Biology:2022 in paleobotany
Template:ToC Right This paleobotany list records new fossil plant taxa that were to be described during the year 2022, as well as notes other significant paleobotany discoveries and events which occurred during 2022.
Algae
Charophytes
Name | Novelty | Status | Authors | Age | Unit | Location | Synonymized taxa | Notes | Images |
---|---|---|---|---|---|---|---|---|---|
Lamprothamnium elongatum[1] |
Sp. nov |
In press |
Feist & Floquet |
Late Cretaceous |
Spain |
A charophyte. |
|||
Lamprothamnium ovoideum[1] |
Sp. nov |
In press |
Feist & Floquet |
Late Cretaceous |
Spain |
A charophyte. |
|||
Pseudoharrisichara sedanoensis[1] |
Sp. nov |
In press |
Feist & Floquet |
Late Cretaceous |
Spain |
A charophyte. |
Charophyte research
- A study on the Paleocene charophyte flora from the South Gobi area in the Junggar Basin (China) and on the Paleogene fossil record of charophytes is published by Cao et al. (2022), who interpret their findings as evidence of the dispersal of charophyte lineages from Asia to Europe in the middle to late Eocene, possibly facilitated by waterbirds.[2]
Chlorophytes
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Ardeiporella[3] |
Gen. et comb. nov |
Valid |
Grgasović |
Middle Triassic |
Bosnia and Herzegovina |
A green alga belonging to the group Dasycladales. Genus includes "Oligoporella" karrerioidea Pia (1935). |
||
Earltonella[4] |
Gen. et sp. nov |
LoDuca in LoDuca et al. |
Earlton Formation |
Canada |
A green alga belonging to the group Bryopsidales. Genus includes new species E. fredricksi. |
|||
Milanovicella? canadillana[5] |
Sp. nov |
In press |
Torromé & Schlagintweit |
Spain |
A green alga belonging to the group Dasycladales. |
|||
Neophysoporella[3] |
Gen. et comb. nov |
Valid |
Grgasović |
Late Triassic, possibly also Middle Triassic |
France |
A green alga belonging to the group Dasycladales. Genus includes "Diplopora" lotharingica Benecke (1898), "Physoporella" jomdaensis Flügel & Mu (1982) and "Physoporella" zamparelliae Parente & Climaco (1999). |
||
Protocodium[6] |
Gen. et sp. nov |
Chai, Aria & Hua |
China |
A green alga belonging to the family Codiaceae. Genus includes new species P. sinense. |
||||
Succodium luciae[7] |
Sp. nov |
Valid |
Vachard & Krainer |
Permian-Triassic transition |
Italy |
A green alga belonging to the group Dasycladales. |
Lycopodiopsida
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Lepacyclotes ordosensis[8] |
Sp. nov |
Valid |
Deng in Deng et al. |
Middle Triassic (Ladinian) |
Tongchuan Formation |
China |
A member of the family Isoetaceae. |
|
Lycopodicaulis[9] |
Gen. et sp. nov |
Valid |
Herrera et al. |
Huolinhe Formation |
China |
A member of the family Lycopodiaceae. Genus includes new species L. oellgaardii. |
||
Multapicifolium[10] |
Gen. et sp. nov |
Valid |
Edwards, Li & Berry |
Early Devonian |
China |
A member of Protolepidodendrales of uncertain phylogenetic placement. Genus includes new species M. sinense. |
||
Nothostigma sepeensis[11] |
Sp. nov |
Spiekermann, Jasper, Guerra-Sommer & Uhl in Spiekermann et al. |
Brazil |
A member of Lycopodiopsida of uncertain affinities. |
||||
Omprelostrobus[12] |
Gen. et sp. nov |
Liu et al. |
Wutong Formation |
China |
A member of Isoetales of uncertain affinities. Genus includes new species O. gigas. |
|||
Sp. nov |
Deng in Deng et al. |
Middle Triassic (Ladinian) |
Tongchuan Formation |
China |
A lycopsid. |
|||
Porongodendron[14] |
Gen. et sp. nov |
Valid |
Prestianni et al. |
Carboniferous (Mississippian) |
Argentina |
An isoetalean lycopsid. Genus includes new species P. minitensis. |
||
Selaginella alata[15] |
Sp. nov |
Li & Wang in Li et al. |
Cretaceous (Albian-Cenomanian) |
Myanmar |
A species of Selaginella. |
|||
Selaginella cretacea[16] |
Sp. nov |
In press |
Li et al. |
Cretaceous |
Burmese amber |
Myanmar |
A species of Selaginella. |
Lycopsid research
- Description of new fossil material of Guangdedendron micrum, providing new information on the morphology of this plant, is published by Gao et al. (2022).[17]
- Xu, Liu & Wang (2022) describe new fossil material of Sublepidodendron grabaui from the Devonian (Famennian) Wutong Formation (China), providing new information on the morphology of the female reproductive organs of this plant.[18]
Marchantiophyta
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Radula patrickmuelleri[19] |
Sp. nov |
Valid |
Feldberg, Schäfer-Verwimp & Renner in Feldberg et al. |
Cretaceous (Albian-Cenomanian) |
Burmese amber |
Myanmar |
A liverwort, a species of Radula. |
|
Radula tanaiensis[19] |
Sp. nov |
Valid |
Feldberg, Schäfer-Verwimp & Renner in Feldberg et al. |
Cretaceous (Albian-Cenomanian) |
Burmese amber |
Myanmar |
A liverwort, a species of Radula. |
|
Ricciopsis asturicus[20] |
Sp. nov |
Valid |
Santos et al. |
Late Jurassic (Kimmeridgian) |
Spain |
A liverwort belonging to the family Ricciaceae. |
||
Ricciopsis cortaderitaensis[21] |
Gen. et sp. nov |
Valid |
Savoretti et al. |
Middle Triassic |
Argentina |
A liverwort. |
||
Ricciellites[21] |
Sp. nov |
Valid |
Savoretti et al. |
Middle Triassic |
Argentina |
A liverwort. |
Marchantiophyta research
- New specimens of Radula heinrichsii, providing new information on the morphology of this liverwort, are described from the Cretaceous Burmese amber by Wang et al. (2022).[22]
Ferns and fern allies
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Acrostichopteris alcainensis[23] |
Sp. nov |
Valid |
Skog & Sender |
Spain |
A member of the family Hymenophyllaceae. |
|||
Sp. nov |
In press |
Trevisan et al. |
Late Cretaceous |
|||||
Diodonopteris virgulata[25] |
Sp. nov |
In press |
Zhou et al. |
Early Permian |
China |
A botryopteid fern. |
||
Discosoropteris[26] |
Gen. et 2 sp. nov |
In press |
Pšenička et al. |
Carboniferous (Pennsylvanian) |
Kladno Formation |
Czech Republic |
A leptosporangiate fern. Genus includes new species D. chlupatum and D. zlatkokvacekii. |
|
Dryopterites beishanensis[27] |
Sp. nov |
In press |
Ren & Sun in Ren et al. |
Chijinbao Formation |
China |
A fern |
||
Gleichenia nagalingumiae[28] |
Sp. nov |
Cantrill et al. |
Miocene |
Australia |
A species of Gleichenia. |
|||
Hymenophyllites angustus[15] |
Sp. nov |
Li & Wang in Li et al. |
Cretaceous (Albian-Cenomanian) |
Burmese amber |
Myanmar |
A member of the family Hymenophyllaceae. Originally described as a species of Hymenophyllites, but subsequently moved to the genus Trichomanes sensu lato by Li et al. (2023).[29] |
||
Hymenophyllites kachinensis[15] |
Sp. nov |
Li & Wang in Li et al. |
Cretaceous (Albian-Cenomanian) |
Burmese amber |
Myanmar |
A member of the family Hymenophyllaceae. |
||
Hymenophyllites setosus[15] |
Sp. nov |
Li & Wang in Li et al. |
Cretaceous (Albian-Cenomanian) |
Burmese amber |
Myanmar |
A member of the family Hymenophyllaceae. |
||
Microlepia burmasia[30] |
Sp. nov |
Long, Wang & Shi in Long et al. |
Cretaceous |
Myanmar |
A species of Microlepia. |
|||
Mikasapteris[31] |
Gen. et sp. nov |
Valid |
Nishida et al. |
Late Cretaceous |
Japan |
A probable stem polypod leptosporangiate fern. Genus includes new species M. rothwellii. |
||
Paralophosoria[32] |
Gen. et sp. nov |
Valid |
Morales-Toledo, Mendoza-Ruiz & Cevallos-Ferriz |
Middle Jurassic |
Mexico |
A member of the family Dicksoniaceae. Genus includes new species P. jurassica. |
||
Sp. nov |
Barbosa et al. |
Carboniferous (Gzhelian) |
Douro Carboniferous Basin |
Portugal |
A member of Equisetales. |
|||
Scolecopteris zhoui[34] |
Sp. nov |
In press |
Zhang et al. |
Early Permian |
Taiyuan Formation |
China |
A member of Marattiales belonging to the family Psaroniaceae. |
|
Wolfeniana[35] |
Nom. nov |
Valid |
Deshmukh |
Hampshire Group |
United States |
A member of Stauropteridales; a replacement name for Gillespiea Erwin & Rothwell (1989). |
Fern and fern ally research
- Pecopteris lativenosa is interpreted as a member of the late Paleozoic marattialean family Psaroniaceae by Li et al. (2022).[36]
Gnetales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Bassitheca[37] |
Gen. et sp. nov |
Valid |
Manchester et al. |
Late Jurassic |
Morrison Formation |
United States Utah |
A gnetale. Genus includes the species B. hoodiorum. |
|
Dichoephedra[38] |
Gen. et sp. nov |
In press |
Ren et al. |
Early Cretaceous |
Chijinbao Formation |
China |
A member of the family Ephedraceae. Genus includes new species D. beishanensis. |
Bennettitales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Dictyozamites barnardi[39] |
Sp. nov |
Valid |
Saadatnejad |
Late Triassic (Rhaetian) |
Kalariz Formation |
Iran |
A member of Bennettitales. |
|
Dictyozamites fakhri[39] |
Sp. nov |
Valid |
Saadatnejad |
Late Triassic (Rhaetian) |
Kalariz Formation |
Iran |
A member of Bennettitales. |
|
Kimuriella[40] |
Gen. et sp. nov |
Valid |
Pott & Takimoto |
Late Jurassic (Oxfordian) |
Japan |
A member of Bennettitales. Genus includes new species K. densifolia. |
||
Sp. nov |
Valid |
Kvaček |
Late Cretaceous (Cenomanian) |
Czech Republic |
Ginkgophytes
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Sun & Deng in Sun et al. |
Late Triassic |
China | |||||
Glossophyllum panii[42] |
Sp. nov |
Sun & Deng in Sun et al. |
Late Triassic |
China | ||||
Pseudotorellia baganuriana[43] |
Sp. nov |
In press |
Nosova & Kostina |
Mongolia |
||||
Pseudotorellia zhoui[44] |
Sp. nov |
In press |
Dong et al. |
Middle-Late Jurassic |
Daohugou Beds |
China |
||
Sp. nov |
In press |
Dong et al. |
Middle-Late Jurassic |
Daohugou Beds |
China |
Ginkgophyte research
- Revision of Ginkgo abaniensis, based on data from leaves from the Jurassic Mura Formation (Russia ), is published by Frolov & Mashchuk (2022), who emend the diagnosis of this species, and transfer Ginkgo abaniensis, Ginkgo glinkiensis and Ginkgo capillata to the genus Ginkgoites.[45]
Conifers
Araucariaceae
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Bodnar et al. |
Argentina |
Cheirolepidiaceae
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Brachyoxylon yanqingense[47] |
Sp. nov |
Cheng et al. |
Late Jurassic |
China |
A probable member of the family Cheirolepidiaceae. |
|||
Sp. nov |
In press |
Mendes & Kvaček |
Figueira da Foz Formation |
Portugal |
A member of the family Cheirolepidiaceae. |
|||
Pseudofrenelopsis zlatkoi[49] |
Sp. nov |
Kvaček & Mendes |
Early Cretaceous (Aptian-Albian) |
Figueira da Foz Formation |
Portugal |
Cupressaceae
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Cupressinanthus klebsii[50] |
Sp. nov |
Valid |
Sadowski, Schmidt & Kunzmann |
Eocene |
Europe (Baltic Sea region) |
Cupressaceous pollen cone. |
||
Patagotaxodia[51] |
Gen. et sp. nov |
Valid |
Andruchow-Colombo et al. |
Argentina |
A member of the family Cupressaceae. Genus includes new species P. lefipanensis. |
Pinaceae
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Keteleerioxylon changchunense[52] |
Sp. nov |
Shi, Sun, Meng & Yu in Shi et al. |
Early Cretaceous (Albian) |
Yingcheng Formation |
China |
A Keteleeria-like wood morphogenus. |
||
Nothotsuga mulaensis[53] |
Sp. nov |
Li & Dong in Dong et al. |
Miocene |
Changtai Formation |
China |
A species of Nothotsuga. |
||
Pinus prehwangshanensis[54] |
Sp. nov |
Bazhenova, Wu & Jin in Bazhenova et al. |
Late Pleistocene |
Maoming Basin |
China |
A pine. |
||
Pinus shengxianica[55] |
Sp. nov |
Li, Hu & Xiao in Li et al. |
Miocene |
Shengxian Formation |
China |
A pine. |
Podocarpaceae
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Phyllocladoxylon antarcticum[56] |
Sp. nov |
Announced |
Pujana et al. |
Oligocene |
San José Formation |
Chile |
A podocarpaceous wood morphospecies |
|
Podocarpoxylon resinosum[56] |
Sp. nov |
Announced |
Pujana et al. |
Oligocene |
San José Formation |
Chile |
A podocarpaceous wood morphospecies |
|
Podocarpus mexicanoxylon[57] |
Sp. nov |
Castañeda-Posadas |
Miocene |
Mexico |
A species of Podocarpus. |
Sciadopityaceae
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Zhangoxylon[58] |
Gen. et sp. nov |
In press |
Jiang et al. |
Middle to Late Jurassic (Callovian to Kimmeridgian) |
China |
A member of the family Sciadopityaceae. Genus includes new species Z. yanliaoense. |
Voltziales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Hexicladia[59] |
Gen. et sp. nov |
Announced |
Wang et al. |
Permian (Cisuralian) |
Shanxi Formation |
China |
A voltzialean conifer. |
Other conifers
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Aciphyllum[60] |
Gen. et sp. nov |
Barbacka & Górecki in Barbacka et al. |
Early Jurassic (Hettangian) |
Poland |
A needle leaf similar to the leaves of Pinus. Genus includes new species A. triangulatum. |
|||
Ductoagathoxylon tsaaganensis[61] |
Sp. nov |
In press |
Cai, Zhang & Feng in Cai et al. |
Late Permian |
Mongolia |
|||
Sidashia[62] |
Gen. et sp. nov |
In press |
Forte, Kustatscher & Van Konijnenburg-van Cittert in Forte et al. |
Middle Triassic (Anisian) |
Italy |
Genus includes new species S. tridentata. |
||
Ullrichia[63] |
Gen. et comb. nov |
Valid |
Kerp et al. |
Permian |
Germany |
The type species is "Lebachia" laxifolia (1939); |
Conifer research
- Bodnar et al. (2022) reassess the anatomy and systematics of the permineralized conifer-like woods from the Triassic strata from Argentina , confirm the assignment of the logs related to the families Cupressaceae and Cheirolepidiaceae, as well as three taxa related to Araucariaceae (Agathoxylon cozzoi, Agathoxylon protoaraucana and Agathoxylon argentinum), and argue that the fossil woods previously assigned to the families Podocarpaceae and Taxaceae do not have enough preserved characters to support such assignment.[64]
- A study on the pattern of conifer turnover across the Cretaceous-Paleogene boundary in the Raton and Denver basins (Colorado, United States ) is published by Berry (2022).[65]
- Mantzouka, Akkemik & Güngör (2022) describe fossil woods of Cupressinoxylon matromnense from the middle Miocene Eşelek volcanic deposits (Gökçeada, Turkey), preserved with feeding damage produced by members of the agromyzid genus Protophytobia, and supporting the existence of an eastern Mediterranean Miocene Climatic Optimum hotspot which additionally included Greek islands of Lemnos and Lesbos.[66]
Flowering plants
Chloranthales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Canrightia foveolata[67] |
Sp. nov |
Valid |
Friis et al. |
Early Cretaceous (Aptian-Albian) |
Almargem Formation |
Portugal |
||
Proencistemon[67] |
Gen. et sp. nov |
Valid |
Friis et al. |
Early Cretaceous (Aptian-Albian) |
Almargem Formation |
Portugal |
Genus includes new species P. portugallicus. |
Magnoliids
Laurales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Araliaephyllum silvapinedae[68] |
Sp. nov |
In press |
Rubalcava-Knoth & Cevallos-Ferriz |
Cretaceous (Albian–Cenomanian) |
La Cintura Formation |
Mexico |
||
Argapaloxylon salvadorensis[69] |
Sp. nov |
Valid |
Vasquez-Loranca & Cevallos-Ferriz |
Miocene |
El Salvador |
A member of the family Lauraceae. |
||
Gen. et sp. nov |
Valid |
Maccracken et al. |
United States |
A member of the family Lauraceae. Genus includes new species C. gettyi. |
||||
Cryptocaryoxylon irregularis[72] |
Sp. nov |
Valid |
Akkemik, Iamandei & Çelik |
Early Miocene |
Hançili Formation |
Turkey |
Fossil wood of a member of the family Lauraceae. |
|
Laurinoxylon scalariforme[69] |
Sp. nov |
Valid |
Vasquez-Loranca & Cevallos-Ferriz |
Miocene |
El Salvador |
A member of the family Lauraceae. |
||
Mezilaurinoxylon americana[69] |
Sp. nov |
Valid |
Vasquez-Loranca & Cevallos-Ferriz |
Miocene |
El Salvador |
A member of the family Lauraceae. |
||
Mezilaurinoxylon draconis[69] |
Sp. nov |
Valid |
Vasquez-Loranca & Cevallos-Ferriz |
Miocene |
El Salvador |
A member of the family Lauraceae. |
||
Mezilaurinoxylon miocenica[69] |
Sp. nov |
Valid |
Vasquez-Loranca & Cevallos-Ferriz |
Miocene |
El Salvador |
A member of the family Lauraceae. |
Magnoliales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Magnolia allasoniae[73] |
Sp. nov |
Valid |
Martinetto in Niccolini et al. |
Miocene (Messinian) |
Piedmont Basin |
Italy |
A species of Magnolia. |
Piperales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Aristospermum[74] |
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (Aptian–Albian) |
Portugal |
A member of the family Aristolochiaceae. Genus includes new species A. huberi. |
||
Siratospermum[74] |
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Late Cretaceous (Cenomanian) |
United States |
A member of the family Aristolochiaceae. Genus includes new species S. mauldinense. |
Monocots
Lilioid monocots
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Pandanus estellae[75] |
Sp. nov |
Valid |
Rozefelds et al. |
Oligocene |
Australia |
A species of Pandanus. |
Commelinid monocots
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
In press |
Kumar, Hazra & Khan in Kumar et al. |
Late Cretaceous-Paleocene (Maastrichtian-Danian) |
India |
A member of the family Arecaceae belonging to the subfamily Coryphoideae. |
|||
Sabalites umariaensis[76] |
Sp. nov |
In press |
Kumar, Hazra & Khan in Kumar et al. |
Late Cretaceous-Paleocene (Maastrichtian-Danian) |
Deccan Intertrappean Beds |
India |
A member of the family Arecaceae belonging to the subfamily Coryphoideae. |
Monocot research
- Leaf fossils of costapalmate-palms belonging to the genus Sabalites are described from the ?Santonian–Campanian Belly River Group, Campanian Foremost Formation (Alberta, Canada ) and Maastrichtian Frenchman Formation (Saskatchewan, Canada) by Greenwood, Conran & West (2022), who interpret the studied fossils as constraining climate reconstructions for the Late Cretaceous high mid-latitudes of North America (c. 55° N) to exclude significant freezing episodes; the authors also transfer the Late Cretaceous species "Geonomites" imperialis to the genus Phoenicites, and reassess Sabalites carolinensis as more likely to be Campanian than Coniacian–Santonian in age.[77]
- A study on the impact of the absence of megaherbivores in the aftermath of the Cretaceous–Paleogene extinction event on the evolution of palms is published by Onstein, Kissling & Linder (2022).[78]
- A study on the evolutionary history of palms belonging to the group Mauritiinae, as inferred from a phylogenetic analysis incorporating fossil data, is published by Bacon et al. (2022).[79]
Basal eudicots
Proteales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Distefananthus[80] |
Gen. et sp. nov |
Huegele & Wang |
Early Cretaceous (Albian) |
Dakota Formation |
United States |
A platanaceous inflorescence. Genus includes new species D. hoisingtonensis. |
||
Langeranthus[81] |
Gen et sp nov |
Valid |
Huegele & Manchester |
USA |
A platanaceous flowering head. |
|||
Meliosma eosinica[82] |
Sp. nov |
Moiseeva, Kodrul & Jin |
Late Eocene |
Huangniuling Formation |
China |
A species of Meliosma. |
||
Nelumbo delinghaensis[83] |
Sp. nov |
Luo & Jia in Luo et al. |
Miocene |
Upper Youshashan Formation |
China |
A species of Nelumbo. |
||
Nelumbo fujianensis[84] |
Sp. nov |
In press |
Dong et al. |
Miocene |
Fotan Group |
China |
A species of Nelumbo. |
|
Platimeliphyllum durhamensis[85] |
Comb nov |
in press |
(Wolfe) |
Late Eocene |
Puget Group |
USA |
A platanaceous leaf. |
|
Platimeliphyllum fushunensis[85] |
Comb nov |
in press |
(Chen) |
Eocene |
Fushun Formation |
China |
A platanaceous leaf. |
|
Sp. nov |
Golovneva et al. |
Early Cretaceous (Albian) |
Dalazi Formation |
China |
A member of the family Platanaceae. |
|||
Sapindopsis orientalis[86] |
Sp. nov |
Golovneva et al. |
Early Cretaceous (Albian) |
Frentsevka Formation |
A member of the family Platanaceae. |
Protealean research
- Redescription of the Okanagan Highlands genus Langeria with description of associated stipules and reproductive structures plus formal reassignment of the genus to Platanaceae by Huegele & Manchester is published.[81]
Ranunculales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Berberis auriolensis[87] |
Sp. nov |
Valid |
Denk & Sami in Denk et al. |
Pleistocene (Calabrian) |
Italy |
A species of Berberis. |
||
Mahonia mangbangensis[88] |
Sp. nov |
Tang et al. |
Pliocene |
Mangbang Formation |
China |
A species of Mahonia. |
||
Palaeosinomenium hengduanensis[89] |
Sp. nov |
Wu & Zhou in Wu et al. |
Eocene |
Shuanghe Formation |
China |
A member of the family Menispermaceae. |
Superasterids
Aquifoliales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Ilex antiquorum[90] |
Nom. nov |
Valid |
Doweld |
Late Cretaceous (Maastrichtian) |
Germany |
A holly; a replacement name for Ilex antiqua Knobloch & Mai (1986). |
||
Ilex myricina[90] |
Nom. nov |
Valid |
Doweld |
Miocene (Messinian) |
Italy |
A holly; a replacement name for Ilex myricoides Massalongo (1858). |
Caryophyllales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Podopterus mijangosae[91] |
Sp. nov |
In press |
Estrada-Ruiz |
Miocene |
Mexican amber |
Mexico |
A species of Podopterus. |
Cornales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Blackwelloxylon[92] |
Nom. nov |
Valid |
Deshmukh |
Pleistocene |
United States |
A member of the family Cornaceae; a replacement name for Cornoxylon Blackwell (1982). |
||
Exbeckettia[93] |
Gen. et comb. nov |
Valid |
Manchester & Collinson |
Early Eocene |
United Kingdom |
A mastixioid fruit; a new genus for Beckettia mastixioides Reid & Chandler (1933). |
Dipsacales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sambucus heqingensis[94] |
Sp. nov |
In press |
Huang & Zhou in Huang et al. |
Late Pliocene |
Heqing Basin |
China |
A species of Sambucus. |
Ericales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Paradiospyroxylon[95] |
Gen. et sp. nov |
In press |
Koutecký & Sakala in Koutecký, Sakala & Chytrý |
Ústí Formation |
Czech Republic |
A member of the family Ebenaceae. Genus includes new species P. kvacekii. |
Icacinales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Palaeophytocrene chicoensis[96] |
Sp. nov |
Atkinson |
Late Cretaceous (Campanian) |
United States |
A member of the family Icacinaceae. |
Metteniusales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Calatola verae[97] |
Sp. nov |
Estrada-Ruiz et al. |
Miocene |
Mexican amber |
Mexico |
A species of Calatola. |
Superrosids
Cucurbitales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Libasperma[98] |
Gen. et sp. nov |
In press |
Huegele & Manchester |
Paleocene |
United States |
A member of the family Cucurbitaceae. Genus includes new species L. potamoglossensis. |
Fabales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Albizia yenbaiensis[99] |
Sp. nov |
Announced |
Nguyen, Su & J. Huang in Nguyen et al. |
Miocene |
Yen Bai Basin |
Vietnam |
An Albizia species. |
|
Anadenantheroxylon kurupaum[100] |
Sp. nov |
Valid |
Ramos et al. |
Late Pleistocene |
El Palmar Formation |
Argentina |
A member of the family Fabaceae. |
|
Cedrelinga paleocatenaeformis[100] |
Sp. nov |
Valid |
Ramos et al. |
Late Pleistocene |
El Palmar Formation |
Argentina |
A species of Cedrelinga. |
|
Cercioxylon mediterraneum[72] |
Sp. nov |
Valid |
Akkemik, Iamandei & Çelik |
Early Miocene |
Hançili Formation |
Turkey |
Fossil wood of a member of the family Fabaceae. |
|
Chloroleucoxylon[100] |
Gen. et sp. nov |
Valid |
Ramos et al. |
Late Pleistocene |
El Palmar Formation |
Argentina |
A member of the family Fabaceae. Genus includes new species C. yukeriense. |
|
Enterolobiumoxylon vassalloae[100] |
Sp. nov |
Valid |
Ramos et al. |
Late Pleistocene |
El Palmar Formation |
Argentina |
A member of the family Fabaceae. |
|
Leguminocarpum meghalayensis[101] |
Sp. nov |
Announced |
Bhatia, Srivastava & Mehrotra |
Late Paleocene |
Tura Formation |
India |
A fabaceous seed pod morphospecies. |
|
Microlobiusxylon parafoetidus[100] |
Sp. nov |
Valid |
Ramos et al. |
Late Pleistocene |
El Palmar Formation |
Argentina |
A member of the family Fabaceae. |
|
Paleobowdichia[102] |
Gen. et comb. nov |
Valid |
Herendeen et al. |
Latest Paleocene to late early Eocene |
Lamar River Formation |
United States |
A member of Papilionoideae; a new genus for "Acacia" lamarensis Knowlton (1899). |
|
Parapiptadenioxylon[100] |
Gen. et sp. nov |
Valid |
Ramos et al. |
Late Pleistocene |
El Palmar Formation |
Argentina |
A Fabaceae genus. |
|
Parvileguminophyllum damalgiriensis[101] |
Sp. nov |
Announced |
Bhatia, Srivastava & Mehrotra |
Late Paleocene |
Tura Formation |
India |
A fabaceous leaf morphospecies. |
|
Podocarpium tibeticum[103] |
Sp. nov |
In press |
Li, Huang & Su in Li et al. |
Late Eocene |
Lunpola Basin |
China |
A member of the family Fabaceae. |
|
Pseudopiptadenioxylon[100] |
Gen. et sp. nov |
Valid |
Ramos et al. |
Late Pleistocene |
El Palmar Formation |
Argentina |
A member of the family Fabaceae. Genus includes new species P. uniseriatum. |
|
Tobya[102] |
Gen. et comb. nov |
Valid |
Herendeen et al. |
Eocene |
Cockfield Formation |
United States |
A member of Papilionoideae; a new genus for "Diplotropis" claibornensis Herendeen & Dilcher (1990). |
Fabalean research
- New fossil material of members of the genus Bauhinia is described from the Eocene of the Puyang Basin (China) by Jia et al. (2022), who interpret their findings as the earliest reliable fossil records of Bauhinia in Asia.[104]
- Moya et al. (2022) study the affinities of fossil legumes Entrerrioxylon victoriensis, Gossweilerodendroxylon palmariensis, Paraoxystigma concordiensis and Cylicodiscuxylon paragabunensis from the Cenozoic Paraná, Arroyo Feliciano and El Palmar formations (Argentina) with extant West African legumes, and discuss the possible migration routes by which these plants may have arrived in South America from Africa.[105]
Fagales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Castanopsis zhoui[106] |
Sp. nov |
In press |
Wang et al. |
Miocene |
Fotan Group |
China |
A species of Castanopsis. |
|
Comptonia hirsuta[107] |
Sp. nov |
Xiao & Ji in Ji et al. |
Miocene |
Hannuoba Formation |
China |
A species of Comptonia. |
||
Myricoxylon doganyurtensis[72] |
Sp. nov |
Valid |
Akkemik, Iamandei & Çelik |
Early Miocene |
Turkey |
Fossil wood of a member of the family Myricaceae. |
||
Nothofagoxylon ruei[56] |
Sp. nov |
Announced |
Pujana et al. |
Oligocene |
San José Formation |
Chile |
A nothofagaceous wood morphospecies |
|
Pterocarya magnifructa[108] |
Sp. nov |
Valid |
Stults, Tiffney & Axsmith |
Pliocene |
United States |
A species of Pterocarya. |
||
Quercus nanningensis[109] |
Sp. nov |
In press |
Liu & Jin in Liu et al. |
Late Oligocene |
Yongning Formation |
China |
An oak. |
|
Quercus paleodisciformis[109] |
Sp. nov |
In press |
Liu & Jin in Liu et al. |
Late Oligocene |
Yongning Formation |
China |
An oak. |
|
Quercus paleohui[109] |
Sp. nov |
In press |
Liu & Jin in Liu et al. |
Late Oligocene |
Yongning Formation |
China |
An oak. |
|
Quercus yongningensis[109] |
Sp. nov |
In press |
Liu & Jin in Liu et al. |
Late Oligocene |
Yongning Formation |
China |
An oak. |
Malpighiales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Belenocarpa[110] |
Gen. et comb. nov |
Valid |
Hamersma et al. |
Early Oligocene |
Peru |
A member of the family Euphorbiaceae; a new genus for "Jatropha" tertiara Berry. |
||
Elatine odgaardii[111] |
Sp. nov |
Valid |
Bennike in Bennike et al. |
Probably early Pleistocene |
Greenland |
A species of Elatine. Announced in 2022; the final article version was published in 2023. |
||
Mammeoxylon beylikduezuense[112] |
Sp. nov |
In press |
Akkemik et al. |
Late Oligocene-Early Miocene |
İstanbul Formation |
Turkey |
A Mammea relative wood morphospecies |
|
Mammeoxylon paramericana[112] |
Comb. nov |
In press |
(Nelson & Jud) Akkemik & D. Mantzouka |
Miocene |
Panama |
A Mammea relative wood morphospecies |
||
Parinari hilliana[113] |
Sp. nov |
Valid |
Grote in Grote, Duangkrayom & Jintasakul |
Late Miocene |
Tha Chang beds |
Thailand |
A species of Parinari. |
|
Parinari khoratensis[113] |
Sp. nov |
Valid |
Grote in Grote, Duangkrayom & Jintasakul |
Late Miocene |
Tha Chang beds |
Thailand |
A species of Parinari. |
|
Plukenetia minima[114] |
Sp. nov |
In press |
Poinar |
Miocene |
Dominican Republic |
A species of Plukenetia. |
Malvales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Malvacipolloides deccanensis[115] |
Sp. nov |
Manchester et al. |
Late Cretaceous-Paleocene (Maastrichtian–Danian) |
India |
A member of the family Malvaceae. |
|||
Malvacipolloides intertrappea[115] |
Sp. nov |
Manchester et al. |
Late Cretaceous-Paleocene (Maastrichtian–Danian) |
Deccan Intertrappean Beds |
India |
A member of the family Malvaceae. |
||
Thespesia neopopulnea[116] |
Sp. nov |
Valid |
Hazra, Mahato & Khan in Hazra et al. |
Pliocene |
Rajdanda Formation |
India |
A species of Thespesia. |
Malvalean research
- A study on the evolutionary history of Dipterocarpaceae, as indicated by biogeography of pollen fossils from Africa and India, molecular data and fossil amber records, is published by Bansal et al. (2022).[117]
Myrtales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Hemitrapa zhangpuensis[118] |
Sp. nov |
Dong et al. |
Miocene |
China |
A member of the family Lythraceae belonging to the subfamily Trapoideae. |
|||
Myrtineoxylon hoffmannae[56] |
Sp. nov |
Announced |
Pujana et al. |
Oligocene |
San José Formation |
Chile |
A myrtaceous wood morphospecies. |
|
Trapa natanifolia[119] |
Sp. nov |
Han & Jia in Han et al. |
Late Eocene |
Bailuyuan Formation |
China |
|||
Trapa qaidamensis[120] |
Sp. nov |
Cai et al. |
Miocene |
Shangyoushashan Formation |
China |
A water caltrop. |
Oxalidales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Ceratopetalum suciensis[121] |
Sp nov |
In press |
Tang, Smith, & Atkinson |
Cedar District Formation |
United States |
A Cunoniaceous species. |
||
Connaroxylon[122] |
Gen. et sp. nov |
Valid |
Baas et al. |
Cretaceous |
India |
A probable Connaraceous wood morphotaxon. |
||
Cunoniocarpa[124] |
Gen. et sp. nov |
Valid |
Matel et al. |
Early Eocene |
Argentina |
A member of Cunoniaceae. |
||
Racemofructus[124] |
Gen. et sp. nov |
Valid |
Matel et al. |
Early Eocene |
Huitrera Formation |
Argentina |
A member of Cunoniaceae. |
|
Weinmannioxylon trichospermoides[56] |
Sp. nov |
Announced |
Pujana et al. |
Oligocene |
San José Formation |
Chile |
A cunoniaceous wood morphospecies. |
Oxalidalean research
Tand, Smith, and Atkinson describe the first North American instance of the previously Paleo-Antarctic Rainforest Lineage Cunoniaceae fruits from Sucia Island. Previously considered solely a Gondwanan family, the new species indicate a complex geographic history for the group.[121]
Rosales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Eophylica[125] |
Gen. et sp. nov |
Valid |
Shi et al. |
Cretaceous |
Myanmar |
A rhamnaceous floral morphotaxon. |
||
Ficoxylon fusiforme[126] |
Sp. nov |
Valid |
El-Noamani |
Taref Formation |
Egypt |
A member of the family Moraceae. |
||
Ficus fujianensis[127] |
Sp. nov |
In press |
Dong et al. |
Miocene |
China |
A species of Ficus. |
||
Ficus zhangpuensis[127] |
Sp. nov |
In press |
Dong et al. |
Miocene |
China |
A species of Ficus. |
||
Ventilago pliocenica[128] |
Sp. nov |
Hazra et al. |
Pliocene |
India |
A species of Ventilago. |
|||
Ventilago siwalika[128] |
Sp. nov |
Hazra et al. |
Miocene |
India |
A species of Ventilago. |
Sapindales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Barkleya[129] |
Gen. et comb. nov |
Valid |
Manchester & Judd |
Eocene |
United States |
An anacardiaceous samara. |
||
Canarium haominiae[130] |
Sp. nov |
In press |
Yin et al. |
Miocene |
China |
A species of Canarium. |
||
Canarium maomingense[131] |
Sp. nov |
Xiang & Jin in Xiang et al. |
Late Pleistocene |
Maoming Basin |
China |
A species of Canarium. |
||
Choerospondias mioaxillaris[132] |
Sp. nov |
Xiao & Wu in Xiao et al. |
Miocene |
Shengxian Formation |
China |
A species of Choerospondias. |
||
Choerospondias tiantaiensis[132] |
Sp. nov |
Xiao & Wu in Xiao et al. |
Miocene |
Shengxian Formation |
China |
A species of Choerospondias. |
||
Grimmipollis[133] |
Gen. et sp. nov |
Huang, Morley & Hoorn in Huang et al. |
Eocene |
Yaw Formation |
Myanmar |
A member of the family Sapindaceae. Genus includes new species G. burmanica. |
||
Koelreuteria kvacekii[134] |
Sp. nov |
Valid |
Chen, Del Rio & Su in Chen et al. |
Eocene |
Niubao Formation |
China |
A species of Koelreuteria. |
|
Loxopteroides[135] |
Gen. et sp. nov |
In press |
Manchester & Judd |
Eocene |
Ione Formation |
United States |
A member of the family Anacardiaceae. Genus includes new species L. weeksae. |
|
Vaudoisia[136] |
Gen. et comb. nov |
Valid |
Strullu-Derrien et al. |
Eocene |
France |
A fruit of likely sapindalean affinity; a new genus for "Juglandicarya" gruetii Vaudois-Miéja (1976). |
Other Eudicots
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Zlatkovia[137] |
Gen. et sp. nov |
In press |
Rothwell & Stockey |
Late Cretaceous |
St. Mary River Formation |
Canada |
An aquatic eudicot. |
Other angiosperms
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Archaebuda[138] |
Gen. et sp. nov |
Chen & Wang |
China |
A flower bud of an early angiosperm. Genus includes new species A. lingyuanensis. |
||||
Ascarinophyllum[139] |
Gen. et sp. nov |
Announced 2022 |
Čepičková & Kvaček |
Czech Republic |
A Basal angiosperm leaf morphogenus |
|||
Covidifructus[140] |
Gen. et sp. nov |
Valid |
Heřmanová et al. |
Klikov Formation |
Czech Republic |
An angiosperm fruit of uncertain affinities, with similarities to the family Dilleniaceae. |
||
Elasmostemon[67] |
Gen. et sp. nov |
Valid |
Friis et al. |
Early Cretaceous (Aptian-Albian) |
Almargem Formation |
Portugal |
A flowering plant of uncertain position at the level of ANA-grade angiosperms-Chloranthaceae-magnoliids. Genus includes new species E. paisii. |
|
Endressistemon[67] |
Gen. et sp. nov |
Valid |
Friis et al. |
Early Cretaceous (Aptian-Albian) |
Almargem Formation |
Portugal |
A flowering plant of uncertain position at the level of ANA-grade angiosperms-Chloranthaceae-magnoliids. Genus includes new species E. cateficensis. |
|
Fairlingtonia microgyna[141] |
Sp. nov |
Du et al. |
Early Cretaceous |
Zhonggou Formation |
China |
A herbaceous eudicot. |
||
Florigerminis[142] |
Gen. et sp. nov |
In press |
Cui et al. |
Middle-Late Jurassic |
Jiulongshan Formation |
China |
A possible flower bud. |
|
Gansupeltata[143] |
Gen. et sp. nov |
Valid |
Wu et al. |
Early Cretaceous (Aptian) |
Chijinpu Formation |
China |
An early flowering plant. Genus includes new species G. beishanensis. |
|
Herbifolia[144] |
Gen. et sp. nov |
In press |
Frolov & Enushchenko |
Middle Jurassic (Aalenian) |
Irkutsk Coal Basin |
Russia |
An angiosperm with leaf epidermal structure most similar to those of modern Asparagales and Liliales. Genus includes new species H. antiqua. |
|
Honeytheca[98] |
Gen. et sp. nov |
In press |
Huegele & Manchester |
Paleocene |
Fort Union Formation |
United States |
A flowering plant of uncertain affinities. Genus includes new species H. bighornensis. |
|
Ibericarpus[67] |
Gen. et sp. nov |
Valid |
Friis et al. |
Early Cretaceous (Aptian-Albian) |
Almargem Formation |
Portugal |
A flowering plant of uncertain position at the level of ANA-grade angiosperms-Chloranthaceae-magnoliids. Genus includes new species I. cuneiformis. |
|
Lingyuananthus[145] |
Gen. et sp. nov |
Wang |
Early Cretaceous (Barremian–Aptian) |
Yixian Formation |
China |
An early angiosperm. Genus includes new species L. inexpectus. |
||
Phylica piloburmensis[125] |
Sp. nov |
Valid |
Shi et al. |
Cretaceous |
Burmese amber |
Myanmar |
A flowering plant of uncertain affinities. Originally described as a species of Phylica. Oskolski et al. (2024) interpreted it as a flowering plant with an affinity to Rhamnaceae, possibly to an extint basal lineage;[146] on the other hand Beurel et al. (2024) interpreted it as more likely to have lauralean affinities, and made it the type species of the separate genus Nothophylica.[147] |
|
Santaniella[148] |
Gen. et 2 sp. nov |
Gobo et al. |
Brazil |
Originally described as a member or a relative of the family Ranunculaceae, but subsequently considered to be a mesangiosperm of uncertain affinities, possibly a magnoliid.[149] Genus includes new species S. lobata and S. acuta. |
||||
Todziaphyllum saportanum[139] |
Comb. nov |
Announced |
(Velenovský) Čepičková & Kvaček |
Czech Republic |
A Basal angiosperm leaf morphogenus |
|||
Tolmania[150] |
Gen. et sp. nov |
Valid |
Edmonds, Stockey & Rothwell |
Late Cretaceous (Maastrichtian) |
Canada |
An aquatic dicot. Genus includes new species T. aquatica. |
||
Valvidistemon[67] |
Gen. et sp. nov |
Valid |
Friis et al. |
Early Cretaceous (Aptian-Albian) |
Almargem Formation |
Portugal |
A flowering plant of uncertain position at the level of ANA-grade angiosperms-Chloranthaceae-magnoliids. Genus includes new species V. globiferus. |
General angiosperm research
- Surangea mohgaoensis, originally interpreted as fern megaspores, is reinterpreted as angiosperm fruits by Ramteke et al. (2022).[151]
- Zhang et al. (2022) describe rich assemblages of spiny plant fossils from the Eocene (Bartonian) Niubao Formation (Tibet, China), preserving seven different spine morphologies, and interpret this finding as evidence of the presence of a diversity of spiny plants in Eocene central Tibet, as well as evidence of a rapid diversification of spiny plants in Eurasia around that time.[152]
- A preliminary report on a new fossil angiosperm flora of the Lesvos Petrified Forest at Akrocheiras east of Sigri on Lesbos, Greece is given by Kafetzidou et al. Preliminary taxa identifications are given and commentary on the climactic implications are made.[153]
- A study aiming to determine the relationship between past atmospheric CO2 and temperature fluctuations and the shifts in diversification rates of Poaceae and Asteraceae is published by Palazzesi et al. (2022).[154]
Other plants
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Aegianthus irkutensis[155] |
Sp. nov |
In press |
Nosova & Tekleva |
Middle Jurassic |
Prisayan Formation |
Russia |
Pollen cone with pollen of ginkgoalean or gnetophytalean affinity. |
|
Aysenoxylon[56] |
Gen et sp nov |
Announced |
Pujana et al. |
Oligocene |
San José Formation |
Chile |
A wood morphospecies of uncertain affinity. |
|
Bryokhutuliinia ignatovii[156] |
Sp. nov |
Valid |
Frolov, Kazanovsky & Enushchenko |
Early Jurassic (Toarcian) |
Middle Subformation of Prisayan Formation |
A member of Bryopsida of uncertain affinities. |
||
Combina[157] |
Gen. et sp. nov |
Santos & Wang |
Middle Triassic (Anisian) |
Calcena Formation |
Spain |
A cone-like reproductive organ of a seed plant. Genus includes new species C. triassica. |
||
Dioonitocarpidium rossicum[158] |
Sp. nov |
Valid |
Gomankov |
Permian |
Russia |
A member of Cycadales. |
||
Europoxylon garapensis[159] |
Sp. nov |
In press |
Conceição et al. |
Pedra de Fogo Formation |
Brazil |
A gymnosperm. |
||
Jarudia[160] |
Gen. et sp. nov |
Shi et al. |
Early Cretaceous |
Huolinhe Formation |
China |
A seed-bearing structure of a corystosperm seed fern. Genus includes new species J. zhoui. |
||
Sp. nov |
Barbacka in Barbacka et al. |
Early Jurassic (Hettangian) |
Zagaje Formation |
Poland |
Cuticle of a seed fern. |
|||
Lesleya ceriacoi[161] |
Sp. nov |
In press |
Correia et al. |
Carboniferous (Gzhelian) |
Douro Carboniferous Basin |
Portugal |
An early gymnosperm. |
|
Palaeodichelyma kiritchkovae[156] |
Sp. nov |
Valid |
Frolov, Kazanovsky & Enushchenko |
Early Jurassic (Pliensbachian) |
Lower Subformation of Prisayan Formation |
A member of Bryopsida of uncertain affinities. |
||
Paragigantopteris[162] |
Gen. et sp. nov |
In press |
Ma et al. |
Permian (Wuchiapingian) |
Lungtan Formation |
China |
A gigantopterid. Genus includes new species P. qingloongensis. |
|
Pauthecophyton hezhangensis[163] |
Sp. nov |
Wang et al. |
Danlin Formation |
China |
A euphyllophyte of uncertain affinities. |
|||
Piterophyton[164] |
Gen. et sp. nov |
Valid |
Naugolnykh |
Ordovician |
A rhyniophyte of uncertain affinities. The type species is P. caudatum. |
|||
Polycanaloxylon[159] |
Gen. et sp. nov |
In press |
Conceição et al. |
Permian (Cisuralian) |
Pedra de Fogo Formation |
Brazil |
A gymnosperm. Genus includes new species P. merlottii. |
|
Sp. nov |
Colston, Landaw & Tomescu |
Devonian (Emsian) |
Battery Point Formation |
Canada |
A member of the group Trimerophytopsida. |
|||
Renbernia[166] |
Gen. et sp. nov |
In press |
Friis, Crane & Pedersen |
Early Cretaceous (Albian) |
Potomac Group |
United States |
A seed plant similar to Brenneria potomacensis. Genus includes new species R. zhoui. |
|
Rhyniotaenium[167] |
Gen. et sp. nov |
In press |
Krings |
Early Devonian |
Rhynie chert |
United Kingdom |
An alga, probably a green alga belonging to the family Mesotaeniaceae. Genus includes new species R. velatum. |
|
Sinoglossa[168] |
Gen. et sp. nov |
Valid |
Zhang et al. |
Linjia Formation |
China |
A member of Glossopteridales. The type species is S. sunii. |
||
Taimyria[169] |
Gen. et sp. nov |
Valid |
Naugolnykh & Mogutcheva |
Early Triassic (Induan) |
Keshinskian/Keshinskaya Formation |
A member of Peltaspermales belonging to the family Angaropeltaceae. Genus includes new species T. triassica. |
||
Taungurungia[170] |
Gen. et sp. nov |
Valid |
McSweeney, Shimeta & Buckeridge |
Norton Gully Sandstone Formation |
Australia |
A plant of uncertain affinities, similar to members of Zosterophyllopsida. Genus includes new species T. garrattii. |
||
Teyoua[171] |
Gen. et sp. nov |
In press |
Huang, Liu & Xue |
Mangshan Group |
China |
A polysporangiate land plant. Genus includes new species T. antrorsa. |
||
Traskia[172] |
Gen. et sp. nov |
Valid |
Rothwell et al. |
Jurassic |
Canada |
A stem-cycad. Genus includes new species T. maahlae. |
||
Vetiplanaxis obtusus[173] |
Sp. nov |
In press |
Li et al. |
Cretaceous |
Burmese amber |
Myanmar |
A moss belonging to the group Hypnodendrales. |
|
Wilhowia[174] |
Gen. et sp. nov |
Valid |
Gensel |
Devonian (Emsian) |
Battery Point Formation |
Canada |
A basal euphyllophyte. Genus includes new species W. phocarum. |
|
Xadzigacalix[175] |
Gen. et sp. nov |
Valid |
Klymiuk, Rothwell & Stockey |
Early Cretaceous (Valanginian) |
Canada |
A gymnosperm of uncertain phylogenetic placement, possibly having affinities with gnetophytes or angiosperms. Genus includes new species X. quatsinoensis. |
||
Xinhangia[176] |
Gen. et sp. nov |
Yang & Wang |
Devonian (Famennian) |
Wutong Formation |
China |
A fern-like plant of uncertain affinities. Genus includes new species X. spina. |
Other plant research
- A study on the xylem development in Leptocentroxyla, and on its implications for the knowledge of the evolution of pith, is published by Tomescu & McQueen (2022).[177]
- Decombeix et al. (2022) report evidence of tylosis formation in permineralized wood of Dameria hueberi from the Tournaisian of Australia .[178]
- The first comprehensive crown reconstruction of Medullosa stellata var. typica, based on data from a specimen from the Chemnitz petrified forest (Germany ), is presented by Luthardt et al. (2022).[179]
- Fossil material of Rhabdotaenia is reported from the Permian Umm Irna Formation (Jordan) by Blomenkemper et al. (2022), representing the northernmost occurrence of this Gondwanan leaf type reported to date.[180]
Palynology
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Anapiculatisporites radiatus[181] |
Sp. nov |
Valid |
Playford |
Carboniferous (Mississippian) |
Lyall Formation |
Australia |
A trilete spore. |
|
Apricasporites[181] |
Gen. et sp. nov |
Valid |
Playford |
Carboniferous (Mississippian) |
Lyall Formation |
Australia |
A trilete spore. Genus includes new species A. cancellosus. |
|
Camptotriletes inaequabilis[181] |
Sp. nov |
Valid |
Playford |
Carboniferous (Mississippian) |
Lyall Formation |
Australia |
A trilete spore. |
|
Camptotriletes suggrandis[181] |
Sp. nov |
Valid |
Playford |
Carboniferous (Mississippian) |
Lyall Formation |
Australia |
A trilete spore. |
|
Convolutispora inreligata[181] |
Sp. nov |
Valid |
Playford |
Carboniferous (Mississippian) |
Lyall Formation |
Australia |
A trilete spore. |
|
Endosporites circumsaeptus[181] |
Sp. nov |
Valid |
Playford |
Carboniferous (Mississippian) |
Lyall Formation |
Australia |
A trilete spore. |
|
Foveosporites magnus[181] |
Sp. nov |
Valid |
Playford |
Carboniferous (Mississippian) |
Lyall Formation |
Australia |
A trilete spore. |
|
Granulatisporites commutabilis[181] |
Sp. nov |
Valid |
Playford |
Carboniferous (Mississippian) |
Lyall Formation |
Australia |
A trilete spore. |
|
Paxillitriletes permicus[182] |
Sp. nov |
In press |
Sui, McLoughlin & Feng in Sui et al. |
Permian (Wuchiapingian–Changhsingian) |
Xuanwei Formation |
China |
A lycophyte megaspore. |
|
Sergipea multipapillata[183] |
Sp. nov |
Hu et al. |
Early Cretaceous |
Bongor Basin |
Chad |
A gymnosperm pollen. |
||
Volkheimerites[184] |
Gen. et sp. nov |
In press |
Narváez et al. |
Paleocene (Danian) |
Salamanca Formation |
Argentina |
Pollen of a flowering plant. |
|
Yezopollis[185] |
Gen. et sp. nov |
In press |
Legrand, Yamada & Nishida |
Late Cretaceous (Cenomanian–Turonian) |
Mikasa Formation |
Japan |
A Normapolles-type flowering plant pollen. Genus includes new species Y. mikasaensis. |
Research
- Review of the studies on the origin of the land flora is published by Bowman (2022).[186]
- A study on the evolution of body plans of members of Viridiplantae, based on a review of the fossil record, molecular data and developmental biology, is published by Niklas & Tiffney (2022).[187]
- A study on the biodiversity of land plants at the equator during their first major diversification in the Late Silurian–Early Devonian is published by Wellman et al. (2022).[188]
- A study on the evolution of heterospory during the Devonian is published by Leslie & Bonacorsi (2022).[189]
- Seven coniferous nurse logs that have been colonized by conifer and equisetalean roots are reported from four Permian intervals in the Ordos Basin (China ) by Feng et al. (2022), indicating that conifer tree stems probably functioned as hosts to both conspecific and interspecific seedlings in the Cathaysian Flora.[190]
- A study on the impact of the Intertropical Convergence Zone in the emerging South Atlantic region on Aptian plant communities from eight Brazilian sedimentary basins is published by Carvalho et al. (2022), who report evidence of an overall predominance of xerophytic plants, attesting to more dry conditions, and of a humidification trend towards the end of the late Aptian resulting in the predominance of hydrophytes, hygrophytes, tropical lowland flora and upland flora, indicative of prevalence of lowland and montane rainforests.[191]
- A study on the distribution and relative abundances of major plant groups from the Albian Gates Formation (Alberta, Canada ) is published by Kalyniuk et al. (2022).[192]
- A study on the relationship between whole-genome duplication, seed traits and the selectivity of the survival of plants during the Cretaceous–Paleogene extinction event is published by Berry & Jaganathan (2022).[193]
- New Oligocene flora is described from the Dong Ho Formation (Vietnam) by Huang et al. (2022), who interpret the studied fossils as evidence of long-term environmental, floristic and vegetational stability in this region since the Paleogene.[194]
- Gentis et al. (2022) describe fossil wood specimens from the Miocene Natma Formation (Myanmar), representing an assemblage dominated by members of the families Fabaceae and Dipterocarpaceae, interpreted as coming from different types of low altitude forest ecosystems (tropical wet evergreen, tropical dry and deciduous, and tropical littoral), and interpreted as indicative of a monsoonal climate with an alternance of a dry season and a wet season.[195]
- Abundant compression floras dominated by angiosperm leaves are described from two sites of probable Pliocene age in Brunei by Wilf et al. (2022), who interpret these floras as evidence of dipterocarp-dominated lowland rainforests in the Malay Archipelago before the Pleistocene.[196]
- A study on the impact of the extinct Neotropical megafauna on the variability in plant functional traits and biome geography in Central and South America is published by Dantas & Pausas (2022).[197]
- A study on plant material from rock overhangs from mid-late Holocene sites along the Kawarau-Cromwell-Roxburgh Gorges in Central Otago (New Zealand), much of which was likely transported as roosting material or consumed by moa birds, and on its implications for the knowledge of the mid-late Holocene regional vegetation of Central Otago and the knowledge of vegetation changes since mid-late Holocene, is published by Pole (2022).[198]
- A study on the role of hydraulic failure in the evolution of early vascular plants is published by Bouda et al. (2022), suggesting that drought selection played a key role in the diversification of vascular arrangements beginning with the Devonian explosion.[199]
References
- ↑ 1.0 1.1 1.2 Feist, M.; Floquet, M. (2022). "Charophytes from the Upper Cretaceous Castilian marine ramp and continental basins (central northern Spain): fossil assemblages and depositional environments". Cretaceous Research 140: Article 105325. doi:10.1016/j.cretres.2022.105325. Bibcode: 2022CrRes.14005325F.
- ↑ Cao, W.; Li, S.; Li, Q.; Stidham, T. A.; Wan, X.; Ni, X. (2022). "Asian Paleocene charophyte records demonstrate Eocene dispersals from Asia to Europe". Journal of Paleontology 96 (3): 706–714. doi:10.1017/jpa.2021.118. Bibcode: 2022JPal...96..706C.
- ↑ 3.0 3.1 Grgasović, T. (2022). "Taxonomy of the fossil calcareous algae: Revision of genera Physoporella Steinmann and Oligoporella Pia (Dasycladales)". Carnets Geol. 22 (7): 171–310. doi:10.2110/carnets.2022.2207. http://paleopolis.rediris.es/cg/22/07/index.html.
- ↑ LoDuca, S. T.; Meacher, M.; Pepper, P.; Brett, K.; Isotalo, P. A. (2022). "Earltonella fredricksi n. gen n. sp. and Thalassocystis striata (Chlorophyta, Bryopsidales) from the Silurian (Llandoverian) of the Timiskaming outlier, Ontario, Canada". Journal of Paleontology 97 (2): 516–532. doi:10.1017/jpa.2022.86.
- ↑ Torromé, D.; Schlagintweit, F. (2022). "Milanovicella? canadillana sp. nov., an Upper Cretaceous supposedly calcitic Dasycladale (green algae) from the middle Santonian–lower Campanian of northeastern Spain". Cretaceous Research 141: Article 105365. doi:10.1016/j.cretres.2022.105365.
- ↑ Chai, S.; Aria, C.; Hua, H. (2022). "A stem group Codium alga from the latest Ediacaran of South China provides taxonomic insight into the early diversification of the plant kingdom". BMC Biology 20 (1): 199. doi:10.1186/s12915-022-01394-0. PMID 36127662.
- ↑ Vachard, D.; Krainer, K. (2022). "Calcareous algae and foraminifers across the Permian-Triassic boundary interval (uppermost Bellerophon Formation and basal Werfen Formation) in the Dolomites (South Tyrol – Trentino, Italy)". Palaeontographica Abteilung A 324 (1–6): 1–173. doi:10.1127/pala/2022/0128. Bibcode: 2022PalAA.324....1V.
- ↑ Deng, S.; Lu, Y.; Fan, R.; Luo, Z.; Ma, X.; Lyu, D.; Sun, Y. (2022). "Lycopsid Lepacyclotes Emmons from the Middle Triassic of the Ordos Basin, North China and reviews of the genus". Review of Palaeobotany and Palynology 308: 104660. doi:10.1016/j.revpalbo.2022.104660.
- ↑ Herrera, F.; Testo, W. L.; Field, A. R.; Clark, E. G.; Herendeen, P. S.; Crane, P. R.; Shi, G. (2022). "A permineralized Early Cretaceous lycopsid from China and the evolution of crown clubmosses". New Phytologist 233 (5): 2310–2322. doi:10.1111/nph.17874. PMID 34981832.
- ↑ Edwards, D.; Li, C.-S.; Berry, C. M. (2022). "Lower Devonian lycophytes from Sichuan and the paleogeographic context of coeval plant assemblages from South China". International Journal of Plant Sciences 183 (6): 413–431. doi:10.1086/720387. https://orca.cardiff.ac.uk/id/eprint/149767/1/Lower%20Devonian%20Lycophytes%20Final%20Text%20OA.pdf.
- ↑ Spiekermann, R.; Jasper, A.; Pozzebon-Silva, Â.; Carniere, J. S.; Benício, J. R. W.; Guerra-Sommer, M.; Uhl, D. (2022). "Small but not trivial: Nothostigma sepeensis sp. nov., a lycopsid from the Cisuralian (early Permian) of the Paraná basin, Brazil". Journal of South American Earth Sciences 122: 104188. doi:10.1016/j.jsames.2022.104188.
- ↑ Liu, L.; Wang, D.-M.; Zhou, Y.; Qin, M.; Ferguson, D. K.; Meng, M.-C. (2022). "A Late Devonian tree lycopsid with large strobili and isotomous roots". Communications Biology 5 (1): 966. doi:10.1038/s42003-022-03934-4. PMID 36109665.
- ↑ Deng, S.; Lu, Y.; Fan, R.; Ma, X.; Lyu, D.; Luo, Z.; Sun, Y. (2022). "A new species of Pleuromeia (Lycopsid) from the upper Middle Triassic of Northern China and discussion on the spatiotemporal distribution and evolution of the genus". Geobios 75: 1–15. doi:10.1016/j.geobios.2022.10.001. Bibcode: 2022Geobi..75....1D.
- ↑ Prestianni, C.; Rustán, J. J.; Balseiro, D.; Vaccari, N. E. (2022). "Porongodendron minitensis gen. nov. sp. nov. a new lycopsid from the Mississippian of Argentina with adaptations to tundra-like conditions". Botany Letters 169 (4): 527–539. doi:10.1080/23818107.2022.2101515. Bibcode: 2022BotL..169..527P. https://orbi.uliege.be/bitstream/2268/302490/1/Porongodendron%20minitensis%20gen%20nov%20sp%20nov%20a%20new%20lycopsid%20from%20the%20Mississippian%20of%20Argentina%20with%20adaptations%20to%20tundra%20like%20conditions.pdf.
- ↑ 15.0 15.1 15.2 15.3 Li, Y.; Wang, Y.-D.; Nosova, N.; Lu, N.; Xu, Y.-Y. (2022). "Filmy Ferns (Hymenophyllaceae) and Associated Spike-Mosses (Selaginellaceae) from the Mid-Cretaceous Kachin Amber, Myanmar". Biology 11 (11): 1629. doi:10.3390/biology11111629. PMID 36358330.
- ↑ Li, Y.; Li, Y.-D.; Wang, Y.-D.; Schneider, H.; Shi, G.-L. (2022). "Re-appraisal of lacewing mimicry of liverworts from the mid-Cretaceous Kachin amber, Myanmar with a description of Selaginella cretacea sp. nov. (Selaginellales, Selaginellaceae)". Cretaceous Research 133: Article 105143. doi:10.1016/j.cretres.2022.105143. Bibcode: 2022CrRes.13305143L.
- ↑ Gao, X.; Liu, L.; Qin, M.; Zhou, Y.; Mao, L.; Wang, D.-M. (2022). "Re-study of Guangdedendron micrum from the Late Devonian Xinhang forest". BMC Ecology and Evolution 22 (1): Article number 69. doi:10.1186/s12862-022-02021-w. PMID 35606742.
- ↑ Xu, P.; Liu, L.; Wang, D.-M. (2022). "Reinvestigation of the Late Devonian Lycopsid Sublepidodendron grabaui from Anhui Province, South China". Biology 11 (10): 1544. doi:10.3390/biology11101544. PMID 36290447.
- ↑ 19.0 19.1 Feldberg, K.; Schäfer-Verwimp, A.; Li, Y.; Renner, M. A. M. (2022). "Extending the diversity of the bryoflora in Kachin amber (Myanmar), with the description of Radula patrickmuelleri, sp. nov. and R. tanaiensis, sp. nov. (Jungermanniopsida, Porellales, Radulaceae)". Fossil Record 25 (1): 213–230. doi:10.3897/fr.25.82362. https://fr.pensoft.net/article/82362/.
- ↑ Santos, A. A.; Sender, L. M.; Piñuela, L.; García-Ramos, J. C.; Diez, J. B. (2022). "First evidence of Ricciaceae in the Jurassic of the Iberian Peninsula (Asturias, NW Spain): Ricciopsis asturicus sp. nov". Botany Letters 169 (4): 557–567. doi:10.1080/23818107.2022.2124452. Bibcode: 2022BotL..169..557S.
- ↑ 21.0 21.1 Savoretti, A.; Bodnar, J.; Coturel, E. P.; Beltrán, B. (2022). "Fossil bryophytes from the Middle Triassic Sorocayense Group, San Juan Province, central-western Argentina". Ameghiniana 59 (3): 179–200. doi:10.5710/AMGH.26.02.2022.3469. https://www.ameghiniana.org.ar/index.php/ameghiniana/article/view/3469.
- ↑ Wang, Q.; Li, Y.; Feldberg, K.; Wang, Y.-D.; Yang, X.-J. (2022). "Radula heinrichsii (Radulaceae, Porellales), a leafy liverwort from the mid-Cretaceous of Myanmar". Palaeoworld 31 (4): 679–687. doi:10.1016/j.palwor.2022.01.006.
- ↑ Skog, J. E.; Sender, L. M. (2022). "New information and family relationship (Hymenophyllaceae) for the fossil fern genus Acrostichopteris Fontaine and a new species from the Lower Cretaceous (Albian) of Spain". American Journal of Botany 109 (9): 1443–1455. doi:10.1002/ajb2.16050. PMID 36045579.
- ↑ Trevisan, C.; Dutra, T.; Ianuzzi, R.; Sander, A.; Wilberger, T.; Manríquez, L.; Mansilla, H.; Leppe, M. (2022). "Coniopteris antarctica sp. nov. (Pteridophyta) and associated plant assemblage from the Upper Cretaceous of Rip Point, Nelson Island, Antarctica". Cretaceous Research 136: Article 105185. doi:10.1016/j.cretres.2022.105185. Bibcode: 2022CrRes.13605185T.
- ↑ Zhou, W.; Li, D.; Pšenička, J.; Boyce, C. K.; Wang, S.; Wang, J. (2022). "Diodonopteris virgulata sp. nov., a climbing fern from the early Permian Wuda Tuff Flora and its paleoecology". Review of Palaeobotany and Palynology 304: Article 104699. doi:10.1016/j.revpalbo.2022.104699. Bibcode: 2022RPaPa.30404699Z.
- ↑ Pšenička, J.; Zhou, W.; Boyce, C. K.; Votočková Frojdová, J.; Bek, J.; Opluštil, S.; Wang, J. (2022). "Two new leptosporangiate ferns from in situ volcanic ash of the Whetstone Horizon (Kladno Formation, Pennsylvanian), Pilsen Basin, Czech Republic". Review of Palaeobotany and Palynology 299: Article 104608. doi:10.1016/j.revpalbo.2022.104608. Bibcode: 2022RPaPa.29904608P.
- ↑ Ren, W.-X.; Wu, G.-T.; Han, L.; Hua, Y.-F.; Sun, B.-N. (2023). "New species of fossil Dryopterites from the Lower Cretaceous in the Zhongkouzi Basin, Beishan area, Northwest China, and its geological significance". Historical Biology: An International Journal of Paleobiology 35 (1): 84–91. doi:10.1080/08912963.2021.2022135. Bibcode: 2023HBio...35...84R.
- ↑ Cantrill, D. J.; Ohlsen, D.; McCurry, M. R.; Frese, M. (2022). "Gleichenia nagalingumiae sp. nov., a remarkably well-preserved fossil species with in situ spores from the Miocene of Australia". Review of Palaeobotany and Palynology 310: 104823. doi:10.1016/j.revpalbo.2022.104823.
- ↑ Li, Y.; Ebihara, A.; Nosova, N.; Tan, Z.-Z.; Cui, Y.-M. (2023). "First Fossil Record of Trichomanes sensu lato (Hymenophyllaceae) from the Mid-Cretaceous Kachin Amber, Myanmar". Life 13 (8): 1709. doi:10.3390/life13081709. PMID 37629566. Bibcode: 2023Life...13.1709L.
- ↑ Long, X.; Peng, Y.; Zhang, H.; Fan, Y.; Shi, C.; Wang, S. (2022). "Microlepia burmasia sp. nov., a new fern species from mid-Cretaceous Kachin amber of norther Myanmar (Dennstaedtiaceae, Polypodiales)". Cretaceous Research 143: 105417. doi:10.1016/j.cretres.2022.105417.
- ↑ Nishida, H.; Stockey, R. A.; Takebe, Y.; Legrand, J.; Yamada, T. (2022). "Mikasapteris rothwellii gen. et sp. nov., a Permineralized Fertile Pinnule of a Probable Stem Polypod from the Late Cretaceous of Hokkaido, Japan". International Journal of Plant Sciences 183 (7): 576–586. doi:10.1086/721262.
- ↑ Morales-Toledo, J.; Mendoza-Ruiz, A. C.; Cevallos-Ferriz, S. R. S. (2022). "The ferns in a new Middle Jurassic locality from the Otlaltepec Formation, Puebla, Mexico". Earth and Environmental Science Transactions of the Royal Society of Edinburgh 113 (2): 127–140. doi:10.1017/S1755691022000093.
- ↑ Barbosa, C.; Correia, P.; Muchagata, J.; Domingos, R.; Sá, A. A. (2022). "Phyllotheca douroensis sp. nov., a new equisetalean fossil-species from the Douro Carboniferous Basin (Upper Pennsylvanian; NW Portugal): palaeobiogeographical, systematic and evolutionary implications". Biosis: Biological Systems 3 (1): e001. doi:10.37819/biosis.003.01.0162. https://eaapublishing.org/journals/index.php/biosis/article/view/162.
- ↑ Zhang, B.; Li, D.; Wan, M.; Zhou, W.; Pšenička, J.; Bek, J.; Wang, J. (2022). "A new species of Scolecopteris (Marattiales, Psaroniaceae) from the early Permian Wuda Tuff Flora". Review of Palaeobotany and Palynology 304: Article 104717. doi:10.1016/j.revpalbo.2022.104717. Bibcode: 2022RPaPa.30404717Z.
- ↑ Deshmukh, U. B. (2022). "Wolfeniana, a new replacement name for fossil Pteridophyte genus Gillespiea Erwin & Rothwell (Stauropteridales)". Phytotaxa 566 (2): 249–250. doi:10.11646/phytotaxa.566.2.11.
- ↑ Li, D.; Zhou, W.; Wan, M.; Wang, S.; Wang, J. (2022). "Leaf scar and petiole anatomy reveal Pecopteris lativenosa Halle is a marattialean fern". Geobios 72–73: 37–53. doi:10.1016/j.geobios.2022.07.004. Bibcode: 2022Geobi..72...37L.
- ↑ Steven R. Manchester; Xiaoqing Zhang; Carol L. Hotton; Scott Wing; Peter R. Crane (2022). "Two-seeded cones of probable gnetalean affinity from the Morrison Formation (Late Jurassic) of Utah and Colorado, USA". Acta Palaeobotanica 62 (2): 77–92. doi:10.35535/acpa-2022-0006.
- ↑ Ren, W.-X.; Tang, D.-L.; Wang, Z.-E.; Sun, B.-N.; Wu, J.-Y.; Ding, S.-T. (2022). "Dichoephedra beishanensis gen. et sp. nov., a new ephedroid plant with unusual branching patterns from the Lower Cretaceous of northwestern China". Cretaceous Research 138: Article 105284. doi:10.1016/j.cretres.2022.105284. Bibcode: 2022CrRes.13805284R.
- ↑ 39.0 39.1 Saadatnejad, J. (2022). "Two new species of Dictyozamites (Bennettitales) from the Rhaetic Kalariz Formation, North of Iran". Revista Brasileira de Paleontologia 25 (2): 135–143. doi:10.4072/rbp.2022.2.03.
- ↑ Pott, C.; Takimoto, H. (2022). "Kimuriella gen. nov. (Bennettitales), a Whole-Plant Bennettite from the Oxfordian (Upper Jurassic) Tochikubo Formation of Shidazawa, Minamisōma, Fukushima Prefecture, Northeast Japan". Paleontological Research 26 (2): 158–186. doi:10.2517/PR200020.
- ↑ Kvaček, J. (2022). "New species of Zamites from the Cenomanian of the Bohemian Cretaceous Basin". Fossil Imprint 78 (2): 425–431. doi:10.37520/fi.2022.017. http://fi.nm.cz/en/clanek/new-species-of-zamites-from-the-cenomanian-of-the-bohemian-cretaceous-basin-2/.
- ↑ 42.0 42.1 Sun, Y.; Deng, S.; Lu, Y.; Fan, R.; Ma, X.; Lü, D. (2022). "Emendation of the Triassic plant species Glossophyllum shensiense (Ginkgoales) with a review of the genus Glossophyllum Kräusel". Review of Palaeobotany and Palynology 301: 104657. doi:10.1016/j.revpalbo.2022.104657. Bibcode: 2022RPaPa.30104657S.
- ↑ Nosova, N.; Kostina, E. (2022). "New findings of the female reproductive structures of Umaltolepis Krassilov and associated leaves of Pseudotorellia Florin in the Lower Cretaceous of Mongolia". Review of Palaeobotany and Palynology 304: Article 104696. doi:10.1016/j.revpalbo.2022.104696. Bibcode: 2022RPaPa.30404696N.
- ↑ 44.0 44.1 Dong, C.; Shi, G.; Zhang, X.; Wang, Z.; Wang, Y. (2022). "Middle-Late Jurassic fossils from Northeast China confirm the affiliation of Umaltolepis seed-bearing structure and Pseudotorellia leaves". Review of Palaeobotany and Palynology 306: Article 104763. doi:10.1016/j.revpalbo.2022.104763. Bibcode: 2022RPaPa.30604763D.
- ↑ Frolov, A. O.; Mashchuk, I. M. (2022). "New Discoveries and New Combinations of the Fossil-genus Ginkgoites Seward (Ginkgoales) from the Lower and Middle Jurassic of East Siberia (Russia)". Phytotaxa 567 (1): 49–60. doi:10.11646/phytotaxa.567.1.4.
- ↑ Bodnar, J.; Sagasti, A. J.; Correa, G. A.; Miranda, V.; Medina, F. (2022). "Araucariaceous fossil woods from the Upper Triassic Ischigualasto Formation (San Juan Province, Argentina): paleofloristic and paleoclimatic implications". Journal of Paleontology 96 (6): 1354–1378. doi:10.1017/jpa.2022.45. Bibcode: 2022JPal...96.1354B.
- ↑ Cheng, S.; Xu, S.; Li, F.; Tian, N. (2022). "Occurrence of Brachyoxylon wood from the Upper Jurassic of Beijing, northern China". Historical Biology: An International Journal of Paleobiology 35 (10): 1941–1949. doi:10.1080/08912963.2022.2127355.
- ↑ Mendes, M. M.; Kvaček, J. (2022). "Frenelopsis antunesii sp. nov., a new cheirolepidiaceous conifer from the Lower Cretaceous of Figueira da Foz Formation in western Portugal". Review of Palaeobotany and Palynology 300: Article 104643. doi:10.1016/j.revpalbo.2022.104643. Bibcode: 2022RPaPa.30004643M.
- ↑ Kvaček, J.; Mendes, M. M. (2022). "A new species of the cheirolepidiaceous conifer Pseudofrenelopsis from the Lower Cretaceous of Figueira da Foz Formation, Portugal". Review of Palaeobotany and Palynology 309: 104821. doi:10.1016/j.revpalbo.2022.104821.
- ↑ Sadowski, E.-M.; Schmidt, A. R.; Kunzmann, L. (2022). "The hyperdiverse conifer flora of the Baltic amber forest". Palaeontographica Abteilung B 304 (1–4): 1–148. doi:10.1127/palb/2022/0078. Bibcode: 2022PalAB.304....1S.
- ↑ Andruchow-Colombo, A.; Gandolfo, M. A.; Escapa, I. H.; Cúneo, N. R. (2022). "New genus of Cupressaceae from the Upper Cretaceous of Patagonia (Argentina) fills a gap in the evolution of the ovuliferous complex in the family". Journal of Systematics and Evolution 60 (6): 1417–1439. doi:10.1111/jse.12842.
- ↑ Shi, X.; Sun, Y.; Meng, F.; Yu, J.; Lan, Z. (2022). "Early Cretaceous Keteleerioxylon Wood in the Songliao Basin, Northeast China, and Its Geographic and Environmental Implications". Biology 11 (11): 1624. doi:10.3390/biology11111624. PMID 36358325.
- ↑ Dong, J.; Li, Z.; Gao, J.; Wang, Q.; Sun, B. (2022). "A New Fossil Species of Nothotsuga from the Mula Basin, Litang County, Sichuan Province and Its Paleoclimate and Paleoecology Significance". Biology 12 (1): 46. doi:10.3390/biology12010046. PMID 36671738.
- ↑ Bazhenova, N. V.; Wu, X.-K.; Kodrul, T. M.; Maslova, N. P.; Tekleva, M. V.; Xu, S.-L.; Jin, J.-H. (2022). "Mummified Seed Cones of Pinus prehwangshanensis sp. nov. (Subgenus Pinus, Pinaceae) From the Upper Pleistocene of Guangdong, South China: Taxonomical Significance and Implication for Phytogeography and Ecology". Frontiers in Ecology and Evolution 10: Article 900687. doi:10.3389/fevo.2022.900687.
- ↑ Li, X.-C.; Hu, Y.; Zhang, X.; Xiao, L.; Liang, L.-N.; Zhang, R.-Z.; Qiao, L. (2022). "A novel seed cone of Pinus from the Miocene of coastal Southeast China indicates kinship with Southeast Asian pines". Plant Diversity 45 (6): 732–747. doi:10.1016/j.pld.2022.12.002. PMID 38197003.
- ↑ 56.0 56.1 56.2 56.3 56.4 56.5 Pujana, R. R.; Bostelmann, J. E.; Ugalde, R. A.; Riquelme, M. P.; Torres, T. (2022). "Fossil woods from the Pato Raro Heights, Patagonia National Park, Aysén, Chile: A new paleobotanical assemblage at the Oligocene climate transition". Review of Palaeobotany and Palynology 309: 104814. doi:10.1016/j.revpalbo.2022.104814.
- ↑ Castañeda, C. (2022). "Podocarpus (Podocarpaceae) wood from Miocene rocks in Panotla, Tlaxcala, Mexico". Journal of South American Earth Sciences 121: 104118. doi:10.1016/j.jsames.2022.104118.
- ↑ Jiang, Z.; Tian, N.; Wang, Y.; Li, Y.; Zheng, S.; Xie, A.; Zhu, Y. (2022). "A new structurally preserved fossil umbrella pine from the Jurassic of East Asia". Geological Journal 57 (9): 3521–3537. doi:10.1002/gj.4467. Bibcode: 2022GeolJ..57.3521J.
- ↑ Wang, X.; Yang, Y.; Hua, Y.; Sun, B.; Miao, Y. (2022). "Hexicladia, a new genus of the Cisuralian conifer from Hexi Corridor, China". Review of Palaeobotany and Palynology 308: 104789. doi:10.1016/j.revpalbo.2022.104789.
- ↑ 60.0 60.1 Barbacka, M.; Górecki, A.; Pacyna, G.; Pieńkowski, G.; Philippe, M.; Bóka, K.; Ziaja, J.; Jarzynka, A. et al. (2022). "Early Jurassic coprolites: insights into palaeobotany and the feeding behaviour of dinosaurs". Papers in Palaeontology 8 (2): e1425. doi:10.1002/spp2.1425. Bibcode: 2022PPal....8E1425B.
- ↑ Cai, Y.; Zhang, H.; Feng, Z.; Gou, X.; Byambajav, U.; Zhang, Y.; Yuan, D.; Qie, W. et al. (2022). "A new conifer stem, Ductoagathoxylon tsaaganensis, from the Upper Permian of the South Gobi Basin, Mongolia and its palaeoclimatic and palaeoecological implications". Review of Palaeobotany and Palynology 304: Article 104719. doi:10.1016/j.revpalbo.2022.104719. Bibcode: 2022RPaPa.30404719C.
- ↑ Forte, G.; Kustatscher, E.; Nowak, H.; Van Konijnenburg-van Cittert, J. H. A. (2022). "Conifer Cone and Dwarf Shoot Diversity in the Anisian (Middle Triassic) of Kühwiesenkopf/Monte Prà della Vacca (Dolomites, Northeastern Italy)". International Journal of Plant Sciences 183 (9): 729–767. doi:10.1086/722036.
- ↑ Kerp, H.; Bödige, H.; Bomfleur, B.; Schneider, J. W. (2022). "First records of the conifers Majonica and Ortiseia from the German Zechstein (upper Permian) of east Thuringia and west Saxony, Germany". Botany Letters 169 (4): 423–441. doi:10.1080/23818107.2022.2122555. Bibcode: 2022BotL..169..423K.
- ↑ Bodnar, J.; Cuesta, V.; Escapa, I. H.; Nunes, G. C. (2022). "Exploring the first appearance of the main derived conifer families of Gondwana: evidence provided by the Triassic woods from Argentina". Ameghiniana 60 (1): 18–47. doi:10.5710/AMGH.16.11.2022.3520.
- ↑ Berry, K. (2022). "Conifer turnover across the K/Pg boundary in Colorado, U.S.A., parallels South American patterns: New and emerging perspectives". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 303 (1): 11–28. doi:10.1127/njgpa/2022/1035.
- ↑ Mantzouka, D.; Akkemik, Ü.; Güngör, Y. (2022). "Miocene Cupressinoxylon from Gökçeada (Imbros), Turkey with Protophytobia cambium mining and the study of ecological signals of wood anatomy". PeerJ 10: e14212. doi:10.7717/peerj.14212. PMID 36530400.
- ↑ 67.0 67.1 67.2 67.3 67.4 67.5 Friis, E. M.; Crane, P. R.; Pedersen, K. R.; Mendes, M. M.; Kvaček, J. (2022). "The Early Cretaceous mesofossil flora of Catefica, Portugal: angiosperms". Fossil Imprint 78 (2): 341–424. doi:10.37520/fi.2022.016. http://fi.nm.cz/en/clanek/the-early-cretaceous-mesofossil-flora-of-catefica-portugal-angiosperms-2/.
- ↑ Rubalcava-Knoth, M. A.; Cevallos-Ferriz, S. R. S. (2022). "Lauraceous palmately lobed leaf from the middle Cretaceous Cintura Formation (Albian–Cenomanian), Sonora, Mexico: identification based on two comparative models". Cretaceous Research 140: 105355. doi:10.1016/j.cretres.2022.105355. Bibcode: 2022CrRes.14005355R.
- ↑ 69.0 69.1 69.2 69.3 69.4 Vasquez-Loranca, A. R.; Cevallos-Ferriz, S. R. S. (2022). "A diverse assemblage of Miocene Lauraceae in Chalatenango, El Salvador". IAWA Journal 43 (4): 479–507. doi:10.1163/22941932-bja10096.
- ↑ Maccracken, S. A.; Miller, I. M.; Johnson, K. R.; Sertich, J. J. W.; Labandeira, C. C. (2022). "Insect herbivory on Catula gettyi gen. et sp. nov. (Lauraceae) from the Kaiparowits Formation (Late Cretaceous, Utah, USA)". PLOS ONE 17 (1): e0261397. doi:10.1371/journal.pone.0261397. PMID 35061696. Bibcode: 2022PLoSO..1761397M.
- ↑ Maccracken, S. A.; Miller, I. M.; Johnson, K. R.; Sertich, J. J. W.; Labandeira, C. C. (2022). "Correction: Insect herbivory on Catula gettyi gen. et sp. nov. (Lauraceae) from the Kaiparowits Formation (Late Cretaceous, Utah, USA)". PLOS ONE 17 (8): e0272757. doi:10.1371/journal.pone.0272757. PMID 35921305. Bibcode: 2022PLoSO..1772757M.
- ↑ 72.0 72.1 72.2 Akkemik, Ü.; Iamandei, S.; Çelik, H. (2022). "Further contribution to the early Miocene woody flora of Galatian Volcanic Province from Doğanyurt Village, Ankara (Turkey)". Turkish Journal of Earth Sciences 31 (2): 208–234. doi:10.3906/yer-2103-7. https://journals.tubitak.gov.tr/earth/abstract.htm?id=30836.
- ↑ Niccolini, G.; Martinetto, E.; Lanini, B.; Menichetti, E.; Fusco, F.; Hakobyan, E.; Bertini, A. (2022). "Late Messinian flora from the post-evaporitic deposits of the Piedmont Basin (Northwest Italy)". Fossil Imprint 78 (1): 189–216. doi:10.37520/fi.2022.008. http://fi.nm.cz/en/clanek/late-messinian-flora-from-the-post-evaporitic-deposits-of-the-piedmont-basin-northwest-italy-2/.
- ↑ 74.0 74.1 Friis, E. M.; Crane, P. R.; Pedersen, K. R. (2022). "Early and Mid-Cretaceous Aristolochiaceous Seeds from Portugal and Eastern North America". International Journal of Plant Sciences 183 (7): 587–603. doi:10.1086/721259. http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-4976.
- ↑ Rozefelds, A. C.; Rudall, P. J.; Herne, M. C.; Milroy, A. K.; Bridgeman, J. (2022). "A Fossil Syncarpous Fruit from Australia Provides Support for a Gondwanan History for the Screw Pines (Pandanus, Pandanaceae)". International Journal of Plant Sciences 183 (4): 320–329. doi:10.1086/719431.
- ↑ 76.0 76.1 Kumar, S.; Hazra, T.; Spicer, R. A.; Hazra, M.; Spicer, T. E. V.; Bera, S.; Khan, M. A. (2023). "Coryphoid palms from the K-Pg boundary of central India and their biogeographical implications: Evidence from megafossil remains". Plant Diversity 45 (1): 80–97. doi:10.1016/j.pld.2022.01.001. PMID 36876312.
- ↑ Greenwood, D. R.; Conran, J. G.; West, C. K. (2022). "Palm fronds from western Canada are the northernmost palms from the Late Cretaceous of North America and may include the oldest Arecaceae". Review of Palaeobotany and Palynology 301: Article 104641. doi:10.1016/j.revpalbo.2022.104641. Bibcode: 2022RPaPa.30104641G.
- ↑ Onstein, R. E.; Kissling, W. D.; Linder, H. P. (2022). "The megaherbivore gap after the non-avian dinosaur extinctions modified trait evolution and diversification of tropical palms". Proceedings of the Royal Society B: Biological Sciences 289 (1972): Article ID 20212633. doi:10.1098/rspb.2021.2633. PMID 35414237.
- ↑ Bacon, C. D.; Silvestro, D.; Hoorn, C.; Bogotá-Ángel, G.; Antonelli, A.; Chazot, N. (2022). "The origin of modern patterns of continental diversity in Mauritiinae palms: the Neotropical museum and the Afrotropical graveyard". Biology Letters 18 (11): 20220214. doi:10.1098/rsbl.2022.0214. PMID 36382374.
- ↑ Huegele, I. B.; Wang, H. (2022). "An unusual plane tree from the Early Cretaceous of Kansas, USA". Review of Palaeobotany and Palynology 309: 104815. doi:10.1016/j.revpalbo.2022.104815.
- ↑ 81.0 81.1 Huegele, I. B.; Manchester, S. R. (2022). "Newly Recognized Reproductive Structures Linked with Langeria from the Eocene of Washington, USA, and their Affinities with Platanaceae". International Journal of Plant Sciences 183 (5): 367–379. doi:10.1086/720138.
- ↑ Moiseeva, M. G.; Kodrul, T. M.; Tekleva, M. V.; Maslova, N. P.; Wu, X.; Jin, J. (2022). "Fossil Leaves of Meliosma (Sabiaceae) With Associated Pollen and a Eupodid Mite From the Eocene of Maoming Basin, South China". Frontiers in Ecology and Evolution 9: Article 770687. doi:10.3389/fevo.2021.770687.
- ↑ Luo, M.; Jia, H.; Li, Q.; Meng, X.; Ferguson, D. K.; Liu, P.; Han, Z.; Wang, J. et al. (2022). "Middle Miocene lotus (Nelumbonaceae, Nelumbo) from the Qaidam Basin, Northern Tibet Plateau". Biology 11 (9): 1261. doi:10.3390/biology11091261. PMID 36138740.
- ↑ Dong, J.-L.; Gao, J.-X.; Li, Z.; Sun, B.-N. (2022). "A tropical lotus from the middle Miocene tropical rainforest flora of South China". Review of Palaeobotany and Palynology 299: Article 104611. doi:10.1016/j.revpalbo.2022.104611. Bibcode: 2022RPaPa.29904611D.
- ↑ 85.0 85.1 Huegele, I.B.; Zhu, H.; Zhao, B.; Wang, Y.-F.; Manchester, S. R. (2021). "Trans-Beringial Distribution of Platimeliphyllum (Platanaceae) in the Eocene of Eastern Asia and Western North America". International Journal of Plant Sciences 183 (2): 139–153. doi:10.1086/717692.
- ↑ 86.0 86.1 Golovneva, L. B.; Volynets, E. B.; Zolina, A. A.; Sun, Y. (2022). "New species of Sapindopsis Fontaine (Platanaceae) from the mid-Cretaceous of northeastern Asia and their paleogeographical and evolutionary implications". Cretaceous Research 142: 105391. doi:10.1016/j.cretres.2022.105391.
- ↑ Denk, T.; Sami, M.; Teodoridis, V.; Martinetto, E. (2022). "The late Early Pleistocene flora of Oriolo, Faenza (Italy): assembly of the modern forest biome". Fossil Imprint 78 (1): 217–262. doi:10.37520/fi.2022.009. http://fi.nm.cz/en/clanek/the-late-early-pleistocene-flora-of-oriolo-faenza-italy-assembly-of-the-modern-forest-biome-2/.
- ↑ Tang, D.-L.; Wang, Z.-E.; Ding, H.; Huang, Y.-T.; Ding, S.-T.; Wu, J.-Y. (2022). "New discovery of Mahonia fossils from the Pliocene of Yunnan, China, and its biogeographical significance". Historical Biology: An International Journal of Paleobiology 35 (12): 2435–2448. doi:10.1080/08912963.2022.2142912.
- ↑ Wu, M.-X.; Huang, J.; Manchester, S. R.; Tang, H.; Gao, Y.; Wang, T.-X.; Zhou, Z.-K.; Su, T. (2022). "A new fossil record of Palaeosinomenium (Menispermaceae) from the Upper Eocene in the southeastern margin of the Tibetan Plateau and its biogeographic and paleoenvironmental implications". Review of Palaeobotany and Palynology 310: 104827. doi:10.1016/j.revpalbo.2022.104827.
- ↑ 90.0 90.1 Doweld, A. B. (2022). "New names of Ilex and Ilexpollenites (Aquifoliaceae), extant and fossil: Addendum Notulae Systematicae ad Palaeofloram Europaeam spectantes II. Aquifoliaceae". Phytotaxa 531 (2): 143–146. doi:10.11646/phytotaxa.531.2.7.
- ↑ Estrada-Ruiz, E. (2022). "A new species of winged fruits of Podopterus (Caryophyllales, Polygonaceae) from the Miocene amber, Chiapas, Mexico". Palaeoworld 32: 188–195. doi:10.1016/j.palwor.2022.06.005.
- ↑ Deshmukh, U. B. (2022). "Blackwelloxylon, a new generic name for Cornoxylon (Corneaceae) of central Mississippi (U.S.A.)". Journal of the Botanical Research Institute of Texas 16 (1): 75. doi:10.17348/jbrit.v16.i1.1223.
- ↑ Manchester, S. R.; Collinson, M. E. (2022). "Mastixioid fruits (Cornales) from the early Eocene London Clay Flora: morphology, anatomy and nomenclatural revision". Fossil Imprint 78 (1): 310–328. doi:10.37520/fi.2022.013. http://fi.nm.cz/en/clanek/mastixioid-fruits-cornales-from-the-early-eocene-london-clay-flora-morphology-anatomy-and-nomenclatural-revision-2/.
- ↑ Huang, Y.-J.; Zhu, H.; Hu, J.-J.; Jia, L.-B.; Zhou, Z.-K. (2023). "New fossil evidence from the late Pliocene of Yunnan, South China, sheds light on the distribution and diversification of Sambucus L. (Adoxaceae) in the northern low latitudes". Palaeobiodiversity and Palaeoenvironments 103 (1): 43–56. doi:10.1007/s12549-021-00519-7. Bibcode: 2023PdPe..103...43H.
- ↑ Koutecký, V.; Sakala, J.; Chytrý, V. (2022). "Paradiospyroxylon kvacekii gen. et sp. nov. from the Paleogene of the Czech Republic: a case study of individual variability and its significance for fossil wood systematics". Historical Biology: An International Journal of Paleobiology 35 (7): 1186–1196. doi:10.1080/08912963.2022.2084694. https://figshare.com/articles/dataset/_i_Paradiospyroxylon_kvacekii_i_gen_et_sp_nov_from_the_Paleogene_of_the_Czech_Republic_a_case_study_of_individual_variability_and_its_significance_for_fossil_wood_systematics/20132006.
- ↑ Atkinson, B. A. (2022). "Icacinaceae fossil provides evidence for a Cretaceous origin of the lamiids". Nature Plants 8 (12): 1374–1377. doi:10.1038/s41477-022-01275-y. PMID 36376504.
- ↑ Estrada-Ruiz, E.; Hernández-Urban, H.; Rodríguez-Reyes, O.; Ortega-Flores, B. (2022). "First report of staminate flowers of Calatola (Metteniusales: Metteniusaceae) from the Miocene Mexican amber". Review of Palaeobotany and Palynology 308: 104786. doi:10.1016/j.revpalbo.2022.104786.
- ↑ 98.0 98.1 Huegele, I. B.; Manchester, S. R. (2022). "The mid-Paleocene fruit and seed flora from the Fort Union Formation of Newell's Nook, southeastern Montana, USA". Acta Palaeobotanica 62 (2): 123–143. doi:10.35535/acpa-2022-0009.
- ↑ Nguyen, H. B.; Huang, J.; Van Do, T.; Srivastava, G.; Nguyen, H. M. T.; Li, S.-F.; Chen, L.-L.; Nguyen, M. T. et al. (2022). "Pod fossils of Albizia (Fabaceae: Caesalpinioideae) from the late Miocene of northern Vietnam and their phytogeographic history". Review of Palaeobotany and Palynology 308: 104801. doi:10.1016/j.revpalbo.2022.104801.
- ↑ 100.0 100.1 100.2 100.3 100.4 100.5 100.6 Ramos, R. S.; Brea, M.; Kröhling, D. M.; Contreras, S. A. (2022). "New data for palaeoclimatic reconstructions in the upper/middle Uruguay River Basin: caesalpinioid Fabaceae woods in the Late Pleistocene". Botanical Journal of the Linnean Society 200 (4): 491–523. doi:10.1093/botlinnean/boac023.
- ↑ 101.0 101.1 Bhatia, H.; Srivastava, G.; Mehrotra, R. C. (2022). "Legumes from the Paleocene sediments of India and their ecological significance". Plant Diversity 45 (2): 199–210. doi:10.1016/j.pld.2022.08.001. PMID 37069925.
- ↑ 102.0 102.1 Herendeen, P. S.; Cardoso, D. B. O. S.; Herrera, F.; Wing, S. L. (2022). "Fossil papilionoids of the Bowdichia clade (Leguminosae) from the Paleogene of North America". American Journal of Botany 109 (1): 130–150. doi:10.1002/ajb2.1808. PMID 35014023.
- ↑ Li, W.-C.; Huang, J.; Chen, L.-L.; Spicer, R. A.; Li, S.-F.; Liu, J.; Gao, Y.; Wu, F.-X. et al. (2022). "Podocarpium (Fabaceae) from the late Eocene of central Tibetan Plateau and its biogeographic implication". Review of Palaeobotany and Palynology 305: Article 104745. doi:10.1016/j.revpalbo.2022.104745. Bibcode: 2022RPaPa.30504745L.
- ↑ Jia, L.-B.; Hu, J.-J.; Zhang, S.-T.; Su, T.; Spicer, R. A.; Liu, J.; Yang, J.-C.; Zou, P. et al. (2022). "Bauhinia (Leguminosae) Fossils from the Paleogene of Southwestern China and Its Species Accumulation in Asia". Diversity 14 (3): Article 173. doi:10.3390/d14030173.
- ↑ Moya, E.; Soledad Ramos, R.; Jimena Franco, M.; Brea, M. (2022). "African legume affinities with the flora from the lower La Plata Basin (upper Cenozoic), South America". Ameghiniana 60 (1): 48–64. doi:10.5710/AMGH.25.08.2022.3521.
- ↑ Wang, Z.; Wu, X.; Sun, B.; Yin, S.; Quan, C.; Shi, G. (2022). "First fossil record of Castanopsis (Fagaceae) from the middle Miocene Fotan Group of Fujian, southeastern China". Review of Palaeobotany and Palynology 305: Article 104729. doi:10.1016/j.revpalbo.2022.104729. Bibcode: 2022RPaPa.30504729W.
- ↑ Ji, D.; Xiao, L.; Guo, L.; Li, X.; Wu, Z.; Liang, J.; Wang, M.; Xia, X. et al. (2022). "A New Species of Comptonia (Myricaceae) from the Early Miocene of Central Inner Mongolia, China, and Phytogeographic History of Sweet–Fern". Biology 11 (9): 1326. doi:10.3390/biology11091326. PMID 36138805.
- ↑ Stults, D. Z.; Tiffney, B. H.; Axsmith, B. J. (2022). "New Observations on the Last Pterocarya (Juglandaceae) Occurrences in Eastern North America". International Journal of Plant Sciences 183 (5): 380–392. doi:10.1086/720182.
- ↑ 109.0 109.1 109.2 109.3 Liu, X.-Y.; Song, H.-Z.; Wu, X.-K.; Hu, J.-R.; Huang, W.; Quan, C.; Jin, J.-H. (2022). "Late Oligocene fossil acorns and nuts of Quercus section Cyclobalanopsis from Nanning Basin, Guangxi Province, South China". Plant Diversity 45 (4): 434–445. doi:10.1016/j.pld.2022.08.002. PMID 37601538.
- ↑ Hamersma, A.; Herrera, F.; Wurdack, K.; Manchester, S. R. (2022). "Belenocarpa tertiara (Berry) gen. et comb. nov. (Euphorbiaceae): Fossil Fruits with Carunculate Seeds from the Oligocene of Peru". International Journal of Plant Sciences 183 (4): 296–306. doi:10.1086/718830.
- ↑ Bennike, O.; Colgan, W.; Hedenäs, L.; Heiri, O.; Lemdahl, G.; Wiberg-Larsen, P.; Ribeiro, S.; Pronzato, R. et al. (2022). "An Early Pleistocene interglacial deposit at Pingorsuit, North-West Greenland". Boreas 52 (1): 27–41. doi:10.1111/bor.12596. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-116450.
- ↑ 112.0 112.1 Akkemik, Ü.; Güngör, Y.; Mantzouka, D.; Azaz, D. (2022). "Mammeoxylon beylikduezuense Akkemik, Güngör, D. Mantzouka & Azaz sp. nov.: The First Report of the Genus for the Oligo/Miocene of Eurasia". Forestist. doi:10.5152/forestist.2022.22024.
- ↑ 113.0 113.1 Grote, P. J.; Duangkrayom, J.; Jintasakul, P. (2022). "Endocarps of Parinari (Chrysobalanaceae) from the Neogene of Northeastern Thailand". Acta Palaeobotanica 62 (1): 24–35. doi:10.35535/acpa-2022-0003.
- ↑ Poinar, G. (2022). "Plukenetia minima sp. nov. (Euphorbiaceae) in Dominican Republic amber". Historical Biology: An International Journal of Paleobiology 35 (7): 1250–1254. doi:10.1080/08912963.2022.2086053.
- ↑ 115.0 115.1 Manchester, S. R.; Kapgate, D. K.; Samant, B.; Mohabey, D. M.; Dhobale, A. (2022). "Fruits and Pollen of Malvoideae (Malvaceae) in the Maastrichtian–Danian Deccan Intertrappean Beds of Central India". International Journal of Plant Sciences 184: 68–84. doi:10.1086/723016.
- ↑ Hazra, T.; Mahato, S.; Bera, S.; Khan, M. A. (2022). "First fossil evidence of Indian tulip tree". Botany Letters 169 (2): 284–293. doi:10.1080/23818107.2021.2014358. Bibcode: 2022BotL..169..284H.
- ↑ Bansal, M.; Morley, R. J.; Nagaraju, S. K.; Dutta, S.; Mishra, A. K.; Selveraj, J.; Kumar, S.; Niyolia, D. et al. (2022). "Southeast Asian Dipterocarp origin and diversification driven by Africa-India floristic interchange". Science 375 (6579): 455–460. doi:10.1126/science.abk2177. PMID 35084986. Bibcode: 2022Sci...375..455B.
- ↑ Dong, J.-L.; Li, Z.; Sun, B.-N.; Gao, J.-X. (2022). "Hemitrapa Miki (Lythraceae) from the middle Miocene tropical lowland rainforest of southern China". Palaeoworld 32 (4): 626–636. doi:10.1016/j.palwor.2022.11.005.
- ↑ Han, Z.; Jia, H.; Meng, X.; Ferguson, D. K.; Luo, M.; Liu, P.; Wang, J.; Quan, C. (2022). "A New Clue for the Late Eocene Freshwater Ecosystem of Central China Evidenced by New Fossils of Trapa L. and Hemitrapa Miki (Lythraceae)". Biology 11 (10): 1442. doi:10.3390/biology11101442. PMID 36290345.
- ↑ Cai, J.; Tang, T.; Liang, W.; Han, L.; Li, X.; Dai, Y.; Li, W.; Zhao, J. et al. (2022). "Fossil fruits of Trapa L. from the late Miocene of southeastern Qaidam Basin (Qinghai, China)". Historical Biology: An International Journal of Paleobiology 35 (12): 2306–2318. doi:10.1080/08912963.2022.2140045.
- ↑ 121.0 121.1 Tang, K. K.; Smith, S. Y.; Atkinson, B. A. (2022). "Extending beyond Gondwana: Cretaceous Cunoniaceae from western North America.". New Phytologist 234 (2): 704–718. doi:10.1111/nph.17976. PMID 35043416.
- ↑ 122.0 122.1 Baas, P.; Manchester, S. R.; Wheeler, E. A.; Srivastava, R. (2022). "Validation of the names linked to the oldest fossil Connaraceae wood (Connaroxylon, Connaroxylon dimorphum)". Phytotaxa 558 (2): 249–250. doi:10.11646/phytotaxa.558.2.9.
- ↑ Baas, P.; Manchester, S. R.; Wheeler, E. A.; Srivastava, R. (2017). "Fossil wood with dimorphic fibers from the Deccan Intertrappean Beds of India – the oldest fossil Connaraceae?". IAWA Journal 38 (1): 124–133. doi:10.1163/22941932-20170162.
- ↑ 124.0 124.1 Matel, T. P.; Gandolfo, M. A.; Hermsen, E. J.; Wilf, P. (2022). "Cunoniaceae infructescences from the early Eocene Laguna del Hunco flora, Patagonia, Argentina". American Journal of Botany 109 (6): 986–1003. doi:10.1002/ajb2.1867. PMID 35567490.
- ↑ 125.0 125.1 Shi, C.; Wang, S.; Cai, H.; Zhang, H.; Long, X.; Tihelka, E.; Song, W.; Feng, Q. et al. (2022). "Fire-prone Rhamnaceae with South African affinities in Cretaceous Myanmar amber". Nature Plants 8 (2): 125–135. doi:10.1038/s41477-021-01091-w. PMID 35102275.
- ↑ El-Noamani, Z. M. (2022). "Ficoxylon fusiforme (Moraceae), a New Species from Upper Cretaceous Nubian Sandstone in Southern Egypt". Egyptian Journal of Botany 62 (1): 31–44. doi:10.21608/ejbo.2021.53712.1594.
- ↑ 127.0 127.1 Dong, J.-L.; Li, Z.; Gao, J.-X.; Sun, B.-N.; He, Y.-L. (2022). "Ficus leaves within the Ficus subgenus Urostigma (Moraceae) from the middle Miocene in South China and their biogeography implications". Review of Palaeobotany and Palynology 302: Article 104671. doi:10.1016/j.revpalbo.2022.104671. Bibcode: 2022RPaPa.30204671D.
- ↑ 128.0 128.1 Hazra, T.; Kundu, S.; Bera, S.; Chakraborty, T.; Khan, M. A. (2022). "First fossil evidence of samaras of Ventilago Gaertn. (Rhamnaceae) from India and its implications". Journal of Systematics and Evolution 61 (6): 1079–1090. doi:10.1111/jse.12936.
- ↑ Manchester, S. R.; Judd, W. S. (2022). "Extinct Anacardiaceous Samaras and Sumac-Like Leaves from the Eocene of Western North America". International Journal of Plant Sciences 183 (5): 357–366. doi:10.1086/719948.
- ↑ Yin, S.-X.; Wu, X.-T.; Wang, Z.-X.; Shi, G.-L. (2023). "First fossil record of Canarium (Burseraceae) from the middle Miocene of Fujian, southeastern China and its paleoecological implications". Palaeoworld 32 (4): 607–617. doi:10.1016/j.palwor.2022.03.009.
- ↑ Xiang, H.; Kodrul, T. M.; Romanov, M. S.; Maslova, N. P.; Han, M.; Huang, L.; Wu, X.; Jin, J. (2022). "Mummified fossil fruits of Canarium from the upper Pleistocene of South China". iScience 25 (11): 105385. doi:10.1016/j.isci.2022.105385. PMID 36388987.
- ↑ 132.0 132.1 Xiao, L.; Wu, Z.; Guo, L.; Li, X.; Ji, D.; Xia, X.; Wang, J.; Liang, J. et al. (2022). "Late Miocene Leaves and Endocarps of Choerospondias (Anacardiaceae) from Zhejiang, Eastern China: Implications for Paleogeography and Paleoclimate". Biology 11 (10): 1399. doi:10.3390/biology11101399. PMID 36290304.
- ↑ Huang, H.; Morley, R. J.; van der Ham, R.; Mao, L.; Licht, A.; Dupont-Nivet, G.; Win, Z.; Aung, D. W. et al. (2022). "Grimmipollis burmanica gen. et sp. nov.: New genus of the soapberry family (Sapindaceae) from the late Eocene of central Myanmar". Review of Palaeobotany and Palynology 309: 104818. doi:10.1016/j.revpalbo.2022.104818.
- ↑ Chen, P.-R.; Del Rio, C.; Huang, J.; Liu, J.; Zhao, J.-G.; Spicer, R. A.; Li, S.-F.; Wang, T.-X. et al. (2022). "Fossil Capsular Valves of Koelreuteria (Sapindaceae) from the Eocene of Central Tibetan Plateau and Their Biogeographic Implications". International Journal of Plant Sciences 183 (4): 307–319. doi:10.1086/719401.
- ↑ Manchester, S. R.; Judd, W. S. (2022). "Loxopteroides weeksae gen. et sp. nov. (Anacardiaceae) samaras and associated foliage from the Eocene of western North America". Acta Palaeobotanica 62 (1): 1–10. doi:10.35535/acpa-2022-0001. https://acpa.botany.pl/-Loxopteroides-weeksae-gen-et-sp-nov-Anacardiaceae-samaras-and-associated-foliage,149603,0,2.html.
- ↑ Strullu-Derrien, C.; Spencer, A. R. T.; Kenrick, P.; Judd, W. S.; De Franceschi, D.; Manchester, S. R. (2022). "Revisions to the Eocene carpoflora of Anjou, western France, with new data from X-ray tomography". Botany Letters 169 (4): 454–465. doi:10.1080/23818107.2022.2101518. Bibcode: 2022BotL..169..454S.
- ↑ Rothwell, G. W.; Stockey, R. A. (2022). "Enriching our knowledge of Late Cretaceous wetland plant communities: Zlatkovia crenulata gen. et sp. nov., an amphibious angiosperm from the St. Mary River Formation, Alberta, Canada". Cretaceous Research 140: Article 105328. doi:10.1016/j.cretres.2022.105328. Bibcode: 2022CrRes.14005328R.
- ↑ Chen, L.-J.; Wang, X. (2022). "A Flower Bud from the Lower Cretaceous of China". Biology 11 (11): 1598. doi:10.3390/biology11111598. PMID 36358299.
- ↑ 139.0 139.1 Čepičková, J.; Kvaček, J. (2022). "Fossil leaves of Cenomanian basal angiosperms from the Peruc-Korycany Formation, Czechia, central Europe". Review of Palaeobotany and Palynology 309: 104802. doi:10.1016/j.revpalbo.2022.104802.
- ↑ Heřmanová, Z.; Čepičková, J.; Kvaček, J.; von Balthazar, M.; Schönenberger, J. (2022). "A multicarpellate fruit from Late Cretaceous sediments of South Bohemia, Czech Republic". Palaeontologia Electronica 25 (1): Article number 25.1.5A. doi:10.26879/1192.
- ↑ Du, B.; Zhang, M.; Zhang, J.; Li, A.; Lin, S.; Ma, G.; Hui, J. (2022). "Herbaceous eudicot Fairlingtonia from the Lower Cretaceous of Jiuquan Basin, Northwest China and its radiation in Laurasia". Journal of Systematics and Evolution 61 (6): 1065–1078. doi:10.1111/jse.12934.
- ↑ Cui, D.-F.; Hou, Y.; Yin, P.; Wang, X. (2021). "A Jurassic flower bud from the Jurassic of China". Mesozoic Biological Events and Ecosystems in East Asia. The Geological Society of London. doi:10.1144/SP521-2021-122.
- ↑ Wu, G.-T.; Ren, W.-X.; Han, L.; Wang, H.-S.; Hua, Y.-F.; Sun, B.-N. (2022). "A new fossil angiosperm from the Early Cretaceous (early Aptian) of the Zhongkouzi Basin in the Beishan area, Northwest China". Historical Biology: An International Journal of Paleobiology 35 (11): 2206–2216. doi:10.1080/08912963.2022.2138374.
- ↑ Frolov, A.; Enushchenko, I. (2022). "Monocotyledon-like Leaves from the Middle Jurassic of East Siberia (Russia)". Acta Geologica Sinica (English Edition) 96 (6): 1884–1896. doi:10.1111/1755-6724.14986. Bibcode: 2022AcGlS..96.1884F.
- ↑ Wang, X. (2022). "A Novel Early Cretaceous Flower and Its Implications on Flower Derivation". Biology 11 (7): Article 1036. doi:10.3390/biology11071036. PMID 36101417.
- ↑ Oskolski, A. A.; Morris, B. B.; Severova, E. E.; Sokoloff, D. D. (2024). "Flowers from Myanmar amber confirm the Cretaceous age of Rhamnaceae but not of the extant genus Phylica". Nature Plants: 1–4. doi:10.1038/s41477-023-01591-x. PMID 38278949.
- ↑ Beurel, S.; Bachelier, J. B.; Schmidt, A. R.; Sadowski, E.-M. (2024). "Novel three-dimensional reconstructions of presumed Phylica (Rhamnaceae) from Cretaceous amber suggest Lauralean affinities". Nature Plants: 1–5. doi:10.1038/s41477-023-01592-w. PMID 38278948.
- ↑ Gobo, W. V.; Kunzmann, L.; Iannuzzi, R.; Bachelier, J. B.; Coiffard, C. (2022). "First evidence of ranunculids in Early Cretaceous tropics". Scientific Reports 12 (1): Article number 5040. doi:10.1038/s41598-022-07920-y. PMID 35322034. Bibcode: 2022NatSR..12.5040G.
- ↑ Pessoa, E. M.; Ribeiro, A. C.; Christenhuz, M. J. M.; Coan, A. I.; Jud, N. A. (2023). "Is Santaniella a ranuculid? Re-assessment of this enigmatic fossil angiosperm from the Lower Cretaceous (Aptian, Crato Konservat-Lagerstätte, Brazil) provides a new interpretation.". American Journal of Botany 110 (5): e16163. doi:10.1002/ajb2.16163. PMID 37014186.
- ↑ Edmonds, N. L.; Stockey, R. A.; Rothwell, G. W. (2022). "Late Cretaceous Aquatic Vegetation: Tolmania aquatica gen. et sp. nov., from Southern Alberta, Canada". International Journal of Plant Sciences 183 (7): 567–575. doi:10.1086/721261.
- ↑ Ramteke, D.; Smith, S. Y.; Kapgate, D. K.; Stanley, E. L.; Manchester, S. R. (2022). "Angiosperm affinities of Surangea from the late Cretaceous Deccan Intertrappean Beds of central India". Acta Palaeobotanica 62 (2): 196–204. doi:10.35535/acpa-2022-0013.
- ↑ Zhang, X.; Gélin, U.; Spicer, R. A.; Wu, F.; Farnsworth, A.; Chen, P.; Del Rio, C.; Li, S. et al. (2022). "Rapid Eocene diversification of spiny plants in subtropical woodlands of central Tibet". Nature Communications 13 (1): Article number 3787. doi:10.1038/s41467-022-31512-z. PMID 35778378. Bibcode: 2022NatCo..13.3787Z.
- ↑ Kafetzidou, A.; Kouli, K.; Zidianakis, G.; Kostopoulos, D. S.; Zouros, N. (2022). "The early Miocene angiosperm flora of Akrocheiras in Lesvos Petrified Forest (North Aegean, Greece)-Preliminary results". Review of Palaeobotany and Palynology 296: 104559. doi:10.1016/j.revpalbo.2021.104559. Bibcode: 2022RPaPa.29604559K.
- ↑ Palazzesi, L.; Hidalgo, O.; Barreda, V. D.; Forest, F.; Höhna, S. (2022). "The rise of grasslands is linked to atmospheric CO2 decline in the late Palaeogene". Nature Communications 13 (1): Article number 293. doi:10.1038/s41467-021-27897-y. PMID 35022396. Bibcode: 2022NatCo..13..293P.
- ↑ Nosova, N.; Tekleva, M. (2022). "Pollen cones and in situ pollen of Aegianthus Krassilov from the Middle Jurassic of East Siberia, Russia". Review of Palaeobotany and Palynology 304: Article 104723. doi:10.1016/j.revpalbo.2022.104723. Bibcode: 2022RPaPa.30404723N.
- ↑ 156.0 156.1 Frolov, A. O.; Kazanovsky, S. G.; Enushchenko, I. V. (2022). "The first discovery of mosses (Bryopsida) in the Lower Jurassic of Eastern Siberia". Journal of Palaeosciences 71 (2): 219–233. doi:10.54991/jop.2022.1842.
- ↑ Santos, A. A.; Wang, X. (2022). "Pre-Carpels from the Middle Triassic of Spain". Plants 11 (21): 2833. doi:10.3390/plants11212833. PMID 36365286.
- ↑ Gomankov, A. V. (2022). "Cycads in the Permian of thе Subangara Region". Paleontological Journal 56 (3): 317–326. doi:10.1134/S0031030122030066. Bibcode: 2022PalJ...56..317G. https://elibrary.ru/item.asp?id=48457657.
- ↑ 159.0 159.1 da Conceição, D. M.; Esperança Júnior, M. G. F.; Iannuzzi, R.; Cisneros, J. C. (2022). "Two new petrified gymnosperms with solenoid piths from the Pedra de Fogo Formation, Permian of Maranhão, Brazil". Review of Palaeobotany and Palynology 299: Article 104622. doi:10.1016/j.revpalbo.2022.104622. Bibcode: 2022RPaPa.29904622C.
- ↑ Shi, G.; Herrera, F.; Herendeen, P. S.; Clark, E. G.; Crane, P. R. (2022). "Silicified cupulate seed-bearing structures from the Early Cretaceous of eastern Inner Mongolia, China: rethinking the corystosperm concept". Journal of Systematic Palaeontology 20 (1): 2133644. doi:10.1080/14772019.2022.2133644.
- ↑ Correia, P.; Barbosa, C.; Šimůnek, Z.; Muchagata, J.; Sá, A. A. (2023). "A new species of Lesleya (Spermatopsida) from the Carboniferous of Iberia and its palaeoecological and evolutionary significance". Historical Biology: An International Journal of Paleobiology 35 (2): 185–196. doi:10.1080/08912963.2021.2025364. Bibcode: 2023HBio...35..185C.
- ↑ Ma, F.-J.; Sun, B.-N.; Li, H.-Q.; Liu, S.; Zhou, G.-H.; Ling, C.-C.; Hu, X.-P.; Han, D. et al. (2022). "A new gigantopterid taxon Paragigantopteris qingloongensis gen. et sp. nov. from the Permian (Wuchiapingian) of southwestern China: Taxonomic and biogeographic implications". Review of Palaeobotany and Palynology 300: Article 104625. doi:10.1016/j.revpalbo.2022.104625. Bibcode: 2022RPaPa.30004625M.
- ↑ Wang, Y.; Bai, J.; Liu, B.-C.; Wang, Y.; Xu, H.-H. (2022). "New insights into the South China Lower Devonian flora based on fossils from Hezhang, Guizhou Province". Philosophical Transactions of the Royal Society B: Biological Sciences 377 (1847): Article ID 20210312. doi:10.1098/rstb.2021.0312. PMID 35124997.
- ↑ Naugolnykh, S. V. (2022). "Piterophyton gen. nov., a new genus of archaic land plants from the Upper Ordovician deposits of the European part of Russia". Wulfenia 29: 115–130. https://www.researchgate.net/publication/370871609.
- ↑ Colston, C. M.; Landaw, K.; Tomescu, A. M. F. (2022). "An early snapshot of plant-herbivore interactions: Psilophyton diakanthon sp. nov. from the Early Devonian of Gaspé (Quebec, Canada)". American Journal of Botany 110 (1): e16082. doi:10.1002/ajb2.16082. PMID 36219504.
- ↑ Friis, E. M.; Crane, P. R.; Pedersen, K. R. (2022). "Extinct seed plant diversity in the Early Cretaceous: An enigmatic new microsporangiate fossil with Decussosporites pollen in situ". Review of Palaeobotany and Palynology 304: Article 104716. doi:10.1016/j.revpalbo.2022.104716. Bibcode: 2022RPaPa.30404716F. http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-4977.
- ↑ Krings, M. (2022). "Algae from the Lower Devonian Rhynie chert: Populations of a probable saccoderm desmid (Mesotaeniaceae, Zygnematales) preserved in a microbial mat". Review of Palaeobotany and Palynology 304: Article 104697. doi:10.1016/j.revpalbo.2022.104697. Bibcode: 2022RPaPa.30404697K.
- ↑ Zhang, Y.; Zheng, S.; Singh, K. J.; Wang, Y.; Zhang, S.; Saxena, A. (2022). "Glossopterids survived end-Permian mass extinction in North Hemisphere". Global Geology (English Edition) 25 (4): 214–254. doi:10.3969/j.issn.1673-9736.2022.04.02. https://www.researchgate.net/publication/366657763.
- ↑ Naugolnykh, S. V.; Mogutcheva, N. K. (2022). "Taimyria gen. nov., a new genus of evolutionary advanced gymnosperms from Triassic of the Taimyr Peninsula, Siberia, Russia". Fossil Imprint 78 (2): 432–444. doi:10.37520/fi.2022.018. http://fi.nm.cz/en/clanek/taimyria-gen-nov-a-new-genus-of-evolutionary-advanced-gymnosperms-from-triassic-of-the-taimyr-peninsula-siberia-russia-2/.
- ↑ McSweeney, F. R.; Shimeta, J.; Buckeridge, J. S. (2022). "Taungurungia gen. nov., from the Lower Devonian of Yea, central Victoria, Australia". Memoirs of Museum Victoria 81: 43–53. doi:10.24199/j.mmv.2022.81.03.
- ↑ Huang, P.; Liu, L.; Xue, J.-Z. (2022). "A new polysporangiate land plant with novel fertile organs from the Lower Devonian of Guizhou, southwestern China". Review of Palaeobotany and Palynology 302: Article 104661. doi:10.1016/j.revpalbo.2022.104661. Bibcode: 2022RPaPa.30204661H.
- ↑ Rothwell, G. W.; Stockey, R. A.; Stevenson, D. W.; Zumajo-Cardona, C. (2022). "Large Permineralized Seeds in the Jurassic of Haida Gwaii, Western Canada: Exploring the Mode and Tempo of Cycad Evolution". International Journal of Plant Sciences 183 (8): 674–690. doi:10.1086/721710.
- ↑ Li, Y.; Wang, Y.-D.; Feldberg, K.; Wang, S.; Shi, C.; Cui, Y.-M.; Zhang, X.-Q. (2022). "New insights into the moss genus Vetiplanaxis with a description of V. obtusus sp. nov. from the mid-Cretaceous Kachin amber, Myanmar". Review of Palaeobotany and Palynology 301: Article 104659. doi:10.1016/j.revpalbo.2022.104659. Bibcode: 2022RPaPa.30104659L.
- ↑ Gensel, P. G. (2022). "Partially Permineralized Adpressions of Wilhowia phocarum Gensel gen. et sp. nov., a New Basal Euphyllophyte from the Lower Devonian Battery Point Formation, North Shore of Gaspé Bay, Quebec, Canada". International Journal of Plant Sciences 183 (7): 604–629. doi:10.1086/721263.
- ↑ Klymiuk, A. A.; Rothwell, G. W.; Stockey, R. A. (2022). "A novel cupulate seed plant, Xadzigacalix quatsinoensis gen. et sp. nov., provides new insight into the Mesozoic radiation of gymnosperms". American Journal of Botany 109 (6): 966–985. doi:10.1002/ajb2.1853. PMID 35435244.
- ↑ Yang, J.-N.; Wang, D.-M. (2022). "A New Fern-like Plant Xinhangia spina Gen. et sp. Nov. from the Upper Devonian of China". Biology 11 (11): 1568. doi:10.3390/biology11111568. PMID 36358269.
- ↑ Tomescu, A. M. F.; McQueen, C. R. (2022). "A protoxylem pathway to evolution of pith? An hypothesis based on the Early Devonian euphyllophyte Leptocentroxyla". Annals of Botany 130 (6): 785–798. doi:10.1093/aob/mcac083. PMID 35724420.
- ↑ Decombeix, A.-L.; Harper, C. J.; Galtier, J.; Meyer-Berthaud, B.; Krings, M. (2022). "Tyloses in fossil plants: New data from a Mississippian tree, with a review of previous records". Botany Letters 169 (4): 510–526. doi:10.1080/23818107.2022.2099461. Bibcode: 2022BotL..169..510D. https://hal.inrae.fr/hal-03728230/file/Tyloses%20for%20Botany%20Letters%20ACCEPTED.pdf.
- ↑ Luthardt, L.; Merbitz, M.; Fridland, E.; Rößler, R. (2022). "Upside-down in volcanic ash: crown reconstruction of the early Permian seed fern Medullosa stellata with attached foliated fronds". PeerJ 10: e13051. doi:10.7717/peerj.13051. PMID 35341054.
- ↑ Blomenkemper, P.; Kerp, H.; Abu Hamad, A.; Bomfleur, B. (2022). "Rhabdotaenia – a typical Gondwanan leaf from the upper Permian of Jordan". Alcheringa: An Australasian Journal of Palaeontology 46 (1): 85–93. doi:10.1080/03115518.2022.2028899. Bibcode: 2022Alch...46...85B.
- ↑ 181.0 181.1 181.2 181.3 181.4 181.5 181.6 181.7 Playford, G. (2022). "Mississippian palynoflora from the Clarke River Basin, north Queensland, Australia". Ameghiniana 59 (4): 225–264. doi:10.5710/AMGH.15.06.2022.3504.
- ↑ Sui, Q.; Lin, Y.; McLoughlin, S.; Yang, S.-L.; Feng, Z. (2022). "A new lycophyte megaspore, Paxillitriletes permicus, from the upper Permian of Southwest China". Review of Palaeobotany and Palynology 304: Article 104722. doi:10.1016/j.revpalbo.2022.104722. Bibcode: 2022RPaPa.30404722S.
- ↑ Hu, Y.; Hu, J.; Du, Y.; Lu, H.; Yang, N.; Wang, L.; Xu, H.-H. (2022). "Early Cretaceous palynofloras from the Bongor basin, Chad, and their palaeoenvironmental and palaeoclimatic significances". Journal of African Earth Sciences 198: 104792. doi:10.1016/j.jafrearsci.2022.104792.
- ↑ Narváez, P. L.; Mego, N.; Silva Nieto, D. G.; Prámparo, M. B.; Cabaleri, N. G. (2022). "The angiosperm pollen Volkheimerites labyrinthus gen. et sp. nov. from the earliest Paleogene (Danian) of Patagonia, Argentina". Palynology 46 (4): 1–13. doi:10.1080/01916122.2021.2023681. Bibcode: 2022Paly...4623681N.
- ↑ Legrand, J.; Yamada, T.; Nishida, H. (2022). "Yezopollis mikasaensis gen. et sp. nov., a new Normapolles-type angiosperm pollen from the Upper Cretaceous of Hokkaido, Japan". Cretaceous Research 136: Article 105216. doi:10.1016/j.cretres.2022.105216. Bibcode: 2022CrRes.13605216L.
- ↑ Bowman, J. L. (2022). "The origin of a land flora". Nature Plants 8 (12): 1352–1369. doi:10.1038/s41477-022-01283-y. PMID 36550365.
- ↑ Niklas, K. J.; Tiffney, B. H. (2022). "Viridiplantae Body Plans Viewed Through the Lens of the Fossil Record and Molecular Biology". Integrative and Comparative Biology 63 (6): 1316–1330. doi:10.1093/icb/icac150. PMID 36316013.
- ↑ Wellman, C. H.; Berry, C. M.; Davies, N. S.; Lindemann, F.-H.; Marshall, J. E. A.; Wyatt, A. (2022). "Low tropical diversity during the adaptive radiation of early land plants". Nature Plants 8 (2): 104–109. doi:10.1038/s41477-021-01067-w. PMID 35115726. https://eprints.soton.ac.uk/455610/1/Wellmen_Revised_manuscript_2_unmarked_.docx.
- ↑ Leslie, A. B.; Bonacorsi, N. K. (2022). "Understanding the appearance of heterospory and derived plant reproductive strategies in the Devonian". Paleobiology 48 (3): 496–512. doi:10.1017/pab.2021.44. Bibcode: 2022Pbio...48..496L.
- ↑ Feng, Z.; Gou, X.-D.; McLoughlin, S.; Wei, H.-B.; Guo, Y. (2022). "Nurse logs: A common seedling strategy in the Permian Cathaysian Flora". iScience 25 (11): 105433. doi:10.1016/j.isci.2022.105433. PMID 36388991. Bibcode: 2022iSci...25j5433F.
- ↑ Carvalho, M. A.; Lana, C. C.; Sá, N. P.; Santiago, G.; Giannerini, M. C. S.; Bengtson, P. (2022). "Influence of the Intertropical Convergence Zone on Early Cretaceous plant distribution in the South Atlantic". Scientific Reports 12 (1): 12600. doi:10.1038/s41598-022-16580-x. PMID 35871172. Bibcode: 2022NatSR..1212600D.
- ↑ Kalyniuk, J. E.; West, C. K.; Greenwood, D. R.; Basinger, J. F.; Brown, C. M. (2022). "The Albian vegetation of central Alberta as a food source for the nodosaurid Borealopelta markmitchelli". Palaeogeography, Palaeoclimatology, Palaeoecology 611: 111356. doi:10.1016/j.palaeo.2022.111356.
- ↑ Berry, K.; Jaganathan, G. K. (2022). "Did selection for seed traits across the Cretaceous/Paleogene boundary sort plants based on ploidy?". Acta Palaeobotanica 62 (2): 182–195. doi:10.35535/acpa-2022-0012.
- ↑ Huang, J.; Spicer, R. A.; Li, S.-F.; Liu, J.; Do, T. V.; Nguyen, H. B.; Zhou, Z.-K.; Su, T. (2022). "Long-term floristic and climatic stability of northern Indochina: Evidence from the Oligocene Ha Long flora, Vietnam". Palaeogeography, Palaeoclimatology, Palaeoecology 593: Article 110930. doi:10.1016/j.palaeo.2022.110930. Bibcode: 2022PPP...59310930H.
- ↑ Gentis, N.; Licht, A.; Boura, A.; De Franceschi, D.; Zaw Win; Day Wa Aung; Dupont-Nivet, G. (2022). "Fossil wood from the lower Miocene of Myanmar (Natma Formation): palaeoenvironmental and biogeographic implications". Geodiversitas 44 (28): 853–909. doi:10.5252/geodiversitas2022v44a28. https://sciencepress.mnhn.fr/en/periodiques/geodiversitas/44/28.
- ↑ Wilf, P.; Zou, X.; Donovan, M. P.; Kocsis, L.; Briguglio, A.; Shaw, D.; Slik, J. W. F.; Lambiase, J. J. (2022). "First fossil-leaf floras from Brunei Darussalam show dipterocarp dominance in Borneo by the Pliocene". PeerJ 10: e12949. doi:10.7717/peerj.12949. PMID 35356469.
- ↑ Dantas, V. L.; Pausas, J. G. (2022). "The legacy of the extinct Neotropical megafauna on plants and biomes". Nature Communications 13 (1): Article number 129. doi:10.1038/s41467-021-27749-9. PMID 35013233. Bibcode: 2022NatCo..13..129D.
- ↑ Pole, M (2022). "A vanished ecosystem: Sophora microphylla (Kōwhai) dominated forest recorded in mid-late Holocene rock shelters in Central Otago, New Zealand". Palaeontologia Electronica 25 (1): Article number 25.1.1A. doi:10.26879/1169.
- ↑ Bouda, Martin; Huggett, Brett A.; Prats, Kyra A.; Wason, Jay W.; Wilson, Jonathan P.; Brodersen, Craig R. (2022-11-11). "Hydraulic failure as a primary driver of xylem network evolution in early vascular plants" (in en). Science 378 (6620): 642–646. doi:10.1126/science.add2910. ISSN 0036-8075. PMID 36356120. Bibcode: 2022Sci...378..642B. https://www.science.org/doi/10.1126/science.add2910.
Original source: https://en.wikipedia.org/wiki/2022 in paleobotany.
Read more |