anthonotha. |
||
Bauhinia tibetensis[83] |
Sp. nov |
Gao & Su in Gao et al. |
Paleocene |
China |
A species of Bauhinia. |
||||
Englerodendron mulugetanum[84] |
Sp. nov |
Valid |
Pan et al. |
Miocene |
Mush Valley |
Ethiopia |
A species of Englerodendron. |
||
Entada simojovelensis[85] |
Sp. nov |
Estrada-Ruiz & Gómez-Acevedo |
Miocene |
Simojovel Group |
Mexico |
A species of Entada. |
|||
Goniorrhachisinoxylon[86] |
Gen. et sp. nov |
Dutra, Martínez & Wilberger |
Oligocene |
Brazil |
A member of Detarioideae. The type species is G. sergioarchangelskii. |
Fagales
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Carya leroyii[47] |
Sp. nov |
Valid |
Wheeler, Manchester & Baas |
Eocene |
John Day Formation |
United States |
A hickory. |
||
Engelhardia guipingensis[87] |
Sp. nov |
Song & Jin in Song et al. |
Miocene |
Erzitang Formation |
China |
A species of Engelhardia. |
|||
Gymnostoma stuartii[88] |
Sp. nov |
Whang, Hill & Hill |
Neogene |
Australia |
A species of Gymnostoma. |
||||
Leguminocarpum meghalayensis[89] |
Sp. nov |
valid |
Bhatia, Srivastava & Mehrotra |
Late Paleocene |
Tura Formation |
India |
A fabaceous seed pod morphospecies. |
||
Nothofagoxylon ruei[52] |
Sp. nov |
valid |
Pujana et al. |
Oligocene |
San José Formation |
Chile |
A nothofagaceous wood morphospecies |
||
Parvileguminophyllum damalgiriensis[89] |
Sp. nov |
Valid |
Bhatia, Srivastava & Mehrotra |
Late Paleocene |
Tura Formation |
India |
A fabaceous legume leaf morphospecies. |
Malpighiales
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Elatine odgaardii[90] |
Sp. nov |
Valid |
Bennike in Bennike et al. |
Probably early Pleistocene |
Greenland |
A species of Elatine. Announced in 2022; the final article version was published in 2023. |
|||
Macaranga kirkjohnsonii[91] |
Sp. nov |
Wilf, Iglesias & Gandolfo |
Eocene (Ypresian) |
Argentina |
A species of Macaranga. |
||||
Passiflora sulcatasperma[92] |
Sp. nov |
Hermsen |
Pliocene |
Gray Fossil Site |
United States |
A species of Passiflora. |
|||
Tineafructus[91] |
Gen. et sp. nov |
Wilf, Iglesias & Gandolfo |
Eocene (Ypresian) |
Huitrera Formation |
Argentina |
A member of the family Euphorbiaceae belonging to the subfamily Acalyphoideae and the tribe Acalypheae. The type species is T. casamiquelae. |
|||
Trigonostemon zhangpuensis[93] |
Sp. nov |
Valid |
Dong & Sun in Zheng et al. |
Miocene |
Fotan Group |
China |
A species of Trigonostemon. |
Malvales
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Bombax asiatica[94] |
Sp. nov |
Valid |
Hazra, Bera & Khan |
Pliocene |
India |
A species of Bombax. |
|||
Cistoxylon cistoides[74] |
Sp. nov |
Akkemik & Mantzouka in Akkemik et al. |
Neogene |
Turkey |
|||||
Elizabethiaxylon[95] |
Gen. et sp. nov |
In press |
Ruiz, Pujana & Brea |
Paleocene |
Argentina |
Fossil wood of a plant related to the Malvaceae. The type species is E. patagonicum. |
|||
Notomalvaceoxylon[35] |
Gen. et sp. nov |
Martínez & Leppe in Martínez et al. |
Late Cretaceous (Maastrichtian) |
Dorotea Formation |
Chile |
Fossil wood of a plant belonging to the Malvaceae. The type species is N. magallanense. |
|||
Pterospermum shuangxingii[96] |
Sp. nov |
Valid |
Zhao, Huang & Su in Zhao et al. |
Miocene |
Sanhaogou Formation |
China |
A species of Pterospermum. |
Myrtales
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Conocarpoxylon[97] |
Gen. et sp. nov |
Ramos et al. |
Pleistocene |
El Palmar Formation |
Argentina |
Fossil wood of a member of the family Combretaceae. Genus includes new species C. cristalliferum. |
|||
Duabanga makumensis[98] |
Sp. nov |
Valid |
Bhatia, Srivastava & Mehrotra |
Oligocene (Chattian) |
Tikak Parbat Formation |
India |
A species of Duabanga. |
||
Myrtineoxylon hoffmannae[52] |
Sp. nov |
valid |
Pujana et al. |
Oligocene |
San José Formation |
Chile |
A myrtaceous wood morphospecies. |
||
Sonneratioxylon barrocoloradoensis[99] |
Sp. nov |
Pérez-Lara in Martínez et al. |
Miocene (Aquitanian) |
Panama |
A member of the family Lythraceae. |
||||
Terminalioxylon paravirens[97] |
Sp. nov |
Ramos et al. |
Pleistocene |
El Palmar Formation |
Argentina |
Fossil wood of a member of the family Combretaceae. |
|||
Terminalioxylon ushun[97] |
Sp. nov |
Ramos et al. |
Pleistocene |
El Palmar Formation |
Argentina |
Fossil wood of a member of the family Combretaceae. |
|||
Trapa haominiae[100] |
Sp. nov |
Wu et al. |
Miocene |
Fotan Group |
China |
A species of Trapa. |
Oxalidales
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Weinmannioxylon trichospermoides[52] |
Sp. nov |
valid |
Pujana et al. |
Oligocene |
San José Formation |
Chile |
A cunoniaceous wood morphospecies. |
Rosales
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Aphananthe manchesteri[101] |
Sp. nov |
Valid |
Hernández-Damián, Rubalcava-Knoth & Cevallos Ferriz |
Miocene |
La Quinta Formation (Mexican amber) |
Mexico |
A species of Aphananthe. |
||
Eopaliura[102] |
Gen. et sp. nov |
Patel, Rana & Khan in Patel et al. |
Eocene |
Palana Formation |
India |
A member of the family Rhamnaceae belonging to the tribe Paliureae. The type species is E. indica. |
|||
Ficus paleoauriculata[103] |
Sp. nov |
Chandra et al. |
Paleogene |
India |
A species of Ficus. |
||||
Ficus paleodicranostyla[103] |
Sp. nov |
Chandra et al. |
Paleogene |
India |
A species of Ficus. |
||||
Ficus paleovariegata[103] |
Sp. nov |
Chandra et al. |
Paleogene |
India |
A species of Ficus. |
||||
Gouianiaites[104] |
Gen. et sp. nov |
Valid |
Centeno-González, Porras-Múzquiz & Estrada-Ruiz |
Late Cretaceous (Campanian) |
Mexico |
A member of the family Rhamnaceae. Genus includes new species G. muzquizensis. |
|||
Helicostyloxylon[105] |
Gen. et sp. nov |
Valid |
Martinez Martinez |
Miocene |
Argentina |
A member of the family Moraceae. Genus includes new species H. paranensis. |
|||
Kageneckia coloradensis[106] |
Comb. nov |
Valid |
(Knowlton) Denk et al. |
Eocene |
Florissant Formation |
United States |
A species of Kageneckia. |
||
Ulmus palaeoparvifolia[107] |
Sp. nov |
Lu et al. |
Miocene |
Xiaolongtan Formation |
China |
An elm. |
|||
Urticaleoxylon[47] |
Gen. et sp. nov |
Valid |
Wheeler, Manchester & Baas |
Eocene |
John Day Formation |
United States |
A member of Rosales with features found in urticalean families. The type species is U. stevensii. |
||
Vauquelinia aculeata[106] |
Comb. nov |
Valid |
(Saporta) Denk et al. |
Oligocene |
Aix-en-Provence Formation |
France |
synonymy
|
A species of Vauquelinia. |
|
Vauquelinia obscura[106] |
Comb. nov |
Valid |
(Saporta) Denk et al. |
Oligocene |
Saint-Zacharie Limestone |
France |
synonymy
|
A species of Vauquelinia. |
|
Vauquelinia serra[106] |
Comb. nov |
Valid |
(Unger) Denk et al. |
Miocene |
Parschlug Basin |
Austria |
synonymy
|
A species of Vauquelinia. |
Sapindales
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Aesculus constabularisii[47] |
Sp. nov |
Valid |
Wheeler, Manchester & Baas |
Eocene |
John Day Formation |
United States |
A species of Aesculus. |
||
Bursericarpum indicum[108] |
Sp. nov |
Valid |
Kumar et al. |
Cretaceous-Paleogene transition |
Deccan Intertrappean Beds |
India |
A burseraceous fruit. |
||
Burseroxylon panzai[109] |
Sp. nov |
Rombola et al. |
Late Cretaceous |
Argentina |
Fossil wood with possible affinities with Anacardiaceae or Burseraceae. |
||||
Canarium leenhoutsii[110] |
Sp. nov |
In press |
Beurel et al. |
Miocene |
Zhangpu amber |
China |
A species of Canarium. |
||
Canarium wangboi[110] |
Sp. nov |
In press |
Beurel et al. |
Miocene |
Zhangpu amber |
China |
A species of Canarium. |
||
Cyrtocarpa biapertura[111] |
Sp. nov |
Valid |
Del Rio et al. |
Paleocene and Eocene |
France |
A species of Cyrtocarpa. |
|||
Debursera[108] |
Gen. et sp. nov |
Valid |
Kumar et al. |
Cretaceous-Paleogene transition |
Deccan Intertrappean Beds |
India |
A burseraceous flower. The type species is D. indica. |
||
Klaassenoxylon[47] |
Gen. et sp. et comb. nov |
Wheeler, Manchester & Baas |
Eocene |
John Day Formation |
United States |
A member of the family Sapindaceae. Genus includes new species K. wilkinsonii, as well as "Sapindoxylon" klaassenii Wheeler & Manchester (2002). |
|||
Sahniocarpon deccanensis[112] |
Comb. nov |
(Karanjekar) |
Late Cretaceous |
India |
A member of the family Burseraceae. Moved from Cremocarpon deccanii Karanjekar (1984). |
||||
Swietenia palaeomahagoni[113] |
Sp. nov |
Valid |
Chandra et al. |
Paleogene |
India |
A species of Swietenia. |
Saxifragales
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Liquidambar hainanensis[114] |
Sp. nov |
Maslova et al. |
Eocene |
Changchang Formation |
China |
A species of Liquidambar. |
|||
Liquidambar ovoidea[114] |
Sp. nov |
Maslova et al. |
Eocene |
Changchang Formation |
China |
A species of Liquidambar. |
|||
Parrotia zhiyani[115] |
Sp. nov |
In press |
Wu et al. |
Miocene |
Zhangpu amber |
China |
A species of Parrotia. |
Other superrosids
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Friisifructus[116] |
Gen. et sp. nov |
Valid |
Tang, Smith & Atkinson |
Late Cretaceous |
Cedar District Formation |
United States |
Rosid clade fruits of uncertain affinities. |
Superrosid research
- Nishino et al. (2023) study the composition of a fossil forest from the Miocene Nakamura Formation of the Mizunami Group (Japan ), including stumps of Wataria parvipora and leaves of Byttneriophyllum tiliifolium, and interpret their finding as suggesting that W. parvipora and B. tiliifolium were parts of the same plant, as well as suggesting that Byttneriophyllum-bearing plants might have belonged to the subfamily Helicteroideae.[117]
Other angiosperms
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Ascarinophyllum[118] |
Gen. et sp. nov |
valid |
Čepičková & Kvaček |
Czech Republic |
A Basal angiosperm leaf morphogenus |
||||
Cinnamomum miocenicum[119] |
Sp. nov |
Mahato, Hazra & Khan in Mahato et al. |
Miocene |
Chunabati Formation |
India |
A species of Cinnamomum. |
|||
Compitoxylon[120] |
Gen. et sp. nov |
Gentis, De Franceschi & Boura in Gentis et al. |
Paleocene (Danian-Selandian) |
Paunggyi Formation |
Myanmar |
Fossil wood with anatomical features found in diverse extant flowering plant groups, might be placed at the base of the asterids, close to Malpighiales, close to Proteales at the base of eudicots, or even in Laurales. The type species is C. paleocenicum. |
|||
Magnolia hansnooteboomii[47] |
Sp. nov |
Valid |
Wheeler, Manchester & Baas |
Eocene |
John Day Formation |
United States |
A species of Magnolia. |
||
Palibinia comptonifolia[121] |
Comb. nov |
(Brown) Manchester, Judd, & Kodrul |
Eocene |
Green River Formation |
United States |
A pentapetalean eudicot of uncertain affiliation. |
|||
Papillaephyllum[122] |
Gen. et sp. nov |
Čepičková & Kvaček |
Late Cretaceous |
Peruc–Korycany Formation |
Czech Republic |
Foliage of a flowering plant, possibly with affinities with the family Chloranthaceae. |
|||
Pteroheterochrosperma[123] |
Gen. et sp. nov |
Valid |
Smith, Greenwalt & Manchester |
Eocene |
Kishenehn Formation |
United States |
Disseminules of uncertain affinities. |
||
Quadrasubulaflora[123] |
Gen. et sp. nov |
Valid |
Smith, Greenwalt & Manchester |
Eocene |
Kishenehn Formation |
United States |
Flower of uncertain affinities, possibly related to members of the family Apiaceae belonging to the tribe Saniculeae or to the subtribe Scandicinae within the tribe Scandiceae. |
||
Racheliflora[124] |
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous |
Potomac Group |
United States |
An early angiosperm of uncertain phylogenetic placement, most closely related to magnoliids, possibly with lauralean affinities. |
||
Todziaphyllum saportanum[118] |
Comb. nov |
valid |
(Velenovský) Čepičková & Kvaček |
Czech Republic |
A Basal angiosperm leaf morphogenus |
||||
Tortorellixylon[109] |
Gen. et sp. nov |
Rombola et al. |
Late Cretaceous |
Cardiel Formation |
Argentina |
Fossil wood of a flowering plant of uncertain affinities. The type species is T. oligoporosum. |
|||
Xilinia[125] |
Gen. et sp. nov |
Wang et al. |
Early Cretaceous (Albian) |
Shengli Formation |
China |
An early angiosperm of uncertain affinities. |
- A study on the affinities of Santaniella, based on data from new fossil material from the Lower Cretaceous Crato Formation (Brazil ), is published by Pessoa et al. (2023), who don't support the interpretation of Santaniella as a ranuculid, and consider it to be a mesangiosperm of uncertain affinities, possibly a magnoliid.[126]
- Pessoa, Ribeiro & Christenhusz (2023) describe new fossil material of Araripia florifera from the Early Cretaceous of Brazil , interpret its anatomy as indicating that it did not belong to the family Calycanthaceae, and assign it to the new family Araripiaceae in the stem group of Laurales.[127]
Angiosperm research
- A study aiming to determine the affinities of 24 exceptionally preserved fossil flowers is published by López-Martínez et al. (2023).[128]
- A study aiming to determine the phylogenetic relationships of nine putative magnolialean fossils is published by Doyle & Endress (2023).[129]
- A study on the diversification of the flowering plant throughout their evolutionary history is published by Thompson & Ramírez-Barahona (2023), who report evidence of stable extinction rates through time and find no evidence of a significant impact of the Cretaceous–Paleogene extinction event on the extinction rates of major flowering plant lineages.[130]
Other plants
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Sp. nov |
In press |
Liu & Xu in Liu et al. |
Silurian (Přídolí) |
China |
|||||
Sp. nov |
Libertín, Kvaček & Bek |
Silurian (Přídolí) |
Czech Republic |
A vascular plant related to Lycophytina. |
|||||
Archangelskyoxylon[133] |
Gen. et sp. nov |
Gnaedinger, Brea & Martínez |
Early Jurassic (Sinemurian–Toarcian) |
Roca Blanca Formation |
Argentina |
A member of the family Gnetidae. The type species is A. carlquistii. |
|||
Arlenea[134] |
Gen. et sp. nov |
Ribeiro et al. |
Early Cretaceous |
Crato Formation |
Brazil |
A member of the family Ephedraceae. The type species is A. delicata. |
|||
Aysenoxylon[52] |
Gen et sp nov |
valid |
Pujana et al. |
Oligocene |
San José Formation |
Chile |
A wood morphospecies of uncertain affinity. |
||
Campylopus lusitanicus[135] |
Sp. nov |
Valid |
Hedenäs, Bomfleur & Friis in Bomfleur et al. |
Early Cretaceous (Aptian–Albian) |
Almargem Formation |
Portugal |
A moss, a species of Campylopus. |
||
Canaliculidium[135] |
Gen. et sp. nov |
Valid |
Hedenäs, Bomfleur & Friis in Bomfleur et al. |
Early Cretaceous (Aptian–Albian) |
Almargem Formation |
Portugal |
A moss belonging to the family Leucobryaceae. The type species is C. fissuratum. |
||
Capesporangites[136] |
Gen. et sp. nov |
Uhlířová, Pšenička & Sakala |
Silurian (Přídolí) |
Czech Republic |
A rhyniophytoid with bryophyte-like features. The type species is C. petrkraftii. |
||||
Chlorosphagnum[135] |
Gen. et sp. nov |
Valid |
Hedenäs, Bomfleur & Friis in Bomfleur et al. |
Early Cretaceous (Aptian–Albian) |
Almargem Formation |
Portugal |
A moss, a member of Sphagnales of uncertain affinities. The type species is C. cateficense. |
||
Cycadodendron[137] |
Gen. et sp. nov |
Valid |
Luthardt, Rößler & Stevenson |
Permian (Sakmarian–Artinskian) |
Leukersdorf Formation |
Germany |
A gymnosperm with cycadalean affinities. The type species is C. galtieri. |
||
Daohugoucladus[138] |
Gen. et sp. nov |
Yang et al. |
Middle Jurassic |
Daohugou Beds |
China |
A member of the family Gnetidae. The type species is D. sinensis. |
|||
Dicranodontium minutum[135] |
Sp. nov |
Valid |
Hedenäs, Bomfleur & Friis in Bomfleur et al. |
Early Cretaceous (Aptian–Albian) |
Almargem Formation |
Portugal |
A moss, a species of Dicranodontium. |
||
Hanophyllum[139] |
Gen. et sp. nov |
Barbacka et al. |
Early Jurassic (Pliensbachian) |
United States |
A cycadophyte foliage. The type species is H. varioserratum. |
||||
Comb. nov |
(Herbst & Gnaedinger) |
Early Jurassic |
Nestares Formation |
Argentina |
A corystosperm. Moved from Alicurana artabei Herbst & Gnaedinger (2002). |
||||
Komlopteris boolensis[140] |
Sp. nov |
Slodownik, Hill & McLoughlin |
Early Cretaceous (Valanginian–Barremian) |
Rintoul Creek Formation |
Australia |
A corystosperm. |
|||
Komlopteris constricta[140] |
Comb. nov |
(Halle) |
Late Jurassic (Oxfordian) |
Upper Mount Flora Formation |
A corystosperm. Moved from Thinnfeldia constricta Halle (1913). |
||||
Komlopteris khatangiensis[140] |
Comb. nov |
(Sengupta) |
Late Jurassic or Early Cretaceous |
Dubrajpur Formation |
India |
A corystosperm. Moved from Thinnfeldia khatangiensis Sengupta (1988). |
|||
Komlopteris nestarensis[140] |
Comb. nov |
(Herbst & Gnaedinger) |
Early Jurassic |
Nestares Formation |
Argentina |
A corystosperm. Moved from Alicurana nestarensis Herbst & Gnaedinger (2002). |
|||
Komlopteris purlawaughensis[140] |
Sp. nov |
Slodownik, Hill & McLoughlin |
Late Jurassic |
Australia |
A corystosperm. |
||||
Komlopteris tiruchirapalliense[140] |
Comb. nov |
(Sukh-Dev & Rajanikanth) |
Early Cretaceous |
Sivaganga Formation |
India |
A corystosperm. Moved from Sphenopteris tiruchirapalliense Sukh-Dev & Rajanikanth (1988). |
|||
Komlopteris victoriensis[140] |
Sp. nov |
Slodownik, Hill & McLoughlin |
Early Cretaceous (Aptian) |
Eumeralla Formation |
Australia |
A corystosperm. |
|||
Mongolitria[141] |
Gen. et 2 sp. nov |
Bickner et al. |
Early Cretaceous |
China |
A gymnosperm seed. Genus includes M. friisae and M. exesum. |
||||
Nebuloxyla[142] |
Gen. et sp. nov |
Valid |
Lalica & Tomescu |
Devonian (Emsian) |
Canada |
An early euphyllophyte. Genus includes new species N. mikmaqiana. |
|||
Pachytesta duquesnei[143] |
Sp. nov |
Vallois & Nel |
Carboniferous (Pennsylvanian) |
Bruay Formation |
France |
A medullosalean "seed". |
|||
Paradoxa[144] |
Gen. et sp. nov |
Liu, Shen & Wang |
Middle Jurassic (Callovian) |
Jiulongshan Formation |
China |
A gymnosperm with several morphological features formerly restricted to angiosperms. The type species is P. huangii. |
|||
Paraephedra[145] |
Gen. et sp. nov |
Trajano et al. |
Early Cretaceous |
Serra do Tucano Formation |
Brazil |
Possibly a member of Ephedrales. Genus includes new species P. amazonensis. |
|||
Perplexa[146] |
Gen. et sp. nov |
Valid |
Pfeiler & Tomescu |
Devonian |
Battery Point Formation |
Canada |
An early euphyllophyte. The type species is P. praestigians. |
||
Petalophyllites[147] |
Gen. et sp. nov |
Valid |
Hoffman & Crandall-Stotler |
Paleocene |
Canada |
A liverwort belonging to the family Petalophyllaceae. The type species is P. speirsiae. |
|||
Petrosjania[148] |
Gen. et sp. nov |
Valid |
Snigirevsky & Lyubarova |
Devonian |
Russia |
A plant of uncertain affinities, with features characteristic of different groups of higher plants. The type species is P. salarina. |
|||
Phasmatocycas mazongshanensis[149] |
Sp. nov |
Li & Du in Li et al. |
Early Cretaceous |
China |
A relative of Paleozoic primitive Cycadales. |
||||
Physcidium[135] |
Gen. et 2 sp. nov |
Valid |
Hedenäs, Bomfleur & Friis in Bomfleur et al. |
Early Cretaceous (Aptian–Albian) |
Almargem Formation |
Portugal |
A moss belonging to the family Diphysciaceae. The type species is P. tortuosum; genus also includes P. simsimiae. |
||
Polytrichastrum incurvum[135] |
Sp. nov |
Valid |
Hedenäs, Bomfleur & Friis in Bomfleur et al. |
Early Cretaceous (Aptian–Albian) |
Almargem Formation |
Portugal |
A moss, a species of Polytrichastrum. |
||
Sp. nov |
Li & Du in Li et al. |
Early Cretaceous |
Tuomatan Formation |
China |
|||||
Psilophyton diakanthon[150] |
Sp nov |
in press |
Colston, Landaw, & Tomescu |
Battery Point Formation |
Canada |
A trimerophytopsid land plant |
|||
Qingganninginfructus[151] |
Gen. et sp. nov |
Wang & Sun in Han et al. |
Middle Jurassic |
Yaojie Formation |
China |
Possibly an early angiosperm. The type species is Q. formosa. |
|||
Rhaphidopteris zhouii[152] |
Sp. nov |
In press |
Yang |
Early Jurassic |
Sangonghe Formation |
China |
A gymnosperm. |
||
Skyttegaardia nagalingumiae[153] |
Sp. nov |
Elgorriaga & Atkinson |
Late Cretaceous (Campanian) |
Holz Shale |
United States |
||||
Tregiovia[154] |
Gen. et sp. nov |
Forte & Kustatscher |
Permian (Kungurian) |
Tregiovo Formation |
Italy |
A plant of uncertain affinities, with the closest resemblance to the seed fern Auritifolia anomala. The type species is T. furcata. |
|||
Tricosta priapiana[155] |
Sp. nov |
Valid |
Blanco-Moreno et al. |
Early Cretaceous (Valanginian) |
Canada |
A moss belonging to the family Tricostaceae. |
|||
Xenoxylon kazuoense[156] |
Sp. nov |
Xie, Wang, Tian & Uhl in Xie et al. |
Early Cretaceous (Aptian) |
Jiufotang Formation |
China |
Fossil wood of a gymnosperm of uncertain affinities. |
|||
Xenoxylon shehongense[157] |
Sp. nov |
Xie, Wang & Tian in Xie et al. |
Late Jurassic |
China |
|||||
Zirabia[158] |
Gen. et comb. nov |
Elgorriaga & Atkinson |
Early Jurassic |
Shemshak Group |
Iran |
A member of Doyleales; a new genus for "Karkenia" cylindrica Schweitzer & Kirchner (1995). |
Other plant research
- A study on the evolutionary history of Marchantiopsida, as indicated by data from extant and fossil taxa, is published by Flores et al. (2023).[159]
- Decombeix et al. (2023) document tyloses in Late Devonian Callixylon wood.[160]
- A study on the anatomy and affinities of Tingia unita, based on data from specimens from the Permian Taiyuan Formation (China), is published by Yang, Wang & Wang (2023), who confirm that T. unita was a progymnosperm belonging to the group Noeggerathiales.[161]
- A study on the phylogenetic relationships and evolutionary history of cycads, based on data from extant and fossil taxa, is published by Coiro et al. (2023).[162]
- Evidence from nitrogen isotopic measurements from fossilized cycad leaves and ancestral state reconstructions, interpreted as indicating that symbiosis of with N2-fixing cyanobacteria wasn't ancestral within cycads but rather arose independently in the lineages leading to living cycads during or after the Jurassic, is published by Kipp et al. (2023).[163]
- Fu et al. (2023) report the presence of ovules enclosed within the ovaries of specimens of Nanjinganthus dendrostyla, and consider their findings to be consistent with the interpretation of Nanjinganthus as an Early Jurassic angiosperm.[164]
Palynology
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Acanthodiporites[165] |
Gen. et sp. nov |
Parmar et al. |
Paleogene |
India |
Pollen of a member of the family Arecaceae. Genus includes new species A. spinatus. |
||||
Acylomurus silviae[7] |
Sp. nov |
Perez Loinaze et al. |
Late Cretaceous (Maastrichtian) |
Chorrillo Formation |
Argentina |
A spore of uncertain affinities. |
|||
Ailanthipites diminutus[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
Argentina |
|||||
Ailanthipites feruglioi[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
La Colonia Formation |
Argentina |
||||
Ailanthipites hexagonalis[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
La Colonia Formation |
Argentina |
||||
Alisporites libyaensis[167] |
Nom. nov |
Valid |
Gutierrez & Zavattieri |
Permian and Triassic |
Libya |
A replacement name for Alisporites plicatus Kar, Kieser & Jain (1972). |
|||
Aratrisporites circularis[167] |
Sp. nov |
Valid |
Gutierrez & Zavattieri |
Middle Triassic |
Quebrada de los Fósiles Formation |
Argentina |
|||
Arecipites botrus[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
La Colonia Formation |
Argentina |
||||
Baculatisporites magnus[167] |
Sp. nov |
Valid |
Gutierrez & Zavattieri |
Middle Triassic |
Quebrada de los Fósiles Formation |
Argentina |
|||
Brevitriletes decorus[167] |
Comb. nov |
Valid |
(Ouyang & Norris) |
Triassic |
China |
Moved from Anapiculatisporites decorus Ouyang & Norris (1999). |
|||
Brevitriletes pamelae[167] |
Comb. nov |
Valid |
(Ottone in Ottone et al.) |
Triassic |
Argentina |
Moved from Anapiculatisporites pamelae Ottone in Ottone et al. (1992). |
|||
Brevitriletes sandrae[167] |
Comb. nov |
Valid |
(Ottone in Ottone et al.) |
Triassic |
Argentina |
Moved from Anapiculatisporites sandrae Ottone in Ottone et al. (1992). |
|||
Carnisporites microspinous[167] |
Sp. nov |
Valid |
Gutierrez & Zavattieri |
Middle Triassic |
Quebrada de los Fósiles Formation |
Argentina |
|||
Casuarinidites foveolatus[168] |
Sp. nov |
Mander, Jaramillo & Oboh-Ikuenobe |
Paleogene |
Nigeria |
Pollen of a flowering plant. |
||||
Classopollis patagonicus[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
La Colonia Formation |
Argentina |
||||
Clavapalmaedites clavatus[165] |
Sp. nov |
Parmar et al. |
Paleogene |
India |
|||||
Clavatriporites[168] |
Gen. et 2 sp. nov |
Mander, Jaramillo & Oboh-Ikuenobe |
Paleogene |
Nigeria |
Pollen of a flowering plant. Genus includes new species C. dispersiclavatus and C. spicatus. |
||||
Cuneatisporites cacheutensis[167] |
Comb. nov |
Valid |
(Jain) |
Triassic |
Cacheuta Formation |
Argentina |
Moved from Jansoniuspollenites cacheutensis Jain (1968). |
||
Cuneatisporites salujhai[167] |
Comb. nov |
Valid |
(Jain) |
Triassic |
Cacheuta Formation |
Argentina |
Moved from Jansoniuspollenites salujhai Jain (1968). |
||
Echitricolpites serratus[168] |
Sp. nov |
Mander, Jaramillo & Oboh-Ikuenobe |
Paleogene |
Nigeria |
|||||
Ericipites verrucatus[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
La Colonia Formation |
Argentina |
||||
Flabellisporites zhaotongensis[169] |
Sp. nov |
Sui, McLoughlin & Feng in Sui et al. |
Permian (Lopingian) |
Xuanwei Formation |
China |
A spore of a member of Isoetales. |
|||
Gemmamonocolpites barmerensis[165] |
Sp. nov |
Parmar et al. |
Paleogene |
India |
|||||
Gemmamonocolpites chubutensis[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
La Colonia Formation |
Argentina |
||||
Grimmipollis[170] |
Gen et sp nov |
Huang, Morley, & Hoorn |
late Eocene |
Yaw Formation |
Myanmar |
A cupaniean sapindaceous pollen morphotype |
|||
Henrisporites qujingensis[171] |
Sp. nov |
Sui, McLoughlin & Feng in Sui et al. |
Permian (Lopingian) |
Xuanwei Formation |
China |
A lycopsid megaspore. |
|||
Henrisporites yunnanensis[171] |
Sp. nov |
Sui, McLoughlin & Feng in Sui et al. |
Permian (Lopingian) |
Xuanwei Formation |
China |
A lycopsid megaspore. |
|||
Inaperturopollenites fossulatus[168] |
Sp. nov |
Mander, Jaramillo & Oboh-Ikuenobe |
Paleogene |
Nigeria |
|||||
Krutzschipollis argentinum[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
La Colonia Formation |
Argentina |
||||
Lagenicula morbelliae[172] |
Sp. nov |
Quetglas, Di Pasquo & Macluf |
Carboniferous (Tournaisian) |
Toregua Formation |
Bolivia |
||||
Leschikisporis variabilis[167] |
Sp. nov |
Valid |
Gutierrez & Zavattieri |
Middle Triassic |
Quebrada de los Fósiles Formation |
Argentina |
|||
Liliacidites buitrensis[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
La Colonia Formation |
Argentina |
||||
Liliacidites lacunosus[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
La Colonia Formation |
Argentina |
||||
Limatulasporites rugulatus[167] |
Sp. nov |
Valid |
Gutierrez & Zavattieri |
Middle Triassic |
Quebrada de los Fósiles Formation |
Argentina |
|||
Longapertites crassireticuloides[168] |
Sp. nov |
Mander, Jaramillo & Oboh-Ikuenobe |
Paleogene |
Nigeria |
Pollen of a flowering plant. |
||||
Luminidites microreticulatus[168] |
Sp. nov |
Mander, Jaramillo & Oboh-Ikuenobe |
Paleogene |
Nigeria |
Pollen of a flowering plant. |
||||
Lusatisporis choiols[7] |
Sp. nov |
Perez Loinaze et al. |
Late Cretaceous (Maastrichtian) |
Chorrillo Formation |
Argentina |
A spore of uncertain affinities. |
|||
Nelumbopollenites patagonicus[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
La Colonia Formation |
Argentina |
Pollen of a member of the family Nelumbonaceae. |
|||
Neoraistrickia stricta[167] |
Sp. nov |
Valid |
Gutierrez & Zavattieri |
Middle Triassic |
Quebrada de los Fósiles Formation |
Argentina |
|||
Nyssapollenites scabratus[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
La Colonia Formation |
Argentina |
||||
Parviprojectus archangelskyi[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
La Colonia Formation |
Argentina |
||||
Periporopollenites delicatus[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
La Colonia Formation |
Argentina |
||||
Pityosporites thoracatus[167] |
Comb. nov |
Valid |
(Balme) |
Triassic |
Pakistan |
Moved from Pinuspollenites thoracatus Balme (1970). |
|||
Podocarpidites rectangularis[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
La Colonia Formation |
Argentina |
||||
Proteacidites baibianae[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
La Colonia Formation |
Argentina |
||||
Proteacidites mirasolensis[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
La Colonia Formation |
Argentina |
||||
Protohaploxypinus bonapartei[167] |
Sp. nov |
Valid |
Gutierrez & Zavattieri |
Middle Triassic |
Quebrada de los Fósiles Formation |
Argentina |
|||
Protohaploxypinus diazii[167] |
Sp. nov |
Valid |
Gutierrez & Zavattieri |
Middle Triassic |
Quebrada de los Fósiles Formation |
Argentina |
|||
Psilabrevitricolporites porolatus[168] |
Sp. nov |
Mander, Jaramillo & Oboh-Ikuenobe |
Paleogene |
Nigeria |
Pollen of a flowering plant. |
||||
Psilatriletes brevilaesuratus[168] |
Sp. nov |
Mander, Jaramillo & Oboh-Ikuenobe |
Paleogene |
Nigeria |
A spore. |
||||
Punctatisporites interfoveolatus[168] |
Sp. nov |
Mander, Jaramillo & Oboh-Ikuenobe |
Paleogene |
Nigeria |
A spore. |
||||
Retimonocolpites perforatus[165] |
Sp. nov |
Parmar et al. |
Paleogene |
India |
|||||
Retimonoporites heterobrochatus[168] |
Sp. nov |
Mander, Jaramillo & Oboh-Ikuenobe |
Paleogene |
Nigeria |
Pollen of a flowering plant. |
||||
Retitrescolpites miriabilis[168] |
Sp. nov |
Mander, Jaramillo & Oboh-Ikuenobe |
Paleogene |
Nigeria |
Pollen of a flowering plant. |
||||
Retitricolporites ganganensis[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
La Colonia Formation |
Argentina |
||||
Retitricolporites irupensis[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
La Colonia Formation |
Argentina |
||||
Retitriporites irregularis[168] |
Sp. nov |
Mander, Jaramillo & Oboh-Ikuenobe |
Paleogene |
Nigeria |
|||||
Rousea robusta[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
La Colonia Formation |
Argentina |
||||
Rugutricolporites cumulus[168] |
Sp. nov |
Mander, Jaramillo & Oboh-Ikuenobe |
Paleogene |
Nigeria |
|||||
Slavicekia[173] |
Gen. et sp. nov |
Valid |
Heřmanová et al. |
Late Cretaceous |
Czech Republic |
Pollen from the Normapolles complex, likely produced by angiosperms belonging to the order Fagales. Genus includes new species S. inaequalis. |
|||
Sparganiaceaepollenites annulatus[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
La Colonia Formation |
Argentina |
||||
Spinizonocolpites coloniensis[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
La Colonia Formation |
Argentina |
||||
Spinizonocolpites variabilis[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
La Colonia Formation |
Argentina |
||||
Symplocoipollenites microechinatus[166] |
Sp. nov |
De Benedetti et al. |
Cretaceous-Paleogene boundary |
La Colonia Formation |
Argentina |
||||
Syncolporites angusticolpatus[168] |
Sp. nov |
Mander, Jaramillo & Oboh-Ikuenobe |
Paleogene |
Nigeria |
|||||
Syncolporites rostro[168] |
Sp. nov |
Mander, Jaramillo & Oboh-Ikuenobe |
Paleogene |
Nigeria |
|||||
Tetracolporopollenites torus[168] |
Sp. nov |
Mander, Jaramillo & Oboh-Ikuenobe |
Paleogene |
Nigeria |
Pollen of a flowering plant. |
||||
Thomasospora[15] |
Gen. et comb. nov |
Bek et al. |
Paleozoic |
France |
Spores produced by the lycophyte Thomasites serratus. Genus includes "Lycospora" gigantea Alpern. |
||||
Tricolpites brevicolpatus[168] |
Sp. nov |
Mander, Jaramillo & Oboh-Ikuenobe |
Paleogene |
Nigeria |
|||||
Tricolpites multiornamentus[168] |
Sp. nov |
Mander, Jaramillo & Oboh-Ikuenobe |
Paleogene |
Nigeria |
|||||
Tricolporites densus[168] |
Sp. nov |
Mander, Jaramillo & Oboh-Ikuenobe |
Paleogene |
Nigeria |
Palynological research
- Vajda et al. (2023) interpret Ricciisporites tuberculatus as an aberrant pollen procuded by Lepidopteris ottonis plants, and interpret its fossil record as indicative of the competitive success of plants which adopted the asexual reproductive strategy under stressed environmental conditions before and during the Triassic–Jurassic extinction event;[174] their interpretation of Ricciisporites and Cycadopites as produced by the same plant is subsequently contested by Zavialova (2024).[175]
- A study on the vegetation in Central Africa from the middle Aptian to early Albian, as indicated by palynomorphs from the Doseo Basin in the Central African Rift system, is published by Dou et al. (2023), who identify two assemblages of spore and pollen fossils, and interpret the differences between the assemblages as indicative of a vegetation change related to change from relatively arid to humid climate.[176]
- Malaikanok et al. (2023) describe fossil pollen grains of members of the family Fagaceae from the Oligocene to Miocene Ban Pa Kha Subbasin of the Li Basin (Thailand), and interpret the studied fossils as indicating that, contrary to previous interpretations of the palynological record, tropical Fagaceae-dominated forests existed in northern Thailand at least since the late Paleogene and persisted into the modern vegetation of Thailand.[177]
- A study on the environmental changes in the Lake Baikal region during the Marine Isotope Stage 3, as indicated by palynological data, is published by Shichi et al. (2023), who find that the dispersal of Homo sapiens into Baikal Siberia coincided with climate changes resulting in warm and humid conditions and vegetation changes.[178]
- Evidence from the study of Last Interglacial pollen records across Europe, interpreted as indicating that European forests before the arrival of Homo sapiens included substantial open and light woodland elements, is presented by Pearce et al. (2023).[179]
Research
- A study on the evolution of the phenotypic disparity of plants, based on data from extant and fossil taxa, is published by Clark et al. (2023), who find that the morphological distinctiveness of extant plant group is in part the result of extinction of fossil plants with intermediate morphologies, and report evidence of a pattern of episodic sharp increases of morphological diversity throughout the evolutionary history of plants.[180]
- A study on the evolution of the complexity of vascular plant reproductive structures, indicating that major reproductive innovations were associated with increased integration through greater interactions among component parts, is published by Leslie & Mander (2023).[181]
- Evidence from mercury concentration and isotopic signatures of marine sedimentary rock samples spanning from the Cambrian to Permian, interpreted as indicating that vascular plants were already widely distributed on land during the Ordovician-Silurian transition, is presented by Yuan et al. (2023).[182]
- Evidence indicating that the knowledge of the early plant diversity from the latest Silurian–Early Devonian fossil record is at least partly affected by the variation of the rock record is presented by Capel et al. (2023).[183]
- A study on early land plant diversity patterns across known paleogeographical units (Laurussia, Siberia, Kazakhstania, Gondwana) throughout the Silurian and Devonian periods is published by Capel et al. (2023)[184]
- A study on the survivorship and migration dynamics of plants from the paleocontinent Angarida during the Frasnian-Tournaisian internal, as indicated by fossil record from the Siberian platform (Russia ), is published by Dowding, Akulov & Mashchuk (2023).[185]
- Barrón et al. (2023) study the floral assemblages from the Cretaceous Maestrazgo Basin (Spain ), providing evidence of the existence of conifer woodlands and fern/angiosperm communities thriving in the mid‐Cretaceous Iberian Desert System, and report that the studied assemblages can generally be related to others from Europe and North America, but also included plants that were typical for northern Gondwana.[186]
- A study on the fossil material of plants from the Cenomanian deposits of the Western Desert (Egypt) is published by El Atfy et al. (2023), who report the presence of five main vegetation types, and interpret the studied fossils as indicative of an overall warm and humid climate, punctuated by repeated phases of drier conditions.[187]
- Moreau & Néraudeau (2023) describe an assemblage of Cenomanian plants from a new paleontological site La Gripperie-Saint-Symphorien (Charente-Maritime, France ), which (unlike most of Albian-Cenomanian coastal floras from the Aquitaine Basin) is dominated by angiosperms.[188]
- A study on the mid-Eocene vegetation in the southern Central Andes, based on spore-pollen record from the Casa Grande Formation (Jujuy, Argentina), is published by Tapia et al. (2023), who interpret their findings as indicative of a plant community with no close analogue in the modern South American vegetation, as well as indicative of subtropical or tropical conditions and frost-free winters.[189]
- Description of fossil wood from the Brown Sands and Flat Sands localities in the Pliocene Usno Formation (Lower Omo valley, Ethiopia) is published by Jolly-Saad & Bonnefille (2023), who report that the studied assemblages strongly differ from other Miocene and Pliocene wood assemblages from Ethiopia, and interpret them as indicative of a seasonal climate and more humid climatic conditions compared to the present, but also as indicative of instability of climatic and environmental conditions, with significant changes in the composition of the tree cover during the time of existence of Australopithecus afarensis.[190]
- A study on changes in functional diversity of plants from southeast Australia during the last 12,000 years, inferred from long-term pollen records, is published by Adeleye et al. (2023).[191]
- The oldest flower and seed fossils of the wind-pollinated besom heaths, Erica sect. Chlorocodon, were found in Madeira Island within a 1.3 million-year-old fossil deposit.[192]
References
- ↑ 1.0 1.1 1.2 Khosla, A.; Verma, O.; Kania, S.; Lucas, S. (2023). "Indian Late Cretaceous-Early Palaeocene Deccan Microbiota from the Intertrappean Beds of the Chhindwara District, Madhya Pradesh and Their Systematic Palaeontology". Microbiota from the Late Cretaceous-Early Palaeocene Boundary Transition in the Deccan Intertrappean Beds of Central India. Topics in Geobiology. 54. Springer. pp. 77–205. doi:10.1007/978-3-031-28855-5_4. ISBN 978-3-031-28854-8.
- ↑ Xing, Y.; Li, S.; Song, B.; Jiang, G.; Wei, Y.; Han, F.; Zhang, K. (2023). "Middle to late Eocene charophytes from the Gaize Basin in central Tibet". Review of Palaeobotany and Palynology 321: 105024. doi:10.1016/j.revpalbo.2023.105024.
- ↑ 3.0 3.1 3.2 3.3 Bucur, I. I.; Enos, P.; Minzoni, M. (2023). "Middle Triassic calcareous algae and microproblematica from south China". Micropaleontology 69 (1): 61–102. doi:10.47894/mpal.69.1.02. Bibcode: 2023MiPal..69...61B.
- ↑ Maloney, K. M.; Maverick, D. P.; Schiffbauer, J. D.; Halverson, G. P.; Xiao, S.; Laflamme, M. (2023). "Systematic paleontology of macroalgal fossils from the Tonian Mackenzie Mountains Supergroup". Journal of Paleontology 97 (2): 499–515. doi:10.1017/jpa.2023.4. Bibcode: 2023JPal...97..499M.
- ↑ 5.0 5.1 Kröger, B.; Tinn, O.; Rikkinen, J.; Jolis, E. M.; Butcher, A. R.; Toom, U.; Hints, O. (2023). "Noncalcified dasyclad algae from the Vasalemma Formation, late Sandbian (Late Ordovician) of Estonia". Review of Palaeobotany and Palynology: 104970. doi:10.1016/j.revpalbo.2023.104970.
- ↑ Kolosov, P. N. (2023). "Palaeoulvaria green algae of the Vendian (Ediacaran) Berezovsky Trough (south of the Siberian Platform)". Paleontological Journal 57 (2): 231–234. doi:10.1134/S0031030123020090. https://elibrary.ru/item.asp?id=50434963.
- ↑ 7.0 7.1 7.2 Perez Loinaze, V. S.; Vera, E. I.; Moyano-Paz, D.; Coronel, M. D.; Manabe, M.; Tsuihiji, T.; Novas, F. E. (2023). "Maastrichtian palynological assemblages from the Chorrillo Formation, Patagonia, Argentina". Review of Palaeobotany and Palynology 314: 104893. doi:10.1016/j.revpalbo.2023.104893. Bibcode: 2023RPaPa.31404893P.
- ↑ Skompski, S.; Kozłowska, A.; Kozłowski, W.; Łuczyński, P. (2023). "Coexistence of algae and a graptolite-like problematicum: a case study from the late Silurian of Podolia (Ukraine)". Acta Geologica Polonica. doi:10.24425/agp.2022.143599. https://geojournals.pgi.gov.pl/agp/article/view/33659.
- ↑ LoDuca, S. T. (2024). "Reinterpretation of Voronocladus from the Silurian of Ukraine as a bryopsidalean alga (Chlorophyta): The outlines of a major early Paleozoic macroalgal radiation begin to come into focus". Review of Palaeobotany and Palynology: 105064. doi:10.1016/j.revpalbo.2024.105064.
- ↑ Harvey, T. H. P. (2023). "Colonial green algae in the Cambrian plankton". Proceedings of the Royal Society B: Biological Sciences 290 (2009): 20231882. doi:10.1098/rspb.2023.1882. PMID 37876191.
- ↑ Yang, J.; Lan, T.; Zhang, X.; Smith, M. R. (2023). "Protomelission is an early dasyclad alga and not a Cambrian bryozoan". Nature 615 (7952): 468–471. doi:10.1038/s41586-023-05775-5. PMID 36890226. Bibcode: 2023Natur.615..468Y.
- ↑ Xiang, K.; Yin, Z.; Liu, W.; Zhao, F.; Zhu, M. (2023). "Early Cambrian Cambroclavus is a scleritomous eumetazoan unrelated to bryozoan or dasyclad algae". Geology. doi:10.1130/G51663.1.
- ↑ Spiekermann, R.; Jasper, A.; Pozzebon-Silva, Â.; Carniere, J. S.; Benício, J. R. W.; Guerra-Sommer, M.; Uhl, D. (2023). "Small but not trivial: Nothostigma sepeensis sp. nov., a lycopsid from the Cisuralian (early Permian) of the Paraná Basin, Brazil". Journal of South American Earth Sciences 122: 104188. doi:10.1016/j.jsames.2022.104188. Bibcode: 2023JSAES.12204188S.
- ↑ Rothwell, G. W.; Stockey, R. A (2023). "Anatomically preserved early Cretaceous lycophyte shoots; enriching the paleontological record of Lycopodiales and Selaginellales". Acta Palaeobotanica 63 (2): 119–128. doi:10.35535/acpa-2023-0009. https://acpa.botany.pl/Anatomically-preserved-early-Cretaceous-lycophyte-shoots-enriching-the-paleontological,174250,0,2.html.
- ↑ 15.0 15.1 Bek, J.; Pšenička, J.; Drábková, J.; Zhou, W.-M.; Wang, J. (2023). "Thomasites gen. nov. a new herbaceous lycophyte and its spores from late Duckmantian of the Radnice Basin, Czech Republic and palynological grouping of Palaeozoic herbaceous lycophytes". Review of Palaeobotany and Palynology 310: 104842. doi:10.1016/j.revpalbo.2023.104842. Bibcode: 2023RPaPa.31004842B.
- ↑ Cichan, M. A. (1985). "Vascular cambium and wood development in Carboniferous plants. I. Lepidodendrales". American Journal of Botany 72 (8): 1163–1176.
- ↑ D'Antonio, M. P. (2023). "Atypical tracheid organization in proximal wood of late Palaeozoic Sigillaria approximata Fontaine et White (Lycopsida)". Botanical Journal of the Linnean Society. doi:10.1093/botlinnean/boad028.
- ↑ Turner, H.-A.; Humpage, M.; Kerp, H.; Hetherington, A. J. (2023). "Leaves and sporangia developed in rare non-Fibonacci spirals in early leafy plants". Science 380 (6650): 1188–1192. doi:10.1126/science.adg4014. PMID 37319203.
- ↑ Zhou, W.; Pšenička, J.; Bek, J.; Libertín, M.; Wang, S.; Wang, J. (2023). "A new species of Botryopteridium Doweld from the early Permian Wuda Tuff Flora and its evolutionary significance". Review of Palaeobotany and Palynology 311: 104849. doi:10.1016/j.revpalbo.2023.104849. Bibcode: 2023RPaPa.31104849Z.
- ↑ Fernández, J. A.; Césari, S. N. (2023). "Equisetaleans from the Bajo de Veliz Formation (Gzhelian-Asselian): a new key in the evolution of Gondwanan reproductive structures". Historical Biology: 1–15. doi:10.1080/08912963.2023.2228331.
- ↑ Pšenička, J.; Votočková Frojdová, J.; Bek, J.; Zodrow, E. L.; Zhou, W.-M.; Wang, J.; Li, D.-D.; Feng, Z. et al. (2023). "A new marattialean fern Diplazites campbellii sp. nov. and its in situ spores from the Pennsylvanian of the Sydney Coalfield, Nova Scotia, Canada". Review of Palaeobotany and Palynology 312: 104850. doi:10.1016/j.revpalbo.2023.104850. Bibcode: 2023RPaPa.31204850P.
- ↑ 22.0 22.1 Kerp, H.; Krause, K. K.; Abu Hamad, A.; Bomfleur, B. (2023). "Early Marattiaceae from the late Permian Umm Irna Formation, Jordan". Review of Palaeobotany and Palynology: 105015. doi:10.1016/j.revpalbo.2023.105015.
- ↑ Ren, W. X.; Wu, G. T.; Han, L.; Hua, Y. F.; Sun, B. N. (2023). "New species of fossil Dryopterites from the Lower Cretaceous in the Zhongkouzi Basin, Beishan area, Northwest China, and its geological significance". Historical Biology 35 (1): 84–91. doi:10.1080/08912963.2021.2022135.
- ↑ 24.0 24.1 Cao, Z.-D.; Zhang, P.; Zhang, S.-H.; Yang, Y.-H.; Chen, J.-Y.; Liu, L.-M.; Li, X.-C.; Xie, S.-P. (2023). "Miocene Equisetum tubers from the Wulan Basin, Northeast Qinghai-Tibetan Plateau and their paleoecological significance". Palaeoworld. doi:10.1016/j.palwor.2022.12.012.
- ↑ Kundu, S.; Hazra, T.; Chakraborty, T.; Bera, S.; Khan, M. A. (2023). "Evidence of the oldest extant vascular plant (horsetails) from the Indian Cenozoic". Plant Diversity. doi:10.1016/j.pld.2023.01.004.
- ↑ Yañez, A.; Escapa, I. H.; Choo, T. (2023). "Fertile Goeppertella from the Jurassic of Patagonia: mosaic evolution in the Dipteridaceae-Matoniaceae lineage". AoB Plants 15 (4): plad007. doi:10.1093/aobpla/plad007. PMID 37426174.
- ↑ Long, X.; Peng, Y.; Zhang, H.; Fan, Y.; Shi, C.; Wang, S. (2023). "Microlepia burmasia sp. nov., a new fern species from mid-Cretaceous Kachin amber of northern Myanmar (Dennstaedtiaceae, Polypodiales)". Cretaceous Research 143: 105417. doi:10.1016/j.cretres.2022.105417. Bibcode: 2023CrRes.14305417L.
- ↑ Kundu, S.; Hazra, T.; Chakraborty, T.; Bera, S.; Taral, S.; Khan, M. A. (2023). "First Cenozoic macrofossil record of Polypodiaceae from India, and its biogeographic implications". International Journal of Plant Sciences 185 (1): 71–88. doi:10.1086/727457.
- ↑ Long, X.; Peng, Y.; Feng, Q.; Engel, M. S.; Shi, C.; Wang, S. (2023). "A new fossil fern of the Dryopteridaceae (Polypodiales) from the mid-Cretaceous Kachin amber". Palaeobiodiversity and Palaeoenvironments 103 (3): 489–494. doi:10.1007/s12549-023-00572-4.
- ↑ Guo, Y.; Zhou, Y.; Pšenička, J.; Bek, J.; Votočková Frojdová, J.; Feng, Z. (2023). "Szea yunnanensis sp. nov., a new leptosporangiate fern from the Lopingian of Southwest China". Review of Palaeobotany and Palynology: 105022. doi:10.1016/j.revpalbo.2023.105022.
- ↑ Walker, Z.; Rothwell, G. W.; Stockey, R. A. (2023). "Fossil evidence for sporeling development of a Mesozoic osmundaceous fern". American Journal of Botany 110 (8): e16210. doi:10.1002/ajb2.16210. PMID 37534408.
- ↑ Li, Y.; Ebihara, A.; Nosova, N.; Tan, Z.-Z.; Cui, Y.-M. (2023). "First Fossil Record of Trichomanes sensu lato (Hymenophyllaceae) from the Mid-Cretaceous Kachin Amber, Myanmar". Life 13 (8): 1709. doi:10.3390/life13081709. PMID 37629566.
- ↑ Tripp, M.; Schwark, L.; Brocks, J. J.; Mayer, P.; Whiteside, J. H.; Rickard, W.; Greenwood, P. F.; Grice, K. (2023). "Rapid encapsulation of true ferns and arborane/fernane compounds fossilised in siderite concretions supports analytical distinction of plant fossils". Scientific Reports 13 (1): 19851. doi:10.1038/s41598-023-47009-8. PMID 37963973.
- ↑ Blanco-Moreno, C.; Buscalioni, Á. D. (2023). "Revision of the Barremian fern Coniopteris laciniata from Las Hoyas and El Montsec (Spain): Highlighting its importance in the evolution of vegetation during the Early Cretaceous". Taxon 72 (3): 625–637. doi:10.1002/tax.12888.
- ↑ 35.0 35.1 35.2 Martínez, L. C. A.; Leppe, M.; Manríquez, L. M. E.; Pino, J. P.; Trevisan, C.; Manfroi, J.; Mansilla, H. (2023). "A unique Late Cretaceous fossil wood assemblage from Chilean Patagonia provides clues to a high-latitude continental environment". Papers in Palaeontology 9 (6): e1536. doi:10.1002/spp2.1536.
- ↑ 36.0 36.1 Frolov, A.; Mashchuk, I. (2023). "Two new Species of Eretmophyllum Thomas (Ginkgoales) from the Jurassic of the Eastern Siberia (Russia)". Acta Geologica Sinica (English Edition) 97 (4): 1014–1025. doi:10.1111/1755-6724.15088.
- ↑ Li, Q.; Niu, B.; Liu, Y. C.; Jia, H.; Li, Y.; Xu, L.; Quan, C. (2023). "Analysis of leaf economics sheds light on the heterophylly and ecological strategies of Paleocene Ginkgo leaves from Henan Province, China". Palaeogeography, Palaeoclimatology, Palaeoecology: 111816. doi:10.1016/j.palaeo.2023.111816.
- ↑ 38.0 38.1 Nosova, N.; Kostina, E.; Afonin, M. (2023). "Ovule-bearing structures of Karkenia Archangelsky and associated leaves of Sphenobaiera Florin from the Lower Cretaceous of Mongolia". Review of Palaeobotany and Palynology 315: 104907. doi:10.1016/j.revpalbo.2023.104907. Bibcode: 2023RPaPa.31504907N.
- ↑ Kvaček, J.; Mendes, M. M.; Tekleva, M. (2023). "A new cheirolepidiaceous pollen cone Classostrobus archangelskyi with in situ pollen from the Lower Cretaceous of Figueira da Foz Formation, central-western mainland Portugal". Review of Palaeobotany and Palynology: 104951. doi:10.1016/j.revpalbo.2023.104951.
- ↑ Jin, P.; Zhang, M.; Du, B.; Li, A.; Sun, B. (2023). "A new species of Pararaucaria from the Lower Cretaceous of Shandong province (Eastern China): Insights into the Evolution of the Cheirolepidiaceae cone". Cretaceous Research 146: 105475. doi:10.1016/j.cretres.2023.105475. Bibcode: 2023CrRes.14605475J.
- ↑ Mendes, M. M.; Kvaček, J.; Doyle, J. A. (2023). "Pseudofrenelopsis dinisii, a new species of the extinct conifer family Cheirolepidiaceae from the probable lower Hauterivian (Cretaceous) of western Portugal". Review of Palaeobotany and Palynology 315: 104905. doi:10.1016/j.revpalbo.2023.104905. Bibcode: 2023RPaPa.31504905M.
- ↑ Kvaček, J.; Mendes, M.M. (2023). "A new species of the cheirolepidiaceous conifer Pseudofrenelopsis from the Lower Cretaceous of Figueira da Foz Formation, Portugal". Review of Palaeobotany and Palynology 309 (104821): 104821. doi:10.1016/j.revpalbo.2022.104821.
- ↑ Correia, P.; Pereira, S.; Šimůnek, Z.; Cleal, C. J. (2023). "Florinanthus bussacensis sp. nov., a new cordaitalean cone from the Upper Pennsylvanian of Portugal". Review of Palaeobotany and Palynology 316: 104942. doi:10.1016/j.revpalbo.2023.104942.
- ↑ Bureš, J.; Šimůnek, Z.; Pšenička, J.; Bek, J.; Drábková, J.; Bruthansová, J. (2023). "Fertile cordaitalean leafy branch with in situ pollen from the volcanic Whetstone Horizon (Radnice Member, early Moscovian, Plzeň Basin, Czech Republic)". Review of Palaeobotany and Palynology 315: 104903. doi:10.1016/j.revpalbo.2023.104903. Bibcode: 2023RPaPa.31504903B.
- ↑ Guo, L.-Y.; Xiao, L.; Ji, D.-S.; Li, X.-C.; Luo, F.; Guo, J.-F.; Sun, N.; Wang, M.-T. et al. (2023). "Juniperus L. (Cupressaceae) from the Miocene of Chifeng, Inner Mongolia: the earliest macrofossil of sect. Sabina in East Asia". Historical Biology: 1–13. doi:10.1080/08912963.2023.2248162.
- ↑ Rothwell, G. W.; Stockey, R. A.; Smith, S. (2023). "Evolutionary diversification of taiwanioid conifers illuminated by a new species from the Upper Cretaceous of Alaska". International Journal of Plant Sciences 184 (8): 628–639. doi:10.1086/726082.
- ↑ 47.0 47.1 47.2 47.3 47.4 47.5 47.6 Wheeler, E. A.; Manchester, S. R.; Baas, P. (2023). "A late Eocene wood assemblage from the Crooked River Basin, Oregon, USA". PaleoBios 40 (14): 1–55. doi:10.5070/P9401462457.
- ↑ Zhu, Y.; Li, Y.; Tian, N.; Wang, Y.; Xie, A.; Zhang, L.; An, P.; Wu, Z. (2023). "A new species of Keteleeria (Pinaceae) from the Lower Cretaceous of Inner Mongolia, Northeast China, and its palaeogeographic and palaeoclimatic implications". Cretaceous Research: 105805. doi:10.1016/j.cretres.2023.105805.
- ↑ Bazhenova, N. V.; Bazhenov, A. V.; Tekleva, M. V.; Resvyi, A. S. (2023). "New representative of Pinus L. from Jurassic deposits of Belgorod Region, Russia". Paleontological Journal 57 (1): 102–119. doi:10.1134/S0031030123010033. https://elibrary.ru/item.asp?id=50406209.
- ↑ Li, Y.; Gee, C. T.; Tan, Z.-Z.; Zhu, Y.-B.; Yi, T.-M.; Li, C.-S. (2023). "Exceptionally well-preserved seed cones of a new fossil species of hemlock, Tsuga weichangensis sp. nov. (Pinaceae), from the Lower Miocene of Hebei Province, North China". Journal of Systematics and Evolution: jse.12952. doi:10.1111/jse.12952. https://onlinelibrary.wiley.com/doi/10.1111/jse.12952.
- ↑ 51.0 51.1 Andruchow-Colombo, A.; Rossetto-Harris, G.; Brodribb, T. J.; Gandolfo, M. A.; Wilf, P. (2023). "A new fossil Acmopyle with accessory transfusion tissue and potential reproductive buds: Direct evidence for ever-wet rainforests in Eocene Patagonia". American Journal of Botany 110 (8): e16221. doi:10.1002/ajb2.16221. PMID 37598386.
- ↑ 52.0 52.1 52.2 52.3 52.4 52.5 Pujana, R. R.; Bostelmann, J. E.; Ugalde, R. A.; Riquelme, M. P.; Torres, T. (2022). "Fossil woods from the Pato Raro Heights, Patagonia National Park, Aysén, Chile: A new paleobotanical assemblage at the Oligocene climate transition". Review of Palaeobotany and Palynology 309: 104814. doi:10.1016/j.revpalbo.2022.104814.
- ↑ Wang, X.; Yang, Y.; Hua, Y.; Sun, B.; Miao, Y. (2022). "Hexicladia, a new genus of the Cisuralian conifer from Hexi Corridor, China". Review of Palaeobotany and Palynology 308: 104789. doi:10.1016/j.revpalbo.2022.104789.
- ↑ Xie, A.; Wang, Y.; Tian, N.; Uhl, D. (2023). "A new extinct conifer Brachyoxylon from the Middle Jurassic in southern China: Wood anatomy, leaf phenology, and paleoclimate". Review of Palaeobotany and Palynology 317: 104945. doi:10.1016/j.revpalbo.2023.104945.
- ↑ 55.0 55.1 Morales-Toledo, J.; Cevallos-Ferriz, S. R. S. (2023). "Is biodiversity promoted in rift-associated basins? Evidence from Middle Jurassic conifers from the Otlaltepec Formation in Puebla, Mexico". Review of Palaeobotany and Palynology 318: 104952. doi:10.1016/j.revpalbo.2023.104952.
- ↑ Nosova, N.; Lyubarova, A. (2023). "First data on coniferous leaves from the Middle Jurassic of the Belgorod Region, Russia". Review of Palaeobotany and Palynology 317: 104949. doi:10.1016/j.revpalbo.2023.104949.
- ↑ Wang, K.; Huang, X.; Yang, W.; Wang, J.; Wan, M. (2023). "A new gymnospermous stem from the Moscovian (Carboniferous) of North China, and its palaeoecological significance for the Cathaysian Flora at the early evolutionary stage". Review of Palaeobotany and Palynology 311: 104858. doi:10.1016/j.revpalbo.2023.104858. Bibcode: 2023RPaPa.31104858W.
- ↑ Cai, Y.-F.; Zhang, H.; Feng, Z.; Zhang, Y.-C.; Yuan, D.-X.; Xu, H.-P.; Byambajav, U.; Yarinpuil, A. et al. (2023). "Secrospiroxylon tolgoyensis gen. nov. et sp. nov., a unique coniferous stem from the uppermost Permian of the South Gobi Basin, Mongolia, and its palaeoclimatic, palaeoecophysiological, and palaeoecological implications". Palaeontographica Abteilung B 305 (1–4): 93–119. doi:10.1127/palb/2023/0080.
- ↑ Gou, X.-D.; Sui, Q.; Yang, J.-Y.; Wei, H.-B.; Zhou, Y.; Feng, Z. (2023). "A new conifer stem, Yiwupitys elegans from the Yiwu Jurassic Forest, Hami, Xinjiang, Northwest China". Review of Palaeobotany and Palynology: 105003. doi:10.1016/j.revpalbo.2023.105003.
- ↑ Trümper, S.; Rößler, R.; Morelli, C.; Krainer, K.; Karbacher, S.; Vogel, B.; Antonelli, M.; Sacco, E. et al. (2023). "A fossil forest from Italy reveals that wetland conifers thrived in Early Permian Peri-Tethyan Pangea". PALAIOS 38 (10): 407–435. doi:10.2110/palo.2023.015.
- ↑ Slodownik, M. A.; Escapa, I.; Mays, C.; Jordan, G. J.; Carpenter, R. J.; Hill, R. S. (2023). "Araucarioides: A Polar Lineage of Araucariaceae with New Paleogene Fossils from Tasmania, Australia". International Journal of Plant Sciences 184 (8): 640–658. doi:10.1086/726183.
- ↑ Andruchow-Colombo, A.; Escapa, I. H.; Aagesen, L.; Matsunaga, K. K. S. (2023). "In search of lost time: tracing the fossil diversity of Podocarpaceae through the ages". Botanical Journal of the Linnean Society. doi:10.1093/botlinnean/boad027.
- ↑ Stockey, R. A.; Rothwell, G. W.; Beard, G.; Gemmell, J. (2023). "Refining Our Understanding of Late Cretaceous-Paleogene Evolution within the Monocot Family Araceae: Appianospadix bogneri gen. et sp. nov.". International Journal of Plant Sciences 184 (6): 470–484. doi:10.1086/725163.
- ↑ Hernández-Sandoval, L.; Cevallos-Ferriz, S. R. S.; Hernández-Damián, A. L. (2023). "Nichima gen. nov. (Alismataceae) based on reproductive structures from the Oligocene-Miocene of Mexico". American Journal of Botany 110 (10): e16231. doi:10.1002/ajb2.16231.
- ↑ Hamersma, A.; Herrera, F.; Matsunaga, K.; Manchester, S. R. (2023). "Palm fruits from the Oligocene of west coastal Peru". Review of Palaeobotany and Palynology 320: 105018. doi:10.1016/j.revpalbo.2023.105018.
- ↑ 66.0 66.1 66.2 Huegele, I. B.; Correa Narvaez, J. E. (2023). "Revisiting the iconic Macginitiea plant and its implications for biogeography, basilaminar lobe development, and evolution in Platanaceae". International Journal of Plant Sciences. doi:10.1086/728411.
- ↑ Carpenter, R. J.; Rozefelds, A. C. (2023). "Leaf fossils show a 40-million-year history for the Australian tropical rainforest genus Megahertzia (Proteaceae)". Australian Systematic Botany 36 (4): 312–321. doi:10.1071/SB23005.
- ↑ Gobo, W. V.; Kunzmann, L.; Iannuzzi, R.; Santos, T. B.; Conceição, D. M.; Nascimento, D. R.; Silva Filho, W. F.; Bachelier, J. B. et al. (2023). "A new remarkable Early Cretaceous nelumbonaceous fossil bridges the gap between herbaceous aquatic and woody protealeans". Scientific Reports 13 (1): 8978. doi:10.1038/s41598-023-33356-z. PMID 37268714. Bibcode: 2023NatSR..13.8978G.
- ↑ Kara, E.; Bardin, J.; De Franceschi, D.; Del Rio, C. (2023). "Fossil endocarps of Menispermaceae from the late Paleocene of Paris Basin, France". Journal of Systematics and Evolution. doi:10.1111/jse.13033.
- ↑ Lamont, B. B.; He, T.; Cowling, R. M. (2023). "Fossil pollen resolves origin of the South African Proteaceae as transcontinental not transoceanic". Annals of Botany. doi:10.1093/aob/mcad055. PMID 37076271.
- ↑ Bhatia, H.; Srivastava, G.; Mehrotra, R. C. (2023). "Cordiaceae wood from the Miocene sediments of northeast India and its phytogeographical significance". IAWA Journal: 1–13. doi:10.1163/22941932-bja10139.
- ↑ Sadowski, E.-M.; Hofmann, C.-C. (2023). "The largest amber-preserved flower revisited". Scientific Reports 13 (1): 17. doi:10.1038/s41598-022-24549-z. PMID 36635320. Bibcode: 2023NatSR..13...17S.
- ↑ Poore, C.; Jud, N. A.; Gandolfo, M. A. (2023). "Fossil fruits from the early Paleocene of Patagonia, Argentina reveal west Gondwanan history of Icacinaceae". Review of Palaeobotany and Palynology 317: 104940. doi:10.1016/j.revpalbo.2023.104940.
- ↑ 74.0 74.1 Akkemik, Ü.; Toprak, Ö.; Mantzouka, D.; Çelik, H. (2023). "A Mediterranean woody species composition from Late Miocene-Early Pliocene deposits of northeastern Turkey with newly described fossil-taxa palaeoclimatically evaluated". Review of Palaeobotany and Palynology 316: 104916. doi:10.1016/j.revpalbo.2023.104916.
- ↑ 75.0 75.1 Deanna, R.; Martínez, C.; Manchester, S.; Wilf, P.; Campos, A.; Knapp, S.; Chiarini, F. E.; Barboza, G. E. et al. (2023). "Fossil berries reveal global radiation of the nightshade family by the early Cenozoic". New Phytologist 238 (6): 2685–2697. doi:10.1111/nph.18904. PMID 36960534.
- ↑ 76.0 76.1 Correa Narvaez, J. E.; Allen, S. E.; Huegele, I. B.; Manchester, S. R. (2023). "Fossil leaves and fruits of Tetramelaceae (Curcurbitales) from the Eocene of the Rocky Mountain region, USA, and their biogeographic significance". International Journal of Plant Sciences 184 (3): 177–200. doi:10.1086/724018.
- ↑ Cockerell, T.D.A. (1925). "Plant and insect fossils from the Green River Eocene of Colorado.". Proceedings of the U.S. National Museum 66 (19): 1–13. doi:10.5479/si.00963801.66-2556.1.
- ↑ 78.0 78.1 LaMotte, R.S. (1952). Catalogue of the Cenozoic plants of North America through 1950. Geological Society of America Memoirs. 51. Geological Society of America. doi:10.1130/MEM51.
- ↑ Brown, R. W. (1929). "Additions to the flora of the Green River formation". U.S. Geological Survey Professional Paper 154: 279–292. doi:10.3133/pp154J.
- ↑ Wang, Z.X.; Sun, B.N.; Wu, X.T.; Yin, S.X. (2023). "A new pod record of Acacia (Leguminosae) from the Fotan Group, middle Miocene, Southeast China". Review of Palaeobotany and Palynology 317: 104966. doi:10.1016/j.revpalbo.2023.104966.
- ↑ Nguyen, H. B.; Huang, J.; Van Do, T.; Srivastava, G.; Nguyen, H. M. T.; Li, S.-F.; Chen, L.-L.; Nguyen, M. T. et al. (2022). "Pod fossils of Albizia (Fabaceae: Caesalpinioideae) from the late Miocene of northern Vietnam and their phytogeographic history". Review of Palaeobotany and Palynology 308: 104801. doi:10.1016/j.revpalbo.2022.104801.
- ↑ Pan, A. D.; Jacobs, B. F.; Currano, E. D.; de la Estrella, M.; Herendeen, P. S.; van der Burgt, X. M. (2023). "A fossil Anthonotha (Leguminosae: Detarioideae: Amherstieae) species from the Early Miocene (21.73 Ma) of Ethiopia". International Journal of Plant Sciences 184 (7): 541–548. doi:10.1086/725429.
- ↑ Gao, Y.; Song, A.; Deng, W.-Y.-D.; Chen, L.-L.; Liu, J.; Li, W.-C.; Srivastava, G.; Spicer, R. A. et al. (2023). "The oldest fossil record of Bauhinia s.s. (Fabaceae) from the Tibetan Plateau sheds light on its evolutionary and biogeographic implications". Journal of Systematic Palaeontology 21 (1): 2244495. doi:10.1080/14772019.2023.2244495.
- ↑ Pan, A. D.; Jacobs, B. F.; Bush, R. T.; de la Estrella, M.; Grímsson, F.; Herendeen, P. S.; van der Burgt, X. M.; Currano, E. D. (2023). "First evidence of a monodominant (Englerodendron, Amherstieae, Detarioideae, Leguminosae) tropical moist forest from the early Miocene (21.73 Ma) of Ethiopia". PLOS ONE 18 (1): e0279491. doi:10.1371/journal.pone.0279491. PMID 36630378. Bibcode: 2023PLoSO..1879491P.
- ↑ Estrada-Ruiz, E.; Gómez-Acevedo, G.-A. (2023). "New species fossil of Entada genus (Fabaceae, Caesalpinioideae, mimosoid clade) from the Miocene amber of Chiapas, Mexico". Journal of South American Earth Sciences: 104499. doi:10.1016/j.jsames.2023.104499.
- ↑ Dutra, T. L.; Martínez, L. C. A.; Wilberger, T. (2023). "A new fossil wood of Detarioideae from the Boa Vista Basin, Upper Oligocene (Northeast Brazil): Comparisons with living and fossil Leguminosae Subfamilies. Paleoclimate and biogeography inferences for the Leguminosae story". Review of Palaeobotany and Palynology 317: 104968. doi:10.1016/j.revpalbo.2023.104968.
- ↑ Song, H.; Huang, L.; Xiang, H.; Quan, C.; Jin, J. (2023). "First reliable Miocene fossil winged fruits record of Engelhardia in Asia through anatomical investigation". iScience 26 (6): 106867. doi:10.1016/j.isci.2023.106867. PMID 37260748.
- ↑ Whang, S. S.; Hill, K. E.; Hill, R. S. (2023). "A new species of Gymnostoma (Casuarinaceae) present during the Neogene aridification of Southern Australia". Review of Palaeobotany and Palynology 312: 104873. doi:10.1016/j.revpalbo.2023.104873. Bibcode: 2023RPaPa.31204873W.
- ↑ 89.0 89.1 Bhatia, H.; Srivastava, G.; Mehrotra, R. C. (2022). "Legumes from the Paleocene sediments of India and their ecological significance". Plant Diversity 45 (2): 199–210. doi:10.1016/j.pld.2022.08.001. PMID 37069925.
- ↑ Bennike, O.; Colgan, W.; Hedenäs, L.; Heiri, O.; Lemdahl, G.; Wiberg-Larsen, P.; Ribeiro, S.; Pronzato, R. et al. (2022). "An Early Pleistocene interglacial deposit at Pingorsuit, North-West Greenland". Boreas 52 (1): 27–41. doi:10.1111/bor.12596. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-116450.
- ↑ 91.0 91.1 Wilf, P.; Iglesias, A.; Gandolfo, M. A. (2023). "The first Gondwanan Euphorbiaceae fossils reset the biogeographic history of the Macaranga-Mallotus clade". American Journal of Botany 110 (5): e16169. doi:10.1002/ajb2.16169. PMID 37128981.
- ↑ Hermsen, E. J. (2023). "Pliocene seeds of Passiflora subgenus Decaloba (Gray Fossil Site, Tennessee) and the impact of the fossil record on understanding the diversification and biogeography of Passiflora". American Journal of Botany 110 (3): e16137. doi:10.1002/ajb2.16137. PMID 36735676.
- ↑ Zheng, Q.D.; Dong, J.L.; Zheng, D.Y.; Sun, B.N. (2023). "A new species of Trigonostemon Blume (Euphorbiaceae) from the middle Miocene of Fujian, Southeast China and its paleoclimatic and paleoecological significance". Acta Palaeontologica Sinica 62 (3): 398–409. doi:10.19800/j.cnki.aps.2022044. http://gswxb.cnjournals.cn/gswxb/article/abstract/20230305.
- ↑ Hazra, T.; Bera, S.; Khan, M. A. (2023). "First Fossil Mallow Flower from Asia". International Journal of Plant Sciences 184 (2): 106–121. doi:10.1086/723603.
- ↑ Ruiz, D. P.; Pujana, R. R.; Brea, M. (2023). "Paleocene fossil wood from Patagonia with storied rays and comments on the fossil record of this character". IAWA Journal: 1–20. doi:10.1163/22941932-bja10129.
- ↑ Zhao, Y.; Song, A.; Deng, W.; Huang, J.; Su, T. (2023). "Fossil leaves of Pterospermum (Malvaceae) from the Early Miocene of Jinggu, Yunnan Province with its paleoecological and phytogeographical implications". Quaternary Sciences 43 (3): 884–898. doi:10.11928/j.issn.1001-7410.2023.03.16.
- ↑ 97.0 97.1 97.2 Ramos, R. S.; Brea, M.; Kröhling, D. M.; Patterer, N. I. (2023). "Pleistocene subtribe Terminaliinae (Combretaceae) fossils in the middle-lower Uruguay river basin, South America". Review of Palaeobotany and Palynology 311: 104857. doi:10.1016/j.revpalbo.2023.104857. Bibcode: 2023RPaPa.31104857R.
- ↑ Bhatia, H.; Srivastava, G.; Mehrotra, R. C. (2023). "Duabanga (Lythraceae) from the Oligocene of India and its climatic and phytogeographic significance". Geobios 78: 1–13. doi:10.1016/j.geobios.2023.05.003.
- ↑ Martínez, C.; Pérez-Lara, D. K.; Avellaneda-Jiménez, D. S.; Caballero-Rodríguez, D.; Rodríguez-Reyes, O.; Crowley, J. L.; Jaramillo, C. (2023). "An early Miocene (Aquitanian) mangrove fossil forest buried by a volcanic lahar at Barro Colorado Island, Panama". Palaeogeography, Palaeoclimatology, Palaeoecology: 112006. doi:10.1016/j.palaeo.2023.112006.
- ↑ Wu, X.-T.; Wang, Z.-X.; Shu, J.-W.; Yin, S.-X.; Mao, L.-M.; Shi, G.-L. (2023). "A new Trapa from the middle Miocene of Zhangpu, Fujian, southeastern China". Palaeoworld. doi:10.1016/j.palwor.2023.02.008.
- ↑ Hernández-Damián, A. L.; Rubalcava-Knoth, M. A.; Cevallos Ferriz, S. R. S. (2023). "Aphananthe Planch. (Cannabaceae) flower preserved in the Mexican amber". Acta Palaeobotanica 63 (1): 54–64. doi:10.35535/acpa-2023-0004.
- ↑ Patel, R.; Rana, R. S.; Ali, A.; Hazra, T.; Khan, M. A. (2023). "First buckthorn (Rhamnaceae) fossil flowers from India". Journal of Systematics and Evolution. doi:10.1111/jse.13024.
- ↑ 103.0 103.1 103.2 Chandra, K.; Spicer, R. A.; Shukla, A.; Spicer, T.; Mehrotra, R. C.; Singh, A. K. (2023). "Paleogene Ficus leaves from India and their implications for fig evolution and diversification". American Journal of Botany 110 (3): e16145. doi:10.1002/ajb2.16145. PMID 36821420.
- ↑ Centeno-González, N. K.; Porras-Múzquiz, H.; Estrada-Ruiz, E. (2023). "Nuevo género de hojas ovadas de Rhamnaceae de la Formación Olmos (Cretácico Superior) de Coahuila, México". Paleontología Mexicana 12 (1): 33–41. http://www.ojs-igl.unam.mx/index.php/Paleontologia/article/view/677.
- ↑ Martinez Martinez, C. M. (2023). "New records of Moraceae from the upper Miocene of northeastern Argentina". Ameghiniana 60 (1): 78–96. doi:10.5710/AMGH.04.12.2022.3519. https://www.ameghiniana.org.ar/index.php/ameghiniana/article/view/3519.
- ↑ 106.0 106.1 106.2 106.3 Denk, T.; Bouchal, J. M.; Güner, H. T.; Coiro, M.; Butzmann, R.; Pigg, K. B.; Tiffney, B. H. (2023). "Cenozoic migration of a desert plant lineage across the North Atlantic". New Phytologist 238 (6): 2668–2684. doi:10.1111/nph.18743. PMID 36651063.
- ↑ Lu, P.; Zhang, J.-W.; Liang, X.-Q.; Li, H.-M.; Li, D.-L. (2023). "Ancestors of Ulmus parvifolia from late Miocene sediments in Yunnan, Southwest China and its future distribution". Review of Palaeobotany and Palynology 313: 104879. doi:10.1016/j.revpalbo.2023.104879. Bibcode: 2023RPaPa.31304879L.
- ↑ 108.0 108.1 Kumar, S.; Manchester, S.; Judd, W.; Khan, M. (2023). "Earliest fossil record of Burseraceae from the Deccan Intertrappean Beds of Central India and its biogeographic implications". International Journal of Plant Sciences 184 (9): 696–714. doi:10.1086/726627.
- ↑ 109.0 109.1 Rombola, C. F.; Pujana, R. R.; Ruiz, D. P.; Bellosi, E. S. (2023). "Angiosperm fossil woods from the Upper Cretaceous (Cardiel Formation) of Argentinean Patagonia". Botanical Journal of the Linnean Society. doi:10.1093/botlinnean/boad072.
- ↑ 110.0 110.1 Beurel, S.; Bachelier, J. B.; Hammel, J. U.; Shi, G.-L.; Wu, X.-T.; Rühr, P. T.; Sadowski, E.-M. (2023). "Flower inclusions of Canarium (Burseraceae) from Miocene Zhangpu amber (China)". Palaeoworld. doi:10.1016/j.palwor.2023.02.006.
- ↑ Del Rio, C.; Tosal, A.; Kara, E.; Manchester, S. R.; Herrera, F.; Collinson, M. E.; De Franceschi, D. (2023). "Fruits of Anacardiaceae from the Paleogene of the Paris Basin, France". International Journal of Plant Sciences 184 (3): 164–176. doi:10.1086/723841.
- ↑ Manchester, S. R.; Kapgate, D. K.; Judd, W. S. (2023). "Burseraceae in the latest Cretaceous of India: Sahniocarpon Chitaley & Patil". International Journal of Plant Sciences. doi:10.1086/729091.
- ↑ Chandra, K.; Shukla, A.; Mehrotra, R. C.; Bansal, M.; Prasad, V. (2023). "Fossil Mahogany from the Early Paleogene of India". Journal of the Geological Society of India 99 (1): 65–72. doi:10.1007/s12594-023-2268-2.
- ↑ 114.0 114.1 Maslova, N. P.; Kodrul, T. M.; Kachkina, V. V.; Hofmann, C.-C.; Xu, S.-L.; Liu, X.-Y.; Jin, J.-H. (2023). "Evidence for the evolutionary history and diversity of fossil sweetgums: leaves and associated capitate reproductive structures of Liquidambar from the Eocene of Hainan Island, South China". Papers in Palaeontology 9 (6): e1540. doi:10.1002/spp2.1540.
- ↑ Wu, X.-T.; Shu, J.-W.; Yin, S.-X.; Sadowski, E.-M.; Shi, G.-L. (2023). "Parrotia flower blooming in Miocene rainforest". Journal of Systematics and Evolution. doi:10.1111/jse.13001.
- ↑ Tang, K. K.; Smith, S. Y.; Atkinson, B. A. (2023). "Winged Fruits of Friisifructus aligeri gen. et sp. nov. from the Late Cretaceous of Western North America". International Journal of Plant Sciences 184 (4): 271–281. doi:10.1086/724745.
- ↑ Nishino, M.; Terada, K.; Uemura, K.; Ito, Y.; Yamada, T. (2023). "An exceptionally well-preserved monodominant fossil forest of Wataria from the lower Miocene of Japan". Scientific Reports 13 (1): 10172. doi:10.1038/s41598-023-37211-z. PMID 37349406.
- ↑ 118.0 118.1 Čepičková, J.; Kvaček, J. (2022). "Fossil leaves of Cenomanian basal angiosperms from the Peruc-Korycany Formation, Czechia, central Europe". Review of Palaeobotany and Palynology 309: 104802. doi:10.1016/j.revpalbo.2022.104802.
- ↑ Mahato, S.; Hazra, T.; More, S.; Khan, M. A. (2023). "Triplinerved cinnamon from the Siwalik (middle Miocene) of eastern Himalaya: Systematics, epifoliar fossil fungi, palaeoecology and biogeography". Geobios. doi:10.1016/j.geobios.2023.10.003.
- ↑ Gentis, N.; Licht, A.; De Franceschi, D.; Win, Z.; Wa Aung, D.; Dupont-Nivet, G.; Boura, A. (2023). "First fossil woods and palm stems from the mid Paleocene of Myanmar and their implications for biogeography and wood anatomy". American Journal of Botany. doi:10.1002/ajb2.16259. PMID 38031479.
- ↑ Manchester, S. R.; Judd, W. S.; Kodrul, T. (2023). "First recognition of the extinct eudicot genus Palibinia in North America: Leaves and fruits of Palibinia comptonifolia (R.W.Br.) comb. nov. from the Eocene of Utah and Colorado, USA". Journal of Systematics and Evolution. doi:10.1111/jse.13011.
- ↑ Čepičková, J.; Kvaček, J. (2023). "Papillaephyllum, a new genus of angiosperm foliage from the Cenomanian of the Czech Republic". Review of Palaeobotany and Palynology 319: 104990. doi:10.1016/j.revpalbo.2023.104990.
- ↑ 123.0 123.1 Smith, M. A.; Greenwalt, D. E.; Manchester, S. R. (2023). "Diverse fruits and seeds of the mid-Eocene Kishenehn Formation, northwestern Montana, USA, and their implications for biogeography". Fossil Imprint 79 (1): 37–88. doi:10.37520/fi.2023.004. http://fi.nm.cz/wp-content/uploads/2023/11/04_Smith.pdf.
- ↑ Friis, E. M.; Crane, P. R.; Pedersen, K. R. (2023). "Multipartite Flowers with a Distinct Floral Cup and Multiovulate Carpels: An Early Cretaceous Angiosperm of Probable Lauralean Relationship". International Journal of Plant Sciences 184 (2): 87–105. doi:10.1086/723682.
- ↑ Wang, X.; Diez, J. B.; Pole, M.; García-Ávila, M. (2023). "An Anatomically Preserved Cone-like Flower from the Lower Cretaceous of China". Life 13 (1): 129. doi:10.3390/life13010129. PMID 36676078. Bibcode: 2023Life...13..129W.
- ↑ Pessoa, E. M.; Ribeiro, A. C.; Christenhuz, M. J. M.; Coan, A. I.; Jud, N. A. (2023). "Is Santaniella a ranuculid? Re-assessment of this enigmatic fossil angiosperm from the Lower Cretaceous (Aptian, Crato Konservat-Lagerstätte, Brazil) provides a new interpretation.". American Journal of Botany 110 (5): e16163. doi:10.1002/ajb2.16163. PMID 37014186.
- ↑ Pessoa, E. M.; Ribeiro, A. C.; Christenhusz, M. J. M. (2023). "New evidence on the previously unknown gynoecium of Araripia florifera (Araripiaceae, fam. nov.), a magnoliid angiosperm from the Lower Cretaceous (Aptian) of the Crato Konservat-Lagerstätte (Araripe Basin), northeastern Brazil". Cretaceous Research: 105715. doi:10.1016/j.cretres.2023.105715.
- ↑ López-Martínez, A. M.; Schönenberger, J.; von Balthazar, M.; González-Martínez, C. A.; Ramírez-Barahona, S.; Sauquet, H.; Magallón, S. (2023). "Integrating Fossil Flowers into the Angiosperm Phylogeny Using Molecular and Morphological Evidence". Systematic Biology 72 (4): 837–855. doi:10.1093/sysbio/syad017. PMID 36995161.
- ↑ Doyle, J.; Endress, P. K. (2023). "Integrating Cretaceous fossils into the phylogeny of living angiosperms: fossil Magnoliales and their evolutionary implications". International Journal of Plant Sciences 185 (1): 42–70. doi:10.1086/727523.
- ↑ Thompson, J. B.; Ramírez-Barahona, S. (2023). "No phylogenetic evidence for angiosperm mass extinction at the Cretaceous–Palaeogene (K-Pg) boundary". Biology Letters 19 (9): 20230314. doi:10.1098/rsbl.2023.0314. PMID 37700701.
- ↑ Liu, B.-C.; Zong, R.-W.; Wang, K.; Bai, J.; Wang, Y.; Xu, H.-H. (2023). "Evolution of Silurian phytogeography, with the first report of Aberlemnia (Rhyniopsida) from the Pridoli of West Junggar, Xinjiang, China". Palaeogeography, Palaeoclimatology, Palaeoecology: 111903. doi:10.1016/j.palaeo.2023.111903.
- ↑ Libertín, M.; Kvaček, J.; Bek, J. (2023). "The genus Aberlemnia and its Silurian–Devonian fossil record". Review of Palaeobotany and Palynology: 105017. doi:10.1016/j.revpalbo.2023.105017.
- ↑ Brea, M.; Gnaedinger, S.; Martínez, L. C. A. (2023). "Archangelskyoxylon carlquistii gen. et sp. nov. Taxonomy and phylogeny of an unequivocal gnetoid Jurassic fossil wood". Review of Palaeobotany and Palynology: 105035. doi:10.1016/j.revpalbo.2023.105035.
- ↑ Ribeiro, A. M. N.; Yang, Y.; Saraiva, A. Á. F.; Bantim, R. A. M.; Calixto Junior, J. T.; Lima, F. J. (2023). "Arlenea delicata gen. et sp. nov., a new ephedroid plant from the Early Cretaceous Crato Formation, Araripe Basin, Northeast Brazil". Plant Diversity. doi:10.1016/j.pld.2023.06.008.
- ↑ 135.0 135.1 135.2 135.3 135.4 135.5 Bomfleur, B.; Hedenäs, L.; Friis, E. M.; Crane, P. R.; Pedersen, K. R.; Mendes, M. M.; Kvaček, J. (2023). "Fossil mosses from the Early Cretaceous Catefica mesofossil flora, Portugal – a window into the Mesozoic history of Bryophytes". Fossil Imprint 79 (2): 103–125. doi:10.37520/fi.2023.006.
- ↑ Uhlířová, M.; Pšenička, J.; Sakala, J. (2023). "New early land plant Capesporangites petrkraftii gen. et sp. nov. from the Silurian, Prague Basin, Czech Republic". Review of Palaeobotany and Palynology: 105048. doi:10.1016/j.revpalbo.2023.105048.
- ↑ Luthardt, L.; Rößler, R.; Stevenson, D. W. (2023). "Cycadodendron galtieri gen. nov. et sp. nov. - A lower Permian gymnosperm stem with cycadalean affinity". International Journal of Plant Sciences 184 (9): 715–732. doi:10.1086/727458.
- ↑ Yang, Y.; Yang, Z.; Lin, L.; Wang, Y.; Ferguson, D. K. (2023). "A New Gnetalean Macrofossil from the Mid-Jurassic Daohugou Formation". Plants 12 (9): 1749. doi:10.3390/plants12091749. PMID 37176807.
- ↑ Barbacka, M.; Górecki, A.; Pott, C.; Ziaja, J.; Blodgett, R. B.; Metzler, C.; Caruthers, A. H.; Edirisooriya, G. et al. (2023). "Macroflora from Lower Jurassic (Pliensbachian) of Hicks Creek, southern Talkeetna Mountains, south-central Alaska". Papers in Palaeontology 9 (6): e1541. doi:10.1002/spp2.1541.
- ↑ 140.0 140.1 140.2 140.3 140.4 140.5 140.6 140.7 Slodownik, M.; Hill, R. S.; McLoughlin, S. (2023). "Komlopteris: A persistent lineage of post-Triassic corystosperms in Gondwana". Review of Palaeobotany and Palynology 317: 104950. doi:10.1016/j.revpalbo.2023.104950.
- ↑ Bickner, M. A.; Herrera, F.; Shi, G.; Ichinnorov, N.; Crane, P. R.; Herendeen, P. S. (2023). "Mongolitria: a new Early Cretaceous three-valved seed from northeast Asia". American Journal of Botany. doi:10.1002/ajb2.16268. PMID 38050806.
- ↑ Lalica, M. A. K.; Tomescu, A. M. F. (2023). "Complex wound response mechanisms and phellogen evolution – insights from Early Devonian euphyllophytes". New Phytologist 239 (1): 388–398. doi:10.1111/nph.18926. PMID 37010090.
- ↑ Vallois, B.; Nel, A. (2023). "Possible earliest evidence of insect pollination based on a new species of the Carboniferous medullosalean 'seed' genus Pachytesta". Review of Palaeobotany and Palynology 316: 104948. doi:10.1016/j.revpalbo.2023.104948.
- ↑ Liu, W.-Z.; Shen, H.-X.; Wang, X. (2023). "A novel gymnosperm reproductive organ from the Jurassic of China". Palaeoworld. doi:10.1016/j.palwor.2023.03.002.
- ↑ Trajano, A. D. E. S.; Marques-de-Souza, J.; Iannuzzi, R.; Holanda, E. C. (2023). "Ephedra-like Cones from Serra do Tucano formation (Lower Cretaceous), Takutu Basin, Roraima". Journal of South American Earth Sciences: 104659. doi:10.1016/j.jsames.2023.104659.
- ↑ Pfeiler, K. C.; Tomescu, A. M. F. (2023). "Mosaic assembly of regulatory programs for vascular cambial growth: a view from the Early Devonian". New Phytologist 240 (2): 529–541. doi:10.1111/nph.19146. PMID 37491742.
- ↑ Hoffman, G. L.; Crandall-Stotler, B. J. (2023). "Petalophyllites speirsiae gen. et sp. nov. (Marchantiophyta: Fossombroniales), a fossil liverwort gametophyte from the Paleocene of Alberta, Canada". Botany 101 (10): 462–470. doi:10.1139/cjb-2023-0057. https://cdnsciencepub.com/doi/full/10.1139/cjb-2023-0057.
- ↑ Snigirevsky, S. M.; Lyubarova, A. P. (2023). "A new fossil plant from the Late Devonian strata of Northern Timan (Russia)". Paleontological Journal 57 (6): 681–691. doi:10.1134/S0031030123060096. https://elibrary.ru/item.asp?id=54620002.
- ↑ 149.0 149.1 Li, A.; Du, B.; Peng, J.; Lin, S.; Zhang, J.; Ma, G.; Hui, J. (2023). "Leaves and megasporophylls of Cycadophytes from the Lower Cretaceous of Beishan area, Gansu Province, Northwest China, and its evolutionary significance". Cretaceous Research: 105636. doi:10.1016/j.cretres.2023.105636.
- ↑ Colston, C. M.; Landaw, K.; Tomescu, A. M. (2023). "An early snapshot of plant–herbivore interactions: Psilophyton diakanthon sp. nov. from the Early Devonian of Gaspé (Quebec, Canada)". American Journal of Botany 110 (1): e16082. doi:10.1002/ajb2.16082. PMID 36219504.
- ↑ Han, L.; Zhao, Y.; Zhao, M.; Sun, J.; Sun, B.; Wang, X. (2023). "New Fossil Evidence Suggests That Angiosperms Flourished in the Middle Jurassic". Life 13 (3): 819. doi:10.3390/life13030819. PMID 36983974. Bibcode: 2023Life...13..819H.
- ↑ Yang, X.-J. (2023). "First record of Rhaphidopteris (Gymnospermae) from the Lower Jurassic of the Junggar Basin, Xinjiang, NW China". The Triassic and Jurassic of the Junggar Basin, China: Advances in Palaeontology and Environments. Geological Society, London, Special Publications. 538. The Geological Society of London. doi:10.1144/SP538-2021-191.
- ↑ Elgorriaga, A.; Atkinson, B. A. (2023). "Cretaceous pollen cone with three-dimensional preservation sheds light on the morphological evolution of cycads in deep time". New Phytologist 238 (4): 1695–1710. doi:10.1111/nph.18852. PMID 36943236.
- ↑ Forte, G.; Kustatscher, E. I. (2023). "Cordaites and pteridosperm-like foliage from the Kungurian (early Permian) flora of Tregiovo (Trento, NE Italy)". Review of Palaeobotany and Palynology 316: 104931. doi:10.1016/j.revpalbo.2023.104931.
- ↑ Blanco-Moreno, C.; Valois, M.; Stockey, R. A.; Rothwell, G. W.; Tomescu, A. M. F. (2023). "A Second Species of Tricosta Expands the Diversity of the Intriguing Mesozoic Tricostate Mosses". International Journal of Plant Sciences 184 (7): 549–561. doi:10.1086/726016.
- ↑ Xie, A.; Teng, X.; Wang, Y.; Tian, N.; Jiang, Z.; Uhl, D. (2023). "A quantitative analysis of leaf life span reveals the Mesozoic boreal gymnosperm Xenoxylon as evergreen: First evidence from the Lower Cretaceous in Liaoning, northeastern China". Cretaceous Research: 105770. doi:10.1016/j.cretres.2023.105770.
- ↑ Xie, A.; Wang, Y.; Tian, N.; Xie, X.; Xi, S.; Uhl, D. (2023). "New occurrence of the Late Jurassic Xenoxylon wood in the Sichuan Basin, southern China: wood anatomy, and paleobiodiversity implications". PalZ. doi:10.1007/s12542-023-00671-9.
- ↑ Elgorriaga, A.; Atkinson, B. A. (2023). "Zirabia cylindrica comb. nov. provides evidence of Doyleales in the Jurassic". American Journal of Botany 110 (7): e16182. doi:10.1002/ajb2.16182. PMID 37272508.
- ↑ Flores, J. R.; Bippus, A. C.; Fernández de Ullivarri, C.; Suárez, G. M.; Hyvönen, J.; Tomescu, A. M. F. (2023). "Dating the evolution of the complex thalloid liverworts (Marchantiopsida): total-evidence dating analysis supports a Late Silurian-Early Devonian origin and post-Mesozoic morphological stasis". New Phytologist. doi:10.1111/nph.19254. PMID 37697646.
- ↑ Decombeix, A.-L.; Harper, C. J.; Prestianni, C.; Durieux, T.; Ramel, M.; Krings, M. (2023). "Fossil evidence of tylosis formation in Late Devonian plants". Nature Plants 9 (5): 695–698. doi:10.1038/s41477-023-01394-0. PMID 37081291. https://www.nature.com/articles/s41477-023-01394-0.
- ↑ Yang, Y.; Wang, S.-J.; Wang, J. (2023). "Stem Anatomy Confirms Tingia unita Is a Progymnosperm". Biology 12 (4): 494. doi:10.3390/biology12040494. PMID 37106695.
- ↑ Coiro, M.; Allio, R.; Mazet, N.; Seyfullah, L. J.; Condamine, F. L. (2023). "Reconciling fossils with phylogenies reveals the origin and macroevolutionary processes explaining the global cycad biodiversity". New Phytologist 240 (4): 1616–1635. doi:10.1111/nph.19010. PMID 37302411.
- ↑ Kipp, M. A.; Stüeken, E. E.; Strömberg, C. A. E.; Brightly, W. H.; Arbour, V. M.; Erdei, B.; Hill, R. S.; Johnson, K. R. et al. (2023). "Nitrogen isotopes reveal independent origins of N2-fixing symbiosis in extant cycad lineages". Nature Ecology & Evolution: 1–13. doi:10.1038/s41559-023-02251-1. PMID 37974002.
- ↑ Fu, Q.; Hou, Y.; Yin, P.; Diez, J. B.; Pole, M.; García-Ávila, M.; Wang, X. (2023). "Micro-CT results exhibit ovules enclosed in the ovaries of Nanjinganthus". Scientific Reports 13 (1): 426. doi:10.1038/s41598-022-27334-0. PMID 36624144. Bibcode: 2023NatSR..13..426F.
- ↑ 165.0 165.1 165.2 165.3 Parmar, S.; Morley, R. J.; Bansal, M.; Singh, B. P.; Morley, H.; Prasad, V. (2023). "Evolution of family Arecaceae on the Indian Plate modulated by the Early Palaeogene climate and tectonics". Review of Palaeobotany and Palynology 313: 104890. doi:10.1016/j.revpalbo.2023.104890. Bibcode: 2023RPaPa.31304890P.
- ↑ 166.00 166.01 166.02 166.03 166.04 166.05 166.06 166.07 166.08 166.09 166.10 166.11 166.12 166.13 166.14 166.15 166.16 166.17 166.18 166.19 166.20 166.21 166.22 166.23 De Benedetti, F.; Zamaloa, M. C.; Gandolfo, M. A.; Cúneo, N. R. (2023). "Pollen from the K–Pg boundary of the La Colonia Formation, Patagonia, Argentina". Review of Palaeobotany and Palynology 316: 104933. doi:10.1016/j.revpalbo.2023.104933.
- ↑ 167.00 167.01 167.02 167.03 167.04 167.05 167.06 167.07 167.08 167.09 167.10 167.11 167.12 167.13 167.14 Gutierrez, P. R.; Zavattieri, A. M. (2023). "Middle Triassic continental palynological assemblages of San Rafael depocenter, central-western Argentina". Ameghiniana 60 (5): 391–417. doi:10.5710/AMGH.31.03.2023.3549. https://www.ameghiniana.org.ar/index.php/ameghiniana/article/view/3549.
- ↑ 168.00 168.01 168.02 168.03 168.04 168.05 168.06 168.07 168.08 168.09 168.10 168.11 168.12 168.13 168.14 168.15 168.16 168.17 168.18 Mander, L.; Jaramillo, C.; Oboh-Ikuenobe, F. (2023). "Descriptive systematics of Upper Paleocene–Lower Eocene pollen and spores from the northern Niger Delta, southeastern Nigeria". Palynology 47 (3): 2200525. doi:10.1080/01916122.2023.2200525.
- ↑ Sui, Q.; Zhan, H.-X.; Zhou, D.-C.; Niu, Y.-N.; Chen, J.; McLoughlin, S.; Feng, Z. (2023). "Morphology and wall ultrastructure of a unique megaspore, Flabellisporites zhaotongensis Sui, McLoughlin et Feng sp. nov., from the upper Permian of Southwest China". Review of Palaeobotany and Palynology: 105036. doi:10.1016/j.revpalbo.2023.105036.
- ↑ Huang, H.; Morley, R. J.; van der Ham, R.; Mao, L.; Licht, A.; Dupont-Nivet, G.; Win, Z.; Aung, D. et al. (2023). "Grimmipollis burmanica gen. et sp. nov.: New genus of the soapberry family (Sapindaceae) from the late Eocene of central Myanmar". Review of Palaeobotany and Palynology 309: 104818. doi:10.1016/j.revpalbo.2022.104818. Bibcode: 2023RPaPa.30904818H.
- ↑ 171.0 171.1 Sui, Q.; Sheng, Z.-H.; Yang, J.-Y.; Guo, Y.; McLoughlin, S.; Feng, Z. (2023). "Two new isoetalean (Lycopsida) megaspore species representing the earliest occurrence of Henrisporites from upper Permian strata of Southwest China". Review of Palaeobotany and Palynology 314: 104894. doi:10.1016/j.revpalbo.2023.104894.
- ↑ Quetglas, M. A.; Di Pasquo, M.; Macluf, C. C. (2023). "Taxonomy of Early Mississippian gulate megaspore assemblage from northern Bolivia". Review of Palaeobotany and Palynology 318: 104971. doi:10.1016/j.revpalbo.2023.104971.
- ↑ Heřmanová, Z.; Kvaček, J.; Čepičková, J.; von Balthazar, M.; Luthardt, L.; Schönenberger, J. (2023). "Slavicekia gen. nov. - a new member of the Normapolles complex from Late Cretaceous sediments of the Czech Republic". International Journal of Plant Sciences 184 (3): 201–213. doi:10.1086/724155.
- ↑ Vajda, V.; McLoughlin, S.; Slater, S. M.; Gustafsson, O.; Rasmusson, A. G. (2023). "The 'seed-fern' Lepidopteris mass-produced the abnormal pollen Ricciisporites during the end-Triassic biotic crisis". Palaeogeography, Palaeoclimatology, Palaeoecology 627: 111723. doi:10.1016/j.palaeo.2023.111723.
- ↑ Zavialova, N. (2024). "Comment on "The 'seed-fern' Lepidopteris mass-produced the abnormal pollen Ricciisporites during the end-Triassic biotic crisis" by V. Vajda, S. McLoughlin, S. M. Slater, O. Gustafsson, and A. G. Rasmusson [Palaeogeography, Palaeoclimatology, Palaeoecology, 627 (2023), 111,723]". Review of Palaeobotany and Palynology 322: 105065. doi:10.1016/j.revpalbo.2024.105065.
- ↑ Dou, L.; Zhang, X.; Xiao, K.; Xi, D.; Du, Y.; Wang, L.; Hu, J.; Hu, Y. et al. (2023). "Early Cretaceous (Aptian to Albian) vegetation and climate change in Central Africa: Novel palynological evidence from the Doseo Basin". Geological Journal. doi:10.1002/gj.4873.
- ↑ Malaikanok, P.; Grímsson, F.; Denk, T.; Phuphumirat, W. (2023). "Community assembly of tropical Fagaceae-dominated forests in Thailand dates back at least to the Late Palaeogene". Botanical Journal of the Linnean Society 202: 1–22. doi:10.1093/botlinnean/boac075.
- ↑ Shichi, K.; Goebel, T.; Izuho, M.; Kashiwaya, K. (2023). "Climate amelioration, abrupt vegetation recovery, and the dispersal of Homo sapiens in Baikal Siberia". Science Advances 9 (38): eadi0189. doi:10.1126/sciadv.adi0189. PMID 37738346.
- ↑ Pearce, E. A.; Mazier, F.; Normand, S.; Fyfe, R.; Andrieu, V.; Bakels, C.; Balwierz, Z.; Bińka, K. et al. (2023). "Substantial light woodland and open vegetation characterized the temperate forest biome before Homo sapiens". Science Advances 9 (45): eadi9135. doi:10.1126/sciadv.adi9135. PMID 37948521.
- ↑ Clark, J. W.; Hetherington, A. J.; Morris, J. L.; Pressel, S.; Duckett, J. G.; Puttick, M. N.; Schneider, H.; Kenrick, P. et al. (2023). "Evolution of phenotypic disparity in the plant kingdom". Nature Plants 9 (10): 1618–1626. doi:10.1038/s41477-023-01513-x. PMID 37666963.
- ↑ Leslie, A. B.; Mander, L. (2023). "Quantifying the complexity of plant reproductive structures reveals a history of morphological and functional integration". Proceedings of the Royal Society B: Biological Sciences 290 (2010): 20231810. doi:10.1098/rspb.2023.1810. PMID 37909082.
- ↑ Yuan, W.; Liu, M.; Chen, D.; Xing, Y.-W.; Spicer, R. A.; Chen, J.; Them, T. R.; Wang, X. et al. (2023). "Mercury isotopes show vascular plants had colonized land extensively by the early Silurian". Science Advances 9 (17): eade9510. doi:10.1126/sciadv.ade9510. PMID 37115923.
- ↑ Capel, E.; Monnet, C.; Cleal, C. J.; Xue, J.; Servais, T.; Cascales-Miñana, B. (2023). "The effect of geological biases on our perception of early land plant radiation". Palaeontology 66 (2): e12644. doi:10.1111/pala.12644. Bibcode: 2023Palgy..6612644C.
- ↑ Capel, E.; Cleal, C. J.; Servais, T.; Cascales-Miñana, B. (2023). "New insights into Silurian–Devonian palaeophytogeography". Palaeogeography, Palaeoclimatology, Palaeoecology 613: 111393. doi:10.1016/j.palaeo.2023.111393. Bibcode: 2023PPP...61311393C.
- ↑ Dowding, E. M.; Akulov, N. I.; Mashchuk, I. M. (2023). "Survivorship dynamics of the flora of Devonian Angarida". Proceedings of the Royal Society B: Biological Sciences 290 (1990): 20221079. doi:10.1098/rspb.2022.1079. PMID 36629112.
- ↑ Barrón, E.; Peyrot, D.; Bueno-Cebollada, C. A.; Kvaček, J.; Álvarez-Parra, S.; Altolaguirre, Y.; Meléndez, N. (2023). "Biodiversity of ecosystems in an arid setting: The late Albian plant communities and associated biota from eastern Iberia". PLOS ONE 18 (3): e0282178. doi:10.1371/journal.pone.0282178. PMID 36862709. Bibcode: 2023PLoSO..1882178B.
- ↑ El Atfy, H.; Coiffard, C.; El Beialy, S. Y.; Uhl, D. (2023). "Vegetation and climate change at the southern margin of the Neo-Tethys during the Cenomanian (Late Cretaceous): Evidence from Egypt". PLOS ONE 18 (1): e0281008. doi:10.1371/journal.pone.0281008. PMID 36716334. Bibcode: 2023PLoSO..1881008E.
- ↑ Moreau, J.-D.; Néraudeau, D. (2023). "Amber and plants from the Upper Cretaceous of La Gripperie-Saint-Symphorien (Charente-Maritime, Western France)". Comptes Rendus Palevol 22 (20): 455–466. doi:10.5852/cr-palevol2023v22a20.
- ↑ Tapia, M. J.; Farrell, E. E.; Mautino, L. R.; del Papa, C.; Barreda, V. D.; Palazzesi, L. (2023). "A snapshot of mid Eocene landscapes in the southern Central Andes: Spore-pollen records from the Casa Grande Formation (Jujuy, Argentina)". PLOS ONE 18 (4): e0277389. doi:10.1371/journal.pone.0277389. PMID 37018180. Bibcode: 2023PLoSO..1877389T.
- ↑ Jolly-Saad, M.-C.; Bonnefille, R. (2023). "Tropical forests and Combretaceae woodland at Usno in the Lower Omo Valley (Ethiopia), 3.3-3.2 Ma ago". Geobios 76: 1–17. doi:10.1016/j.geobios.2023.01.003. Bibcode: 2023Geobi..76....1J.
- ↑ Adeleye, M. A.; Haberle, S. G.; Gallagher, R.; Andrew, S. C.; Herbert, A. (2023). "Changing plant functional diversity over the last 12,000 years provides perspectives for tracking future changes in vegetation communities". Nature Ecology & Evolution 7 (2): 224–235. doi:10.1038/s41559-022-01943-4. PMID 36624175.
- ↑ Góis‐Marques, Carlos A.; de Nascimento, Lea; Fernández‐Palacios, José María; Madeira, José; de Sequeira, Miguel Menezes (2023-02-15). "Description and systematic affinity of flower and seed fossils of Erica sect. Chlorocodon (Ericaceae) from the early Pleistocene of Madeira Island, Portugal" (in en). Taxon 72 (2): 375–392. doi:10.1002/tax.12881. ISSN 0040-0262. https://onlinelibrary.wiley.com/doi/10.1002/tax.12881.
Original source: https://en.wikipedia.org/wiki/2023 in paleobotany.
Read more |