Biology:2022 in paleobotany

From HandWiki

Template:ToC Right This paleobotany list records new fossil plant taxa that were to be described during the year 2022, as well as notes other significant paleobotany discoveries and events which occurred during 2022.

Algae

Charophytes

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Lamprothamnium elongatum[1]

Sp. nov

In press

Feist & Floquet

Late Cretaceous

 Spain

A charophyte.

Lamprothamnium ovoideum[1]

Sp. nov

In press

Feist & Floquet

Late Cretaceous

 Spain

A charophyte.

Pseudoharrisichara sedanoensis[1]

Sp. nov

In press

Feist & Floquet

Late Cretaceous

 Spain

A charophyte.

Charophyte research

  • A study on the Paleocene charophyte flora from the South Gobi area in the Junggar Basin (China) and on the Paleogene fossil record of charophytes is published by Cao et al. (2022), who interpret their findings as evidence of the dispersal of charophyte lineages from Asia to Europe in the middle to late Eocene, possibly facilitated by waterbirds.[2]

Chlorophytes

Name Novelty Status Authors Age Type locality Location Notes Images

Ardeiporella[3]

Gen. et comb. nov

Valid

Grgasović

Middle Triassic

 Bosnia and Herzegovina

A green alga belonging to the group Dasycladales. Genus includes "Oligoporella" karrerioidea Pia (1935).

Earltonella[4]

Gen. et sp. nov

LoDuca in LoDuca et al.

Silurian (Llandovery)

Earlton Formation

 Canada
( Ontario)

A green alga belonging to the group Bryopsidales. Genus includes new species E. fredricksi.

Milanovicella? canadillana[5]

Sp. nov

In press

Torromé & Schlagintweit

Late Cretaceous (SantonianCampanian)

 Spain

A green alga belonging to the group Dasycladales.

Neophysoporella[3]

Gen. et comb. nov

Valid

Grgasović

Late Triassic, possibly also Middle Triassic

 France

A green alga belonging to the group Dasycladales. Genus includes "Diplopora" lotharingica Benecke (1898), "Physoporella" jomdaensis Flügel & Mu (1982) and "Physoporella" zamparelliae Parente & Climaco (1999).

Protocodium[6]

Gen. et sp. nov

Chai, Aria & Hua

Ediacaran

Dengying Formation

 China

A green alga belonging to the family Codiaceae. Genus includes new species P. sinense.

Succodium luciae[7]

Sp. nov

Valid

Vachard & Krainer

Permian-Triassic transition

 Italy

A green alga belonging to the group Dasycladales.

Lycopodiopsida

Name Novelty Status Authors Age Type locality Location Notes Images

Lepacyclotes ordosensis[8]

Sp. nov

Valid

Deng in Deng et al.

Middle Triassic (Ladinian)

Tongchuan Formation

 China

A member of the family Isoetaceae.

Lycopodicaulis[9]

Gen. et sp. nov

Valid

Herrera et al.

Early Cretaceous (late Barremian–early Aptian)

Huolinhe Formation

 China

A member of the family Lycopodiaceae. Genus includes new species L. oellgaardii.

Multapicifolium[10]

Gen. et sp. nov

Valid

Edwards, Li & Berry

Early Devonian

 China

A member of Protolepidodendrales of uncertain phylogenetic placement. Genus includes new species M. sinense.

Nothostigma sepeensis[11]

Sp. nov

Spiekermann, Jasper, Guerra-Sommer & Uhl in Spiekermann et al.

Permian (Cisuralian)

 Brazil

A member of Lycopodiopsida of uncertain affinities.

Omprelostrobus[12]

Gen. et sp. nov

Liu et al.

Devonian (Famennian)

Wutong Formation

 China

A member of Isoetales of uncertain affinities. Genus includes new species O. gigas.

Pleuromeia obovata[13]

Sp. nov

Deng in Deng et al.

Middle Triassic (Ladinian)

Tongchuan Formation

 China

A lycopsid.

Porongodendron[14]

Gen. et sp. nov

Valid

Prestianni et al.

Carboniferous (Mississippian)

 Argentina

An isoetalean lycopsid. Genus includes new species P. minitensis.

Selaginella alata[15]

Sp. nov

Li & Wang in Li et al.

Cretaceous (Albian-Cenomanian)

Burmese amber

 Myanmar

A species of Selaginella.

Selaginella cretacea[16]

Sp. nov

In press

Li et al.

Cretaceous

Burmese amber

 Myanmar

A species of Selaginella.

Lycopsid research

  • Description of new fossil material of Guangdedendron micrum, providing new information on the morphology of this plant, is published by Gao et al. (2022).[17]
  • Xu, Liu & Wang (2022) describe new fossil material of Sublepidodendron grabaui from the Devonian (Famennian) Wutong Formation (China), providing new information on the morphology of the female reproductive organs of this plant.[18]

Marchantiophyta

Name Novelty Status Authors Age Type locality Location Notes Images

Radula patrickmuelleri[19]

Sp. nov

Valid

Feldberg, Schäfer-Verwimp & Renner in Feldberg et al.

Cretaceous (Albian-Cenomanian)

Burmese amber

 Myanmar

A liverwort, a species of Radula.

Radula tanaiensis[19]

Sp. nov

Valid

Feldberg, Schäfer-Verwimp & Renner in Feldberg et al.

Cretaceous (Albian-Cenomanian)

Burmese amber

 Myanmar

A liverwort, a species of Radula.

Ricciopsis asturicus[20]

Sp. nov

Valid

Santos et al.

Late Jurassic (Kimmeridgian)

Lastres Formation

 Spain

A liverwort belonging to the family Ricciaceae.

Ricciopsis cortaderitaensis[21]

Gen. et sp. nov

Valid

Savoretti et al.

Middle Triassic

 Argentina

A liverwort.

Ricciellites[21]

Sp. nov

Valid

Savoretti et al.

Middle Triassic

 Argentina

A liverwort.
Genus includes new species R. unsaltoensis.

Marchantiophyta research

  • New specimens of Radula heinrichsii, providing new information on the morphology of this liverwort, are described from the Cretaceous Burmese amber by Wang et al. (2022).[22]

Ferns and fern allies

Name Novelty Status Authors Age Type locality Location Notes Images

Acrostichopteris alcainensis[23]

Sp. nov

Valid

Skog & Sender

Early Cretaceous (Albian)

Escucha Formation

 Spain

A member of the family Hymenophyllaceae.

Coniopteris antarctica[24]

Sp. nov

In press

Trevisan et al.

Late Cretaceous

Antarctica

Diodonopteris virgulata[25]

Sp. nov

In press

Zhou et al.

Early Permian

 China

A botryopteid fern.

Discosoropteris[26]

Gen. et 2 sp. nov

In press

Pšenička et al.

Carboniferous (Pennsylvanian)

Kladno Formation

 Czech Republic

A leptosporangiate fern. Genus includes new species D. chlupatum and D. zlatkokvacekii.

Dryopterites beishanensis[27]

Sp. nov

In press

Ren & Sun in Ren et al.

Early Cretaceous

Chijinbao Formation

 China

A fern
Announced online in 2022
officially published in 2023

Gleichenia nagalingumiae[28]

Sp. nov

Cantrill et al.

Miocene

 Australia

A species of Gleichenia.

Hymenophyllites angustus[15]

Sp. nov

Li & Wang in Li et al.

Cretaceous (Albian-Cenomanian)

Burmese amber

 Myanmar

A member of the family Hymenophyllaceae. Originally described as a species of Hymenophyllites, but subsequently moved to the genus Trichomanes sensu lato by Li et al. (2023).[29]

Hymenophyllites kachinensis[15]

Sp. nov

Li & Wang in Li et al.

Cretaceous (Albian-Cenomanian)

Burmese amber

 Myanmar

A member of the family Hymenophyllaceae.

Hymenophyllites setosus[15]

Sp. nov

Li & Wang in Li et al.

Cretaceous (Albian-Cenomanian)

Burmese amber

 Myanmar

A member of the family Hymenophyllaceae.

Microlepia burmasia[30]

Sp. nov

Long, Wang & Shi in Long et al.

Cretaceous

Burmese amber

 Myanmar

A species of Microlepia.

Mikasapteris[31]

Gen. et sp. nov

Valid

Nishida et al.

Late Cretaceous

Yezo Group

 Japan

A probable stem polypod leptosporangiate fern. Genus includes new species M. rothwellii.

Paralophosoria[32]

Gen. et sp. nov

Valid

Morales-Toledo, Mendoza-Ruiz & Cevallos-Ferriz

Middle Jurassic

Otlaltepec Formation

 Mexico

A member of the family Dicksoniaceae. Genus includes new species P. jurassica.

Phyllotheca douroensis[33]

Sp. nov

Barbosa et al.

Carboniferous (Gzhelian)

Douro Carboniferous Basin

 Portugal

A member of Equisetales.

Scolecopteris zhoui[34]

Sp. nov

In press

Zhang et al.

Early Permian

Taiyuan Formation

 China

A member of Marattiales belonging to the family Psaroniaceae.

Wolfeniana[35]

Nom. nov

Valid

Deshmukh

Devonian

Hampshire Group

 United States
( West Virginia)

A member of Stauropteridales; a replacement name for Gillespiea Erwin & Rothwell (1989).

Fern and fern ally research

Gnetales

Name Novelty Status Authors Age Type locality Location Notes Images

Bassitheca[37]

Gen. et sp. nov

Valid

Manchester et al.

Late Jurassic

Morrison Formation

 United States  Utah

A gnetale. Genus includes the species B. hoodiorum.

Dichoephedra[38]

Gen. et sp. nov

In press

Ren et al.

Early Cretaceous

Chijinbao Formation

 China

A member of the family Ephedraceae. Genus includes new species D. beishanensis.

Bennettitales

Name Novelty Status Authors Age Type locality Location Notes Images

Dictyozamites barnardi[39]

Sp. nov

Valid

Saadatnejad

Late Triassic (Rhaetian)

Kalariz Formation

 Iran

A member of Bennettitales.

Dictyozamites fakhri[39]

Sp. nov

Valid

Saadatnejad

Late Triassic (Rhaetian)

Kalariz Formation

 Iran

A member of Bennettitales.

Kimuriella[40]

Gen. et sp. nov

Valid

Pott & Takimoto

Late Jurassic (Oxfordian)

Tochikubo Formation

 Japan

A member of Bennettitales. Genus includes new species K. densifolia.

Zamites pateri[41]

Sp. nov

Valid

Kvaček

Late Cretaceous (Cenomanian)

Peruc–Korycany Formation

 Czech Republic

Ginkgophytes

Name Novelty Status Authors Age Type locality Location Notes Images

Glossophyllum lanceolatum[42]

Sp. nov

Sun & Deng in Sun et al.

Late Triassic

 China

Glossophyllum panii[42]

Sp. nov

Sun & Deng in Sun et al.

Late Triassic

 China

Pseudotorellia baganuriana[43]

Sp. nov

In press

Nosova & Kostina

Early Cretaceous (AptianAlbian)

Khuren Dukh Formation

 Mongolia

Pseudotorellia zhoui[44]

Sp. nov

In press

Dong et al.

Middle-Late Jurassic

Daohugou Beds

 China

Umaltolepis zhoui[44]

Sp. nov

In press

Dong et al.

Middle-Late Jurassic

Daohugou Beds

 China

Ginkgophyte research

  • Revision of Ginkgo abaniensis, based on data from leaves from the Jurassic Mura Formation (Russia ), is published by Frolov & Mashchuk (2022), who emend the diagnosis of this species, and transfer Ginkgo abaniensis, Ginkgo glinkiensis and Ginkgo capillata to the genus Ginkgoites.[45]

Conifers

Araucariaceae

Name Novelty Status Authors Age Type locality Location Notes Images

Agathoxylon argentinum[46]

Sp. nov

Valid

Bodnar et al.

Late Triassic

Ischigualasto Formation

 Argentina

Cheirolepidiaceae

Name Novelty Status Authors Age Type locality Location Notes Images

Brachyoxylon yanqingense[47]

Sp. nov

Cheng et al.

Late Jurassic

Tuchengzi Formation

 China

A probable member of the family Cheirolepidiaceae.

Frenelopsis antunesii[48]

Sp. nov

In press

Mendes & Kvaček

Early Cretaceous (AptianAlbian)

Figueira da Foz Formation

 Portugal

A member of the family Cheirolepidiaceae.

Pseudofrenelopsis zlatkoi[49]

Sp. nov

Kvaček & Mendes

Early Cretaceous (Aptian-Albian)

Figueira da Foz Formation

 Portugal

Cupressaceae

Name Novelty Status Authors Age Type locality Location Notes Images

Cupressinanthus klebsii[50]

Sp. nov

Valid

Sadowski, Schmidt & Kunzmann

Eocene

Europe (Baltic Sea region)

Cupressaceous pollen cone.

Patagotaxodia[51]

Gen. et sp. nov

Valid

Andruchow-Colombo et al.

Late Cretaceous (Maastrichtian)

Lefipán Formation

 Argentina

A member of the family Cupressaceae. Genus includes new species P. lefipanensis.

Pinaceae

Name Novelty Status Authors Age Type locality Location Notes Images

Keteleerioxylon changchunense[52]

Sp. nov

Shi, Sun, Meng & Yu in Shi et al.

Early Cretaceous (Albian)

Yingcheng Formation

 China

A Keteleeria-like wood morphogenus.

Nothotsuga mulaensis[53]

Sp. nov

Li & Dong in Dong et al.

Miocene

Changtai Formation

 China

A species of Nothotsuga.

Pinus prehwangshanensis[54]

Sp. nov

Bazhenova, Wu & Jin in Bazhenova et al.

Late Pleistocene

Maoming Basin

 China

A pine.

Pinus shengxianica[55]

Sp. nov

Li, Hu & Xiao in Li et al.

Miocene

Shengxian Formation

 China

A pine.

Podocarpaceae

Name Novelty Status Authors Age Type locality Location Notes Images

Phyllocladoxylon antarcticum[56]

Sp. nov

Announced

Pujana et al.

Oligocene

San José Formation

 Chile

A podocarpaceous wood morphospecies
Announced in 2022
Officially published in 2023

Podocarpoxylon resinosum[56]

Sp. nov

Announced

Pujana et al.

Oligocene

San José Formation

 Chile

A podocarpaceous wood morphospecies
Announced in 2022
Officially published in 2023

Podocarpus mexicanoxylon[57]

Sp. nov

Castañeda-Posadas

Miocene

 Mexico

A species of Podocarpus.

Sciadopityaceae

Name Novelty Status Authors Age Type locality Location Notes Images

Zhangoxylon[58]

Gen. et sp. nov

In press

Jiang et al.

Middle to Late Jurassic (Callovian to Kimmeridgian)

 China

A member of the family Sciadopityaceae. Genus includes new species Z. yanliaoense.

Voltziales

Name Novelty Status Authors Age Type locality Location Notes Images

Hexicladia[59]

Gen. et sp. nov

Announced

Wang et al.

Permian (Cisuralian)

Shanxi Formation

 China

A voltzialean conifer.
The type species is H. yongchangensis.
Announced in 2022
Officially published in 2023

Other conifers

Name Novelty Status Authors Age Type locality Location Notes Images

Aciphyllum[60]

Gen. et sp. nov

Barbacka & Górecki in Barbacka et al.

Early Jurassic (Hettangian)

Zagaje Formation

 Poland

A needle leaf similar to the leaves of Pinus. Genus includes new species A. triangulatum.

Ductoagathoxylon tsaaganensis[61]

Sp. nov

In press

Cai, Zhang & Feng in Cai et al.

Late Permian

 Mongolia

Sidashia[62]

Gen. et sp. nov

In press

Forte, Kustatscher & Van Konijnenburg-van Cittert in Forte et al.

Middle Triassic (Anisian)

 Italy

Genus includes new species S. tridentata.

Ullrichia[63]

Gen. et comb. nov

Valid

Kerp et al.

Permian

 Germany

The type species is "Lebachia" laxifolia (1939);
genus also includes "L." intermedia (1939) and "L." mucronata (1939).

Conifer research

  • Bodnar et al. (2022) reassess the anatomy and systematics of the permineralized conifer-like woods from the Triassic strata from Argentina , confirm the assignment of the logs related to the families Cupressaceae and Cheirolepidiaceae, as well as three taxa related to Araucariaceae (Agathoxylon cozzoi, Agathoxylon protoaraucana and Agathoxylon argentinum), and argue that the fossil woods previously assigned to the families Podocarpaceae and Taxaceae do not have enough preserved characters to support such assignment.[64]
  • A study on the pattern of conifer turnover across the Cretaceous-Paleogene boundary in the Raton and Denver basins (Colorado, United States ) is published by Berry (2022).[65]
  • Mantzouka, Akkemik & Güngör (2022) describe fossil woods of Cupressinoxylon matromnense from the middle Miocene Eşelek volcanic deposits (Gökçeada, Turkey), preserved with feeding damage produced by members of the agromyzid genus Protophytobia, and supporting the existence of an eastern Mediterranean Miocene Climatic Optimum hotspot which additionally included Greek islands of Lemnos and Lesbos.[66]

Flowering plants

Chloranthales

Name Novelty Status Authors Age Type locality Location Notes Images

Canrightia foveolata[67]

Sp. nov

Valid

Friis et al.

Early Cretaceous (Aptian-Albian)

Almargem Formation

 Portugal

Proencistemon[67]

Gen. et sp. nov

Valid

Friis et al.

Early Cretaceous (Aptian-Albian)

Almargem Formation

 Portugal

Genus includes new species P. portugallicus.

Magnoliids

Laurales

Name Novelty Status Authors Age Type locality Location Notes Images

Araliaephyllum silvapinedae[68]

Sp. nov

In press

Rubalcava-Knoth & Cevallos-Ferriz

Cretaceous (Albian–Cenomanian)

La Cintura Formation

 Mexico

Argapaloxylon salvadorensis[69]

Sp. nov

Valid

Vasquez-Loranca & Cevallos-Ferriz

Miocene

 El Salvador

A member of the family Lauraceae.

Catula[70][71]

Gen. et sp. nov

Valid

Maccracken et al.

Late Cretaceous (Campanian)

Kaiparowits Formation

 United States
( Utah)

A member of the family Lauraceae. Genus includes new species C. gettyi.

Cryptocaryoxylon irregularis[72]

Sp. nov

Valid

Akkemik, Iamandei & Çelik

Early Miocene

Hançili Formation

 Turkey

Fossil wood of a member of the family Lauraceae.

Laurinoxylon scalariforme[69]

Sp. nov

Valid

Vasquez-Loranca & Cevallos-Ferriz

Miocene

 El Salvador

A member of the family Lauraceae.

Mezilaurinoxylon americana[69]

Sp. nov

Valid

Vasquez-Loranca & Cevallos-Ferriz

Miocene

 El Salvador

A member of the family Lauraceae.

Mezilaurinoxylon draconis[69]

Sp. nov

Valid

Vasquez-Loranca & Cevallos-Ferriz

Miocene

 El Salvador

A member of the family Lauraceae.

Mezilaurinoxylon miocenica[69]

Sp. nov

Valid

Vasquez-Loranca & Cevallos-Ferriz

Miocene

 El Salvador

A member of the family Lauraceae.

Magnoliales

Name Novelty Status Authors Age Type locality Location Notes Images

Magnolia allasoniae[73]

Sp. nov

Valid

Martinetto in Niccolini et al.

Miocene (Messinian)

Piedmont Basin

 Italy

A species of Magnolia.
First named in 1995 but did not meet ICBN requirements; subsequently validated in 2022.

Piperales

Name Novelty Status Authors Age Type locality Location Notes Images

Aristospermum[74]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (Aptian–Albian)

 Portugal
 United States
( Virginia)

A member of the family Aristolochiaceae. Genus includes new species A. huberi.

Siratospermum[74]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Late Cretaceous (Cenomanian)

 United States
( Maryland)

A member of the family Aristolochiaceae. Genus includes new species S. mauldinense.

Monocots

Lilioid monocots

Name Novelty Status Authors Age Type locality Location Notes Images

Pandanus estellae[75]

Sp. nov

Valid

Rozefelds et al.

Oligocene

 Australia

A species of Pandanus.

Commelinid monocots

Name Novelty Status Authors Age Type locality Location Notes Images

Sabalites ghughuaensis[76]

Sp. nov

In press

Kumar, Hazra & Khan in Kumar et al.

Late Cretaceous-Paleocene (Maastrichtian-Danian)

Deccan Intertrappean Beds

 India

A member of the family Arecaceae belonging to the subfamily Coryphoideae.

Sabalites umariaensis[76]

Sp. nov

In press

Kumar, Hazra & Khan in Kumar et al.

Late Cretaceous-Paleocene (Maastrichtian-Danian)

Deccan Intertrappean Beds

 India

A member of the family Arecaceae belonging to the subfamily Coryphoideae.

Monocot research

  • Leaf fossils of costapalmate-palms belonging to the genus Sabalites are described from the ?SantonianCampanian Belly River Group, Campanian Foremost Formation (Alberta, Canada ) and Maastrichtian Frenchman Formation (Saskatchewan, Canada) by Greenwood, Conran & West (2022), who interpret the studied fossils as constraining climate reconstructions for the Late Cretaceous high mid-latitudes of North America (c. 55° N) to exclude significant freezing episodes; the authors also transfer the Late Cretaceous species "Geonomites" imperialis to the genus Phoenicites, and reassess Sabalites carolinensis as more likely to be Campanian than Coniacian–Santonian in age.[77]
  • A study on the impact of the absence of megaherbivores in the aftermath of the Cretaceous–Paleogene extinction event on the evolution of palms is published by Onstein, Kissling & Linder (2022).[78]
  • A study on the evolutionary history of palms belonging to the group Mauritiinae, as inferred from a phylogenetic analysis incorporating fossil data, is published by Bacon et al. (2022).[79]

Basal eudicots

Proteales

Name Novelty Status Authors Age Type locality Location Notes Images

Distefananthus[80]

Gen. et sp. nov

Huegele & Wang

Early Cretaceous (Albian)

Dakota Formation

 United States
( Kansas)

A platanaceous inflorescence. Genus includes new species D. hoisingtonensis.

Langeranthus[81]

Gen et sp nov

Valid

Huegele & Manchester

Eocene
Ypresian

Klondike Mountain Formation

 USA
 Washington

A platanaceous flowering head.
The type species is L. dillhoffiorum

Meliosma eosinica[82]

Sp. nov

Moiseeva, Kodrul & Jin
in Moiseeva et al.

Late Eocene

Huangniuling Formation

 China

A species of Meliosma.

Nelumbo delinghaensis[83]

Sp. nov

Luo & Jia in Luo et al.

Miocene

Upper Youshashan Formation

 China

A species of Nelumbo.

Nelumbo fujianensis[84]

Sp. nov

In press

Dong et al.

Miocene

Fotan Group

 China

A species of Nelumbo.

Platimeliphyllum durhamensis[85]

Comb nov

in press

(Wolfe)

Late Eocene

Puget Group
"Upper Fultonian" Loc 9832

 USA
 Washington

A platanaceous leaf.
Moved from "Fothergilla" durhamensis (1968).

Platimeliphyllum fushunensis[85]

Comb nov

in press

(Chen)

Eocene

Fushun Formation

 China

A platanaceous leaf.
Moved from "Betula" fushunensis.

Sapindopsis chinensis[86]

Sp. nov

Golovneva et al.

Early Cretaceous (Albian)

Dalazi Formation

 China

A member of the family Platanaceae.

Sapindopsis orientalis[86]

Sp. nov

Golovneva et al.

Early Cretaceous (Albian)

Frentsevka Formation

 Russia
(Template:Country data Primorsky Krai)

A member of the family Platanaceae.

Protealean research
  • Redescription of the Okanagan Highlands genus Langeria with description of associated stipules and reproductive structures plus formal reassignment of the genus to Platanaceae by Huegele & Manchester is published.[81]

Ranunculales

Name Novelty Status Authors Age Type locality Location Notes Images

Berberis auriolensis[87]

Sp. nov

Valid

Denk & Sami in Denk et al.

Pleistocene (Calabrian)

 Italy

A species of Berberis.

Mahonia mangbangensis[88]

Sp. nov

Tang et al.

Pliocene

Mangbang Formation

 China

A species of Mahonia.

Palaeosinomenium hengduanensis[89]

Sp. nov

Wu & Zhou in Wu et al.

Eocene

Shuanghe Formation

 China

A member of the family Menispermaceae.

Superasterids

Aquifoliales

Name Novelty Status Authors Age Type locality Location Notes Images

Ilex antiquorum[90]

Nom. nov

Valid

Doweld

Late Cretaceous (Maastrichtian)

 Germany

A holly; a replacement name for Ilex antiqua Knobloch & Mai (1986).

Ilex myricina[90]

Nom. nov

Valid

Doweld

Miocene (Messinian)

 Italy

A holly; a replacement name for Ilex myricoides Massalongo (1858).

Caryophyllales

Name Novelty Status Authors Age Type locality Location Notes Images

Podopterus mijangosae[91]

Sp. nov

In press

Estrada-Ruiz

Miocene

Mexican amber

 Mexico

A species of Podopterus.

Cornales

Name Novelty Status Authors Age Type locality Location Notes Images

Blackwelloxylon[92]

Nom. nov

Valid

Deshmukh

Pleistocene

 United States
( Mississippi)

A member of the family Cornaceae; a replacement name for Cornoxylon Blackwell (1982).

Exbeckettia[93]

Gen. et comb. nov

Valid

Manchester & Collinson

Early Eocene

London Clay

 United Kingdom

A mastixioid fruit; a new genus for Beckettia mastixioides Reid & Chandler (1933).

Dipsacales

Name Novelty Status Authors Age Type locality Location Notes Images

Sambucus heqingensis[94]

Sp. nov

In press

Huang & Zhou in Huang et al.

Late Pliocene

Heqing Basin

 China

A species of Sambucus.

Ericales

Name Novelty Status Authors Age Type locality Location Notes Images

Paradiospyroxylon[95]

Gen. et sp. nov

In press

Koutecký & Sakala in Koutecký, Sakala & Chytrý

Oligocene

Ústí Formation

 Czech Republic

A member of the family Ebenaceae. Genus includes new species P. kvacekii.

Icacinales

Name Novelty Status Authors Age Type locality Location Notes Images

Palaeophytocrene chicoensis[96]

Sp. nov

Atkinson

Late Cretaceous (Campanian)

Chico Formation

 United States
( California)

A member of the family Icacinaceae.

Metteniusales

Name Novelty Status Authors Age Type locality Location Notes Images

Calatola verae[97]

Sp. nov

Estrada-Ruiz et al.

Miocene

Mexican amber

 Mexico

A species of Calatola.

Superrosids

Cucurbitales

Name Novelty Status Authors Age Type locality Location Notes Images

Libasperma[98]

Gen. et sp. nov

In press

Huegele & Manchester

Paleocene

Fort Union Formation

 United States
( Montana)

A member of the family Cucurbitaceae. Genus includes new species L. potamoglossensis.

Fabales

Name Novelty Status Authors Age Type locality Location Notes Images

Albizia yenbaiensis[99]

Sp. nov

Announced

Nguyen, Su & J. Huang in Nguyen et al.

Miocene

Yen Bai Basin

 Vietnam

An Albizia species.
Announced in 2022
Officially published January 2023

Anadenantheroxylon kurupaum[100]

Sp. nov

Valid

Ramos et al.

Late Pleistocene

El Palmar Formation

 Argentina

A member of the family Fabaceae.

Cedrelinga paleocatenaeformis[100]

Sp. nov

Valid

Ramos et al.

Late Pleistocene

El Palmar Formation

 Argentina

A species of Cedrelinga.

Cercioxylon mediterraneum[72]

Sp. nov

Valid

Akkemik, Iamandei & Çelik

Early Miocene

Hançili Formation

 Turkey

Fossil wood of a member of the family Fabaceae.

Chloroleucoxylon[100]

Gen. et sp. nov

Valid

Ramos et al.

Late Pleistocene

El Palmar Formation

 Argentina

A member of the family Fabaceae. Genus includes new species C. yukeriense.

Enterolobiumoxylon vassalloae[100]

Sp. nov

Valid

Ramos et al.

Late Pleistocene

El Palmar Formation

 Argentina

A member of the family Fabaceae.

Leguminocarpum meghalayensis[101]

Sp. nov

Announced

Bhatia, Srivastava & Mehrotra

Late Paleocene

Tura Formation

 India

A fabaceous seed pod morphospecies.
Announced in 2022
Officially published in 2023

Microlobiusxylon parafoetidus[100]

Sp. nov

Valid

Ramos et al.

Late Pleistocene

El Palmar Formation

 Argentina

A member of the family Fabaceae.

Paleobowdichia[102]

Gen. et comb. nov

Valid

Herendeen et al.

Latest Paleocene to late early Eocene

Lamar River Formation

 United States
( Colorado
 Wyoming)

A member of Papilionoideae; a new genus for "Acacia" lamarensis Knowlton (1899).

Parapiptadenioxylon[100]

Gen. et sp. nov

Valid

Ramos et al.

Late Pleistocene

El Palmar Formation

 Argentina

A Fabaceae genus.
The type species is P. pararigida.

Parvileguminophyllum damalgiriensis[101]

Sp. nov

Announced

Bhatia, Srivastava & Mehrotra

Late Paleocene

Tura Formation

 India

A fabaceous leaf morphospecies.
Announced in 2022
Officially published in 2023

Podocarpium tibeticum[103]

Sp. nov

In press

Li, Huang & Su in Li et al.

Late Eocene

Lunpola Basin

 China

A member of the family Fabaceae.

Pseudopiptadenioxylon[100]

Gen. et sp. nov

Valid

Ramos et al.

Late Pleistocene

El Palmar Formation

 Argentina

A member of the family Fabaceae. Genus includes new species P. uniseriatum.

Tobya[102]

Gen. et comb. nov

Valid

Herendeen et al.

Eocene

Cockfield Formation

 United States
( Kentucky
 Tennessee)

A member of Papilionoideae; a new genus for "Diplotropis" claibornensis Herendeen & Dilcher (1990).

Fabalean research
  • New fossil material of members of the genus Bauhinia is described from the Eocene of the Puyang Basin (China) by Jia et al. (2022), who interpret their findings as the earliest reliable fossil records of Bauhinia in Asia.[104]
  • Moya et al. (2022) study the affinities of fossil legumes Entrerrioxylon victoriensis, Gossweilerodendroxylon palmariensis, Paraoxystigma concordiensis and Cylicodiscuxylon paragabunensis from the Cenozoic Paraná, Arroyo Feliciano and El Palmar formations (Argentina) with extant West African legumes, and discuss the possible migration routes by which these plants may have arrived in South America from Africa.[105]

Fagales

Name Novelty Status Authors Age Type locality Location Notes Images

Castanopsis zhoui[106]

Sp. nov

In press

Wang et al.

Miocene

Fotan Group

 China

A species of Castanopsis.

Comptonia hirsuta[107]

Sp. nov

Xiao & Ji in Ji et al.

Miocene

Hannuoba Formation

 China

A species of Comptonia.

Myricoxylon doganyurtensis[72]

Sp. nov

Valid

Akkemik, Iamandei & Çelik

Early Miocene

 Turkey

Fossil wood of a member of the family Myricaceae.

Nothofagoxylon ruei[56]

Sp. nov

Announced

Pujana et al.

Oligocene

San José Formation

 Chile

A nothofagaceous wood morphospecies
Announced in 2022
Officially published in 2023

Pterocarya magnifructa[108]

Sp. nov

Valid

Stults, Tiffney & Axsmith

Pliocene

 United States
( Alabama)

A species of Pterocarya.

Quercus nanningensis[109]

Sp. nov

In press

Liu & Jin in Liu et al.

Late Oligocene

Yongning Formation

 China

An oak.

Quercus paleodisciformis[109]

Sp. nov

In press

Liu & Jin in Liu et al.

Late Oligocene

Yongning Formation

 China

An oak.

Quercus paleohui[109]

Sp. nov

In press

Liu & Jin in Liu et al.

Late Oligocene

Yongning Formation

 China

An oak.

Quercus yongningensis[109]

Sp. nov

In press

Liu & Jin in Liu et al.

Late Oligocene

Yongning Formation

 China

An oak.

Malpighiales

Name Novelty Status Authors Age Type locality Location Notes Images

Belenocarpa[110]

Gen. et comb. nov

Valid

Hamersma et al.

Early Oligocene

 Peru

A member of the family Euphorbiaceae; a new genus for "Jatropha" tertiara Berry.

Elatine odgaardii[111]

Sp. nov

Valid

Bennike in Bennike et al.

Probably early Pleistocene

 Greenland

A species of Elatine. Announced in 2022; the final article version was published in 2023.

Mammeoxylon beylikduezuense[112]

Sp. nov

In press

Akkemik et al.

Late Oligocene-Early Miocene

İstanbul Formation

 Turkey

A Mammea relative wood morphospecies

Mammeoxylon paramericana[112]

Comb. nov

In press

(Nelson & Jud) Akkemik & D. Mantzouka

Miocene

 Panama

A Mammea relative wood morphospecies
Moved from Mammea paramericana (2017)

Parinari hilliana[113]

Sp. nov

Valid

Grote in Grote, Duangkrayom & Jintasakul

Late Miocene

Tha Chang beds

 Thailand

A species of Parinari.

Parinari khoratensis[113]

Sp. nov

Valid

Grote in Grote, Duangkrayom & Jintasakul

Late Miocene

Tha Chang beds

 Thailand

A species of Parinari.

Plukenetia minima[114]

Sp. nov

In press

Poinar

Miocene

Dominican amber

 Dominican Republic

A species of Plukenetia.

Malvales

Name Novelty Status Authors Age Type locality Location Notes Images

Malvacipolloides deccanensis[115]

Sp. nov

Manchester et al.

Late Cretaceous-Paleocene (MaastrichtianDanian)

Deccan Intertrappean Beds

 India

A member of the family Malvaceae.

Malvacipolloides intertrappea[115]

Sp. nov

Manchester et al.

Late Cretaceous-Paleocene (Maastrichtian–Danian)

Deccan Intertrappean Beds

 India

A member of the family Malvaceae.

Thespesia neopopulnea[116]

Sp. nov

Valid

Hazra, Mahato & Khan in Hazra et al.

Pliocene

Rajdanda Formation

 India

A species of Thespesia.

Malvalean research
  • A study on the evolutionary history of Dipterocarpaceae, as indicated by biogeography of pollen fossils from Africa and India, molecular data and fossil amber records, is published by Bansal et al. (2022).[117]

Myrtales

Name Novelty Status Authors Age Type locality Location Notes Images

Hemitrapa zhangpuensis[118]

Sp. nov

Dong et al.

Miocene

 China

A member of the family Lythraceae belonging to the subfamily Trapoideae.

Myrtineoxylon hoffmannae[56]

Sp. nov

Announced

Pujana et al.

Oligocene

San José Formation

 Chile

A myrtaceous wood morphospecies.
Announced in 2022
Officially published in 2023

Trapa natanifolia[119]

Sp. nov

Han & Jia in Han et al.

Late Eocene

Bailuyuan Formation

 China

A water caltrop.

Trapa qaidamensis[120]

Sp. nov

Cai et al.

Miocene

Shangyoushashan Formation

 China

A water caltrop.

Oxalidales

Name Novelty Status Authors Age Type locality Location Notes Images

Ceratopetalum suciensis[121]

Sp nov

In press

Tang, Smith, & Atkinson

Late Cretaceous
Campanian

Cedar District Formation

 United States
( Washington)

A Cunoniaceous species.

Connaroxylon[122]

Gen. et sp. nov

Valid

Baas et al.

Cretaceous
Maastrichtian-earliest Paleocene

Deccan Intertrappean Beds

 India

A probable Connaraceous wood morphotaxon.
The type species is C. dimorphum.
First named in 2017 but failed ICBN requirements;[123]
subsequently validated in 2022.[122]

Cunoniocarpa[124]

Gen. et sp. nov

Valid

Matel et al.

Early Eocene

Huitrera Formation

 Argentina

A member of Cunoniaceae.
The type species is C. stylosa.

Racemofructus[124]

Gen. et sp. nov

Valid

Matel et al.

Early Eocene

Huitrera Formation

 Argentina

A member of Cunoniaceae.
The type species is R. fasciculatus.

Weinmannioxylon trichospermoides[56]

Sp. nov

Announced

Pujana et al.

Oligocene

San José Formation

 Chile

A cunoniaceous wood morphospecies.
Announced in 2022
Officially published in 2023

Oxalidalean research

Tand, Smith, and Atkinson describe the first North American instance of the previously Paleo-Antarctic Rainforest Lineage Cunoniaceae fruits from Sucia Island. Previously considered solely a Gondwanan family, the new species indicate a complex geographic history for the group.[121]

Rosales

Name Novelty Status Authors Age Type locality Location Notes Images

Eophylica[125]

Gen. et sp. nov

Valid

Shi et al.

Cretaceous

Burmese amber

 Myanmar

A rhamnaceous floral morphotaxon.
The type species is E. priscastellata.

Ficoxylon fusiforme[126]

Sp. nov

Valid

El-Noamani

Late Cretaceous

Taref Formation

 Egypt

A member of the family Moraceae.

Ficus fujianensis[127]

Sp. nov

In press

Dong et al.

Miocene

 China

A species of Ficus.

Ficus zhangpuensis[127]

Sp. nov

In press

Dong et al.

Miocene

 China

A species of Ficus.

Ventilago pliocenica[128]

Sp. nov

Hazra et al.

Pliocene

 India

A species of Ventilago.

Ventilago siwalika[128]

Sp. nov

Hazra et al.

Miocene

 India

A species of Ventilago.

Sapindales

Name Novelty Status Authors Age Type locality Location Notes Images

Barkleya[129]

Gen. et comb. nov

Valid

Manchester & Judd

Eocene
Ypresian

Green River Formation

 United States
 Colorado

An anacardiaceous samara.
Type species Anacardites schinoloxus (1929).
Possibly the fruits of Rhus nigricans.

Canarium haominiae[130]

Sp. nov

In press

Yin et al.

Miocene

 China

A species of Canarium.

Canarium maomingense[131]

Sp. nov

Xiang & Jin in Xiang et al.

Late Pleistocene

Maoming Basin

 China

A species of Canarium.

Choerospondias mioaxillaris[132]

Sp. nov

Xiao & Wu in Xiao et al.

Miocene

Shengxian Formation

 China

A species of Choerospondias.

Choerospondias tiantaiensis[132]

Sp. nov

Xiao & Wu in Xiao et al.

Miocene

Shengxian Formation

 China

A species of Choerospondias.

Grimmipollis[133]

Gen. et sp. nov

Huang, Morley & Hoorn in Huang et al.

Eocene

Yaw Formation

 Myanmar

A member of the family Sapindaceae. Genus includes new species G. burmanica.

Koelreuteria kvacekii[134]

Sp. nov

Valid

Chen, Del Rio & Su in Chen et al.

Eocene

Niubao Formation

 China

A species of Koelreuteria.

Loxopteroides[135]

Gen. et sp. nov

In press

Manchester & Judd

Eocene

Ione Formation

 United States
( California
 Oregon)

A member of the family Anacardiaceae. Genus includes new species L. weeksae.

Vaudoisia[136]

Gen. et comb. nov

Valid

Strullu-Derrien et al.

Eocene

 France

A fruit of likely sapindalean affinity; a new genus for "Juglandicarya" gruetii Vaudois-Miéja (1976).

Other Eudicots

Name Novelty Status Authors Age Type locality Location Notes Images

Zlatkovia[137]

Gen. et sp. nov

In press

Rothwell & Stockey

Late Cretaceous

St. Mary River Formation

 Canada
( Alberta)

An aquatic eudicot.
The type species is Z. crenulata.

Other angiosperms

Name Novelty Status Authors Age Type locality Location Notes Images

Archaebuda[138]

Gen. et sp. nov

Chen & Wang

Early Cretaceous (Barremian-Aptian)

Yixian Formation

 China

A flower bud of an early angiosperm. Genus includes new species A. lingyuanensis.

Ascarinophyllum[139]

Gen. et sp. nov

Announced 2022

Čepičková & Kvaček

Late Cretaceous
(Cenomanian)

Peruc–Korycany Formation

 Czech Republic

A Basal angiosperm leaf morphogenus
Similar to Mesodescolea plicata and Chloranthaceae.
The type species is A. pecinovense.
Officially published in 2023

Covidifructus[140]

Gen. et sp. nov

Valid

Heřmanová et al.

Late Cretaceous (late Turonian-Santonian)

Klikov Formation

 Czech Republic

An angiosperm fruit of uncertain affinities, with similarities to the family Dilleniaceae.
The type species is C. multicarpellatus.

Elasmostemon[67]

Gen. et sp. nov

Valid

Friis et al.

Early Cretaceous (Aptian-Albian)

Almargem Formation

 Portugal

A flowering plant of uncertain position at the level of ANA-grade angiosperms-Chloranthaceae-magnoliids. Genus includes new species E. paisii.

Endressistemon[67]

Gen. et sp. nov

Valid

Friis et al.

Early Cretaceous (Aptian-Albian)

Almargem Formation

 Portugal

A flowering plant of uncertain position at the level of ANA-grade angiosperms-Chloranthaceae-magnoliids. Genus includes new species E. cateficensis.

Fairlingtonia microgyna[141]

Sp. nov

Du et al.

Early Cretaceous

Zhonggou Formation

 China

A herbaceous eudicot.

Florigerminis[142]

Gen. et sp. nov

In press

Cui et al.

Middle-Late Jurassic

Jiulongshan Formation

 China

A possible flower bud.
The type species is F. jurassica.
First announced online 2021, Final article published in 2022.

Florigerminis jurassica

Gansupeltata[143]

Gen. et sp. nov

Valid

Wu et al.

Early Cretaceous (Aptian)

Chijinpu Formation

 China

An early flowering plant. Genus includes new species G. beishanensis.

Herbifolia[144]

Gen. et sp. nov

In press

Frolov & Enushchenko

Middle Jurassic (Aalenian)

Irkutsk Coal Basin

 Russia

An angiosperm with leaf epidermal structure most similar to those of modern Asparagales and Liliales. Genus includes new species H. antiqua.

Honeytheca[98]

Gen. et sp. nov

In press

Huegele & Manchester

Paleocene

Fort Union Formation

 United States
( Montana)

A flowering plant of uncertain affinities. Genus includes new species H. bighornensis.

Ibericarpus[67]

Gen. et sp. nov

Valid

Friis et al.

Early Cretaceous (Aptian-Albian)

Almargem Formation

 Portugal

A flowering plant of uncertain position at the level of ANA-grade angiosperms-Chloranthaceae-magnoliids. Genus includes new species I. cuneiformis.

Lingyuananthus[145]

Gen. et sp. nov

Wang

Early Cretaceous (Barremian–Aptian)

Yixian Formation

 China

An early angiosperm. Genus includes new species L. inexpectus.

Phylica piloburmensis[125]

Sp. nov

Valid

Shi et al.

Cretaceous

Burmese amber

 Myanmar

A flowering plant of uncertain affinities. Originally described as a species of Phylica. Oskolski et al. (2024) interpreted it as a flowering plant with an affinity to Rhamnaceae, possibly to an extint basal lineage;[146] on the other hand Beurel et al. (2024) interpreted it as more likely to have lauralean affinities, and made it the type species of the separate genus Nothophylica.[147]

Santaniella[148]

Gen. et 2 sp. nov

Gobo et al.

Early Cretaceous (Barremian-Aptian)

Crato Formation

 Brazil

Originally described as a member or a relative of the family Ranunculaceae, but subsequently considered to be a mesangiosperm of uncertain affinities, possibly a magnoliid.[149] Genus includes new species S. lobata and S. acuta.

Todziaphyllum saportanum[139]

Comb. nov

Announced

(Velenovský) Čepičková & Kvaček

Late Cretaceous
(Cenomanian)

Peruc–Korycany Formation

 Czech Republic

A Basal angiosperm leaf morphogenus
A new combination for Banksites saportanus
Officially published in 2023

Tolmania[150]

Gen. et sp. nov

Valid

Edmonds, Stockey & Rothwell

Late Cretaceous (Maastrichtian)

St. Mary River Formation

 Canada
( Alberta)

An aquatic dicot. Genus includes new species T. aquatica.

Valvidistemon[67]

Gen. et sp. nov

Valid

Friis et al.

Early Cretaceous (Aptian-Albian)

Almargem Formation

 Portugal

A flowering plant of uncertain position at the level of ANA-grade angiosperms-Chloranthaceae-magnoliids. Genus includes new species V. globiferus.

General angiosperm research

  • Surangea mohgaoensis, originally interpreted as fern megaspores, is reinterpreted as angiosperm fruits by Ramteke et al. (2022).[151]
  • Zhang et al. (2022) describe rich assemblages of spiny plant fossils from the Eocene (Bartonian) Niubao Formation (Tibet, China), preserving seven different spine morphologies, and interpret this finding as evidence of the presence of a diversity of spiny plants in Eocene central Tibet, as well as evidence of a rapid diversification of spiny plants in Eurasia around that time.[152]
  • A preliminary report on a new fossil angiosperm flora of the Lesvos Petrified Forest at Akrocheiras east of Sigri on Lesbos, Greece is given by Kafetzidou et al. Preliminary taxa identifications are given and commentary on the climactic implications are made.[153]
  • A study aiming to determine the relationship between past atmospheric CO2 and temperature fluctuations and the shifts in diversification rates of Poaceae and Asteraceae is published by Palazzesi et al. (2022).[154]

Other plants

Name Novelty Status Authors Age Type locality Location Notes Images

Aegianthus irkutensis[155]

Sp. nov

In press

Nosova & Tekleva

Middle Jurassic

Prisayan Formation

 Russia

Pollen cone with pollen of ginkgoalean or gnetophytalean affinity.

Aysenoxylon[56]

Gen et sp nov

Announced

Pujana et al.

Oligocene

San José Formation

 Chile

A wood morphospecies of uncertain affinity.
The type species is A. patorarensis.
Announced in 2022
Officially published in 2023

Bryokhutuliinia ignatovii[156]

Sp. nov

Valid

Frolov, Kazanovsky & Enushchenko

Early Jurassic (Toarcian)

Middle Subformation of Prisayan Formation

 Russia
(Template:Country data Irkutsk Oblast)

A member of Bryopsida of uncertain affinities.

Combina[157]

Gen. et sp. nov

Santos & Wang

Middle Triassic (Anisian)

Calcena Formation

 Spain

A cone-like reproductive organ of a seed plant. Genus includes new species C. triassica.

Dioonitocarpidium rossicum[158]

Sp. nov

Valid

Gomankov

Permian

 Russia

A member of Cycadales.

Europoxylon garapensis[159]

Sp. nov

In press

Conceição et al.

Permian (Cisuralian)

Pedra de Fogo Formation

 Brazil

A gymnosperm.

Jarudia[160]

Gen. et sp. nov

Shi et al.

Early Cretaceous

Huolinhe Formation

 China

A seed-bearing structure of a corystosperm seed fern. Genus includes new species J. zhoui.

Komlopteris distinctiva[60]

Sp. nov

Barbacka in Barbacka et al.

Early Jurassic (Hettangian)

Zagaje Formation

 Poland

Cuticle of a seed fern.

Lesleya ceriacoi[161]

Sp. nov

In press

Correia et al.

Carboniferous (Gzhelian)

Douro Carboniferous Basin

 Portugal

An early gymnosperm.

Palaeodichelyma kiritchkovae[156]

Sp. nov

Valid

Frolov, Kazanovsky & Enushchenko

Early Jurassic (Pliensbachian)

Lower Subformation of Prisayan Formation

 Russia
(Template:Country data Irkutsk Oblast)

A member of Bryopsida of uncertain affinities.

Paragigantopteris[162]

Gen. et sp. nov

In press

Ma et al.

Permian (Wuchiapingian)

Lungtan Formation

 China

A gigantopterid. Genus includes new species P. qingloongensis.

Pauthecophyton hezhangensis[163]

Sp. nov

Wang et al.

Devonian (Pragian-Emsian)

Danlin Formation

 China

A euphyllophyte of uncertain affinities.

Piterophyton[164]

Gen. et sp. nov

Valid

Naugolnykh

Ordovician

 Russia
(Template:Country data Leningrad Oblast)

A rhyniophyte of uncertain affinities. The type species is P. caudatum.

Polycanaloxylon[159]

Gen. et sp. nov

In press

Conceição et al.

Permian (Cisuralian)

Pedra de Fogo Formation

 Brazil

A gymnosperm. Genus includes new species P. merlottii.

Psilophyton diakanthon[165]

Sp. nov

Colston, Landaw & Tomescu

Devonian (Emsian)

Battery Point Formation

 Canada
( Quebec)

A member of the group Trimerophytopsida.

Renbernia[166]

Gen. et sp. nov

In press

Friis, Crane & Pedersen

Early Cretaceous (Albian)

Potomac Group

 United States
( Virginia)

A seed plant similar to Brenneria potomacensis. Genus includes new species R. zhoui.

Rhyniotaenium[167]

Gen. et sp. nov

In press

Krings

Early Devonian

Rhynie chert

 United Kingdom

An alga, probably a green alga belonging to the family Mesotaeniaceae. Genus includes new species R. velatum.

Sinoglossa[168]

Gen. et sp. nov

Valid

Zhang et al.

Middle Triassic

Linjia Formation

 China

A member of Glossopteridales. The type species is S. sunii.

Taimyria[169]

Gen. et sp. nov

Valid

Naugolnykh & Mogutcheva

Early Triassic (Induan)

Keshinskian/Keshinskaya Formation

 Russia
(Template:Country data Krasnoyarsk Krai)

A member of Peltaspermales belonging to the family Angaropeltaceae. Genus includes new species T. triassica.

Taungurungia[170]

Gen. et sp. nov

Valid

McSweeney, Shimeta & Buckeridge

Devonian (PragianEmsian)

Norton Gully Sandstone Formation

 Australia

A plant of uncertain affinities, similar to members of Zosterophyllopsida. Genus includes new species T. garrattii.

Teyoua[171]

Gen. et sp. nov

In press

Huang, Liu & Xue

Devonian (probably Pragian)

Mangshan Group

 China

A polysporangiate land plant. Genus includes new species T. antrorsa.

Traskia[172]

Gen. et sp. nov

Valid

Rothwell et al.

Jurassic

 Canada
( British Columbia)

A stem-cycad. Genus includes new species T. maahlae.

Vetiplanaxis obtusus[173]

Sp. nov

In press

Li et al.

Cretaceous

Burmese amber

 Myanmar

A moss belonging to the group Hypnodendrales.

Wilhowia[174]

Gen. et sp. nov

Valid

Gensel

Devonian (Emsian)

Battery Point Formation

 Canada
( Quebec)

A basal euphyllophyte. Genus includes new species W. phocarum.

Xadzigacalix[175]

Gen. et sp. nov

Valid

Klymiuk, Rothwell & Stockey

Early Cretaceous (Valanginian)

 Canada
( British Columbia)

A gymnosperm of uncertain phylogenetic placement, possibly having affinities with gnetophytes or angiosperms. Genus includes new species X. quatsinoensis.

Xinhangia[176]

Gen. et sp. nov

Yang & Wang

Devonian (Famennian)

Wutong Formation

 China

A fern-like plant of uncertain affinities. Genus includes new species X. spina.

Other plant research

  • A study on the xylem development in Leptocentroxyla, and on its implications for the knowledge of the evolution of pith, is published by Tomescu & McQueen (2022).[177]
  • Decombeix et al. (2022) report evidence of tylosis formation in permineralized wood of Dameria hueberi from the Tournaisian of Australia .[178]
  • The first comprehensive crown reconstruction of Medullosa stellata var. typica, based on data from a specimen from the Chemnitz petrified forest (Germany ), is presented by Luthardt et al. (2022).[179]
  • Fossil material of Rhabdotaenia is reported from the Permian Umm Irna Formation (Jordan) by Blomenkemper et al. (2022), representing the northernmost occurrence of this Gondwanan leaf type reported to date.[180]

Palynology

Name Novelty Status Authors Age Type locality Location Notes Images

Anapiculatisporites radiatus[181]

Sp. nov

Valid

Playford

Carboniferous (Mississippian)

Lyall Formation

 Australia

A trilete spore.

Apricasporites[181]

Gen. et sp. nov

Valid

Playford

Carboniferous (Mississippian)

Lyall Formation

 Australia

A trilete spore. Genus includes new species A. cancellosus.

Camptotriletes inaequabilis[181]

Sp. nov

Valid

Playford

Carboniferous (Mississippian)

Lyall Formation

 Australia

A trilete spore.

Camptotriletes suggrandis[181]

Sp. nov

Valid

Playford

Carboniferous (Mississippian)

Lyall Formation

 Australia

A trilete spore.

Convolutispora inreligata[181]

Sp. nov

Valid

Playford

Carboniferous (Mississippian)

Lyall Formation

 Australia

A trilete spore.

Endosporites circumsaeptus[181]

Sp. nov

Valid

Playford

Carboniferous (Mississippian)

Lyall Formation

 Australia

A trilete spore.

Foveosporites magnus[181]

Sp. nov

Valid

Playford

Carboniferous (Mississippian)

Lyall Formation

 Australia

A trilete spore.

Granulatisporites commutabilis[181]

Sp. nov

Valid

Playford

Carboniferous (Mississippian)

Lyall Formation

 Australia

A trilete spore.

Paxillitriletes permicus[182]

Sp. nov

In press

Sui, McLoughlin & Feng in Sui et al.

Permian (WuchiapingianChanghsingian)

Xuanwei Formation

 China

A lycophyte megaspore.

Sergipea multipapillata[183]

Sp. nov

Hu et al.

Early Cretaceous

Bongor Basin

 Chad

A gymnosperm pollen.

Volkheimerites[184]

Gen. et sp. nov

In press

Narváez et al.

Paleocene (Danian)

Salamanca Formation

 Argentina

Pollen of a flowering plant.
The type species is V. labyrinthus.

Yezopollis[185]

Gen. et sp. nov

In press

Legrand, Yamada & Nishida

Late Cretaceous (CenomanianTuronian)

Mikasa Formation

 Japan

A Normapolles-type flowering plant pollen. Genus includes new species Y. mikasaensis.

Research

  • Review of the studies on the origin of the land flora is published by Bowman (2022).[186]
  • A study on the evolution of body plans of members of Viridiplantae, based on a review of the fossil record, molecular data and developmental biology, is published by Niklas & Tiffney (2022).[187]
  • A study on the biodiversity of land plants at the equator during their first major diversification in the Late Silurian–Early Devonian is published by Wellman et al. (2022).[188]
  • A study on the evolution of heterospory during the Devonian is published by Leslie & Bonacorsi (2022).[189]
  • Seven coniferous nurse logs that have been colonized by conifer and equisetalean roots are reported from four Permian intervals in the Ordos Basin (China ) by Feng et al. (2022), indicating that conifer tree stems probably functioned as hosts to both conspecific and interspecific seedlings in the Cathaysian Flora.[190]
  • A study on the impact of the Intertropical Convergence Zone in the emerging South Atlantic region on Aptian plant communities from eight Brazilian sedimentary basins is published by Carvalho et al. (2022), who report evidence of an overall predominance of xerophytic plants, attesting to more dry conditions, and of a humidification trend towards the end of the late Aptian resulting in the predominance of hydrophytes, hygrophytes, tropical lowland flora and upland flora, indicative of prevalence of lowland and montane rainforests.[191]
  • A study on the distribution and relative abundances of major plant groups from the Albian Gates Formation (Alberta, Canada ) is published by Kalyniuk et al. (2022).[192]
  • A study on the relationship between whole-genome duplication, seed traits and the selectivity of the survival of plants during the Cretaceous–Paleogene extinction event is published by Berry & Jaganathan (2022).[193]
  • New Oligocene flora is described from the Dong Ho Formation (Vietnam) by Huang et al. (2022), who interpret the studied fossils as evidence of long-term environmental, floristic and vegetational stability in this region since the Paleogene.[194]
  • Gentis et al. (2022) describe fossil wood specimens from the Miocene Natma Formation (Myanmar), representing an assemblage dominated by members of the families Fabaceae and Dipterocarpaceae, interpreted as coming from different types of low altitude forest ecosystems (tropical wet evergreen, tropical dry and deciduous, and tropical littoral), and interpreted as indicative of a monsoonal climate with an alternance of a dry season and a wet season.[195]
  • Abundant compression floras dominated by angiosperm leaves are described from two sites of probable Pliocene age in Brunei by Wilf et al. (2022), who interpret these floras as evidence of dipterocarp-dominated lowland rainforests in the Malay Archipelago before the Pleistocene.[196]
  • A study on the impact of the extinct Neotropical megafauna on the variability in plant functional traits and biome geography in Central and South America is published by Dantas & Pausas (2022).[197]
  • A study on plant material from rock overhangs from mid-late Holocene sites along the Kawarau-Cromwell-Roxburgh Gorges in Central Otago (New Zealand), much of which was likely transported as roosting material or consumed by moa birds, and on its implications for the knowledge of the mid-late Holocene regional vegetation of Central Otago and the knowledge of vegetation changes since mid-late Holocene, is published by Pole (2022).[198]
  • A study on the role of hydraulic failure in the evolution of early vascular plants is published by Bouda et al. (2022), suggesting that drought selection played a key role in the diversification of vascular arrangements beginning with the Devonian explosion.[199]

References

  1. 1.0 1.1 1.2 Feist, M.; Floquet, M. (2022). "Charophytes from the Upper Cretaceous Castilian marine ramp and continental basins (central northern Spain): fossil assemblages and depositional environments". Cretaceous Research 140: Article 105325. doi:10.1016/j.cretres.2022.105325. Bibcode2022CrRes.14005325F. 
  2. Cao, W.; Li, S.; Li, Q.; Stidham, T. A.; Wan, X.; Ni, X. (2022). "Asian Paleocene charophyte records demonstrate Eocene dispersals from Asia to Europe". Journal of Paleontology 96 (3): 706–714. doi:10.1017/jpa.2021.118. Bibcode2022JPal...96..706C. 
  3. 3.0 3.1 Grgasović, T. (2022). "Taxonomy of the fossil calcareous algae: Revision of genera Physoporella Steinmann and Oligoporella Pia (Dasycladales)". Carnets Geol. 22 (7): 171–310. doi:10.2110/carnets.2022.2207. http://paleopolis.rediris.es/cg/22/07/index.html. 
  4. LoDuca, S. T.; Meacher, M.; Pepper, P.; Brett, K.; Isotalo, P. A. (2022). "Earltonella fredricksi n. gen n. sp. and Thalassocystis striata (Chlorophyta, Bryopsidales) from the Silurian (Llandoverian) of the Timiskaming outlier, Ontario, Canada". Journal of Paleontology 97 (2): 516–532. doi:10.1017/jpa.2022.86. 
  5. Torromé, D.; Schlagintweit, F. (2022). "Milanovicella? canadillana sp. nov., an Upper Cretaceous supposedly calcitic Dasycladale (green algae) from the middle Santonian–lower Campanian of northeastern Spain". Cretaceous Research 141: Article 105365. doi:10.1016/j.cretres.2022.105365. 
  6. Chai, S.; Aria, C.; Hua, H. (2022). "A stem group Codium alga from the latest Ediacaran of South China provides taxonomic insight into the early diversification of the plant kingdom". BMC Biology 20 (1): 199. doi:10.1186/s12915-022-01394-0. PMID 36127662. 
  7. Vachard, D.; Krainer, K. (2022). "Calcareous algae and foraminifers across the Permian-Triassic boundary interval (uppermost Bellerophon Formation and basal Werfen Formation) in the Dolomites (South Tyrol – Trentino, Italy)". Palaeontographica Abteilung A 324 (1–6): 1–173. doi:10.1127/pala/2022/0128. Bibcode2022PalAA.324....1V. 
  8. Deng, S.; Lu, Y.; Fan, R.; Luo, Z.; Ma, X.; Lyu, D.; Sun, Y. (2022). "Lycopsid Lepacyclotes Emmons from the Middle Triassic of the Ordos Basin, North China and reviews of the genus". Review of Palaeobotany and Palynology 308: 104660. doi:10.1016/j.revpalbo.2022.104660. 
  9. Herrera, F.; Testo, W. L.; Field, A. R.; Clark, E. G.; Herendeen, P. S.; Crane, P. R.; Shi, G. (2022). "A permineralized Early Cretaceous lycopsid from China and the evolution of crown clubmosses". New Phytologist 233 (5): 2310–2322. doi:10.1111/nph.17874. PMID 34981832. 
  10. Edwards, D.; Li, C.-S.; Berry, C. M. (2022). "Lower Devonian lycophytes from Sichuan and the paleogeographic context of coeval plant assemblages from South China". International Journal of Plant Sciences 183 (6): 413–431. doi:10.1086/720387. https://orca.cardiff.ac.uk/id/eprint/149767/1/Lower%20Devonian%20Lycophytes%20Final%20Text%20OA.pdf. 
  11. Spiekermann, R.; Jasper, A.; Pozzebon-Silva, Â.; Carniere, J. S.; Benício, J. R. W.; Guerra-Sommer, M.; Uhl, D. (2022). "Small but not trivial: Nothostigma sepeensis sp. nov., a lycopsid from the Cisuralian (early Permian) of the Paraná basin, Brazil". Journal of South American Earth Sciences 122: 104188. doi:10.1016/j.jsames.2022.104188. 
  12. Liu, L.; Wang, D.-M.; Zhou, Y.; Qin, M.; Ferguson, D. K.; Meng, M.-C. (2022). "A Late Devonian tree lycopsid with large strobili and isotomous roots". Communications Biology 5 (1): 966. doi:10.1038/s42003-022-03934-4. PMID 36109665. 
  13. Deng, S.; Lu, Y.; Fan, R.; Ma, X.; Lyu, D.; Luo, Z.; Sun, Y. (2022). "A new species of Pleuromeia (Lycopsid) from the upper Middle Triassic of Northern China and discussion on the spatiotemporal distribution and evolution of the genus". Geobios 75: 1–15. doi:10.1016/j.geobios.2022.10.001. Bibcode2022Geobi..75....1D. 
  14. Prestianni, C.; Rustán, J. J.; Balseiro, D.; Vaccari, N. E. (2022). "Porongodendron minitensis gen. nov. sp. nov. a new lycopsid from the Mississippian of Argentina with adaptations to tundra-like conditions". Botany Letters 169 (4): 527–539. doi:10.1080/23818107.2022.2101515. Bibcode2022BotL..169..527P. https://orbi.uliege.be/bitstream/2268/302490/1/Porongodendron%20minitensis%20gen%20nov%20sp%20nov%20a%20new%20lycopsid%20from%20the%20Mississippian%20of%20Argentina%20with%20adaptations%20to%20tundra%20like%20conditions.pdf. 
  15. 15.0 15.1 15.2 15.3 Li, Y.; Wang, Y.-D.; Nosova, N.; Lu, N.; Xu, Y.-Y. (2022). "Filmy Ferns (Hymenophyllaceae) and Associated Spike-Mosses (Selaginellaceae) from the Mid-Cretaceous Kachin Amber, Myanmar". Biology 11 (11): 1629. doi:10.3390/biology11111629. PMID 36358330. 
  16. Li, Y.; Li, Y.-D.; Wang, Y.-D.; Schneider, H.; Shi, G.-L. (2022). "Re-appraisal of lacewing mimicry of liverworts from the mid-Cretaceous Kachin amber, Myanmar with a description of Selaginella cretacea sp. nov. (Selaginellales, Selaginellaceae)". Cretaceous Research 133: Article 105143. doi:10.1016/j.cretres.2022.105143. Bibcode2022CrRes.13305143L. 
  17. Gao, X.; Liu, L.; Qin, M.; Zhou, Y.; Mao, L.; Wang, D.-M. (2022). "Re-study of Guangdedendron micrum from the Late Devonian Xinhang forest". BMC Ecology and Evolution 22 (1): Article number 69. doi:10.1186/s12862-022-02021-w. PMID 35606742. 
  18. Xu, P.; Liu, L.; Wang, D.-M. (2022). "Reinvestigation of the Late Devonian Lycopsid Sublepidodendron grabaui from Anhui Province, South China". Biology 11 (10): 1544. doi:10.3390/biology11101544. PMID 36290447. 
  19. 19.0 19.1 Feldberg, K.; Schäfer-Verwimp, A.; Li, Y.; Renner, M. A. M. (2022). "Extending the diversity of the bryoflora in Kachin amber (Myanmar), with the description of Radula patrickmuelleri, sp. nov. and R. tanaiensis, sp. nov. (Jungermanniopsida, Porellales, Radulaceae)". Fossil Record 25 (1): 213–230. doi:10.3897/fr.25.82362. https://fr.pensoft.net/article/82362/. 
  20. Santos, A. A.; Sender, L. M.; Piñuela, L.; García-Ramos, J. C.; Diez, J. B. (2022). "First evidence of Ricciaceae in the Jurassic of the Iberian Peninsula (Asturias, NW Spain): Ricciopsis asturicus sp. nov". Botany Letters 169 (4): 557–567. doi:10.1080/23818107.2022.2124452. Bibcode2022BotL..169..557S. 
  21. 21.0 21.1 Savoretti, A.; Bodnar, J.; Coturel, E. P.; Beltrán, B. (2022). "Fossil bryophytes from the Middle Triassic Sorocayense Group, San Juan Province, central-western Argentina". Ameghiniana 59 (3): 179–200. doi:10.5710/AMGH.26.02.2022.3469. https://www.ameghiniana.org.ar/index.php/ameghiniana/article/view/3469. 
  22. Wang, Q.; Li, Y.; Feldberg, K.; Wang, Y.-D.; Yang, X.-J. (2022). "Radula heinrichsii (Radulaceae, Porellales), a leafy liverwort from the mid-Cretaceous of Myanmar". Palaeoworld 31 (4): 679–687. doi:10.1016/j.palwor.2022.01.006. 
  23. Skog, J. E.; Sender, L. M. (2022). "New information and family relationship (Hymenophyllaceae) for the fossil fern genus Acrostichopteris Fontaine and a new species from the Lower Cretaceous (Albian) of Spain". American Journal of Botany 109 (9): 1443–1455. doi:10.1002/ajb2.16050. PMID 36045579. 
  24. Trevisan, C.; Dutra, T.; Ianuzzi, R.; Sander, A.; Wilberger, T.; Manríquez, L.; Mansilla, H.; Leppe, M. (2022). "Coniopteris antarctica sp. nov. (Pteridophyta) and associated plant assemblage from the Upper Cretaceous of Rip Point, Nelson Island, Antarctica". Cretaceous Research 136: Article 105185. doi:10.1016/j.cretres.2022.105185. Bibcode2022CrRes.13605185T. 
  25. Zhou, W.; Li, D.; Pšenička, J.; Boyce, C. K.; Wang, S.; Wang, J. (2022). "Diodonopteris virgulata sp. nov., a climbing fern from the early Permian Wuda Tuff Flora and its paleoecology". Review of Palaeobotany and Palynology 304: Article 104699. doi:10.1016/j.revpalbo.2022.104699. Bibcode2022RPaPa.30404699Z. 
  26. Pšenička, J.; Zhou, W.; Boyce, C. K.; Votočková Frojdová, J.; Bek, J.; Opluštil, S.; Wang, J. (2022). "Two new leptosporangiate ferns from in situ volcanic ash of the Whetstone Horizon (Kladno Formation, Pennsylvanian), Pilsen Basin, Czech Republic". Review of Palaeobotany and Palynology 299: Article 104608. doi:10.1016/j.revpalbo.2022.104608. Bibcode2022RPaPa.29904608P. 
  27. Ren, W.-X.; Wu, G.-T.; Han, L.; Hua, Y.-F.; Sun, B.-N. (2023). "New species of fossil Dryopterites from the Lower Cretaceous in the Zhongkouzi Basin, Beishan area, Northwest China, and its geological significance". Historical Biology: An International Journal of Paleobiology 35 (1): 84–91. doi:10.1080/08912963.2021.2022135. Bibcode2023HBio...35...84R. 
  28. Cantrill, D. J.; Ohlsen, D.; McCurry, M. R.; Frese, M. (2022). "Gleichenia nagalingumiae sp. nov., a remarkably well-preserved fossil species with in situ spores from the Miocene of Australia". Review of Palaeobotany and Palynology 310: 104823. doi:10.1016/j.revpalbo.2022.104823. 
  29. Li, Y.; Ebihara, A.; Nosova, N.; Tan, Z.-Z.; Cui, Y.-M. (2023). "First Fossil Record of Trichomanes sensu lato (Hymenophyllaceae) from the Mid-Cretaceous Kachin Amber, Myanmar". Life 13 (8): 1709. doi:10.3390/life13081709. PMID 37629566. Bibcode2023Life...13.1709L. 
  30. Long, X.; Peng, Y.; Zhang, H.; Fan, Y.; Shi, C.; Wang, S. (2022). "Microlepia burmasia sp. nov., a new fern species from mid-Cretaceous Kachin amber of norther Myanmar (Dennstaedtiaceae, Polypodiales)". Cretaceous Research 143: 105417. doi:10.1016/j.cretres.2022.105417. 
  31. Nishida, H.; Stockey, R. A.; Takebe, Y.; Legrand, J.; Yamada, T. (2022). "Mikasapteris rothwellii gen. et sp. nov., a Permineralized Fertile Pinnule of a Probable Stem Polypod from the Late Cretaceous of Hokkaido, Japan". International Journal of Plant Sciences 183 (7): 576–586. doi:10.1086/721262. 
  32. Morales-Toledo, J.; Mendoza-Ruiz, A. C.; Cevallos-Ferriz, S. R. S. (2022). "The ferns in a new Middle Jurassic locality from the Otlaltepec Formation, Puebla, Mexico". Earth and Environmental Science Transactions of the Royal Society of Edinburgh 113 (2): 127–140. doi:10.1017/S1755691022000093. 
  33. Barbosa, C.; Correia, P.; Muchagata, J.; Domingos, R.; Sá, A. A. (2022). "Phyllotheca douroensis sp. nov., a new equisetalean fossil-species from the Douro Carboniferous Basin (Upper Pennsylvanian; NW Portugal): palaeobiogeographical, systematic and evolutionary implications". Biosis: Biological Systems 3 (1): e001. doi:10.37819/biosis.003.01.0162. https://eaapublishing.org/journals/index.php/biosis/article/view/162. 
  34. Zhang, B.; Li, D.; Wan, M.; Zhou, W.; Pšenička, J.; Bek, J.; Wang, J. (2022). "A new species of Scolecopteris (Marattiales, Psaroniaceae) from the early Permian Wuda Tuff Flora". Review of Palaeobotany and Palynology 304: Article 104717. doi:10.1016/j.revpalbo.2022.104717. Bibcode2022RPaPa.30404717Z. 
  35. Deshmukh, U. B. (2022). "Wolfeniana, a new replacement name for fossil Pteridophyte genus Gillespiea Erwin & Rothwell (Stauropteridales)". Phytotaxa 566 (2): 249–250. doi:10.11646/phytotaxa.566.2.11. 
  36. Li, D.; Zhou, W.; Wan, M.; Wang, S.; Wang, J. (2022). "Leaf scar and petiole anatomy reveal Pecopteris lativenosa Halle is a marattialean fern". Geobios 72–73: 37–53. doi:10.1016/j.geobios.2022.07.004. Bibcode2022Geobi..72...37L. 
  37. Steven R. Manchester; Xiaoqing Zhang; Carol L. Hotton; Scott Wing; Peter R. Crane (2022). "Two-seeded cones of probable gnetalean affinity from the Morrison Formation (Late Jurassic) of Utah and Colorado, USA". Acta Palaeobotanica 62 (2): 77–92. doi:10.35535/acpa-2022-0006. 
  38. Ren, W.-X.; Tang, D.-L.; Wang, Z.-E.; Sun, B.-N.; Wu, J.-Y.; Ding, S.-T. (2022). "Dichoephedra beishanensis gen. et sp. nov., a new ephedroid plant with unusual branching patterns from the Lower Cretaceous of northwestern China". Cretaceous Research 138: Article 105284. doi:10.1016/j.cretres.2022.105284. Bibcode2022CrRes.13805284R. 
  39. 39.0 39.1 Saadatnejad, J. (2022). "Two new species of Dictyozamites (Bennettitales) from the Rhaetic Kalariz Formation, North of Iran". Revista Brasileira de Paleontologia 25 (2): 135–143. doi:10.4072/rbp.2022.2.03. 
  40. Pott, C.; Takimoto, H. (2022). "Kimuriella gen. nov. (Bennettitales), a Whole-Plant Bennettite from the Oxfordian (Upper Jurassic) Tochikubo Formation of Shidazawa, Minamisōma, Fukushima Prefecture, Northeast Japan". Paleontological Research 26 (2): 158–186. doi:10.2517/PR200020. 
  41. Kvaček, J. (2022). "New species of Zamites from the Cenomanian of the Bohemian Cretaceous Basin". Fossil Imprint 78 (2): 425–431. doi:10.37520/fi.2022.017. http://fi.nm.cz/en/clanek/new-species-of-zamites-from-the-cenomanian-of-the-bohemian-cretaceous-basin-2/. 
  42. 42.0 42.1 Sun, Y.; Deng, S.; Lu, Y.; Fan, R.; Ma, X.; Lü, D. (2022). "Emendation of the Triassic plant species Glossophyllum shensiense (Ginkgoales) with a review of the genus Glossophyllum Kräusel". Review of Palaeobotany and Palynology 301: 104657. doi:10.1016/j.revpalbo.2022.104657. Bibcode2022RPaPa.30104657S. 
  43. Nosova, N.; Kostina, E. (2022). "New findings of the female reproductive structures of Umaltolepis Krassilov and associated leaves of Pseudotorellia Florin in the Lower Cretaceous of Mongolia". Review of Palaeobotany and Palynology 304: Article 104696. doi:10.1016/j.revpalbo.2022.104696. Bibcode2022RPaPa.30404696N. 
  44. 44.0 44.1 Dong, C.; Shi, G.; Zhang, X.; Wang, Z.; Wang, Y. (2022). "Middle-Late Jurassic fossils from Northeast China confirm the affiliation of Umaltolepis seed-bearing structure and Pseudotorellia leaves". Review of Palaeobotany and Palynology 306: Article 104763. doi:10.1016/j.revpalbo.2022.104763. Bibcode2022RPaPa.30604763D. 
  45. Frolov, A. O.; Mashchuk, I. M. (2022). "New Discoveries and New Combinations of the Fossil-genus Ginkgoites Seward (Ginkgoales) from the Lower and Middle Jurassic of East Siberia (Russia)". Phytotaxa 567 (1): 49–60. doi:10.11646/phytotaxa.567.1.4. 
  46. Bodnar, J.; Sagasti, A. J.; Correa, G. A.; Miranda, V.; Medina, F. (2022). "Araucariaceous fossil woods from the Upper Triassic Ischigualasto Formation (San Juan Province, Argentina): paleofloristic and paleoclimatic implications". Journal of Paleontology 96 (6): 1354–1378. doi:10.1017/jpa.2022.45. Bibcode2022JPal...96.1354B. 
  47. Cheng, S.; Xu, S.; Li, F.; Tian, N. (2022). "Occurrence of Brachyoxylon wood from the Upper Jurassic of Beijing, northern China". Historical Biology: An International Journal of Paleobiology 35 (10): 1941–1949. doi:10.1080/08912963.2022.2127355. 
  48. Mendes, M. M.; Kvaček, J. (2022). "Frenelopsis antunesii sp. nov., a new cheirolepidiaceous conifer from the Lower Cretaceous of Figueira da Foz Formation in western Portugal". Review of Palaeobotany and Palynology 300: Article 104643. doi:10.1016/j.revpalbo.2022.104643. Bibcode2022RPaPa.30004643M. 
  49. Kvaček, J.; Mendes, M. M. (2022). "A new species of the cheirolepidiaceous conifer Pseudofrenelopsis from the Lower Cretaceous of Figueira da Foz Formation, Portugal". Review of Palaeobotany and Palynology 309: 104821. doi:10.1016/j.revpalbo.2022.104821. 
  50. Sadowski, E.-M.; Schmidt, A. R.; Kunzmann, L. (2022). "The hyperdiverse conifer flora of the Baltic amber forest". Palaeontographica Abteilung B 304 (1–4): 1–148. doi:10.1127/palb/2022/0078. Bibcode2022PalAB.304....1S. 
  51. Andruchow-Colombo, A.; Gandolfo, M. A.; Escapa, I. H.; Cúneo, N. R. (2022). "New genus of Cupressaceae from the Upper Cretaceous of Patagonia (Argentina) fills a gap in the evolution of the ovuliferous complex in the family". Journal of Systematics and Evolution 60 (6): 1417–1439. doi:10.1111/jse.12842. 
  52. Shi, X.; Sun, Y.; Meng, F.; Yu, J.; Lan, Z. (2022). "Early Cretaceous Keteleerioxylon Wood in the Songliao Basin, Northeast China, and Its Geographic and Environmental Implications". Biology 11 (11): 1624. doi:10.3390/biology11111624. PMID 36358325. 
  53. Dong, J.; Li, Z.; Gao, J.; Wang, Q.; Sun, B. (2022). "A New Fossil Species of Nothotsuga from the Mula Basin, Litang County, Sichuan Province and Its Paleoclimate and Paleoecology Significance". Biology 12 (1): 46. doi:10.3390/biology12010046. PMID 36671738. 
  54. Bazhenova, N. V.; Wu, X.-K.; Kodrul, T. M.; Maslova, N. P.; Tekleva, M. V.; Xu, S.-L.; Jin, J.-H. (2022). "Mummified Seed Cones of Pinus prehwangshanensis sp. nov. (Subgenus Pinus, Pinaceae) From the Upper Pleistocene of Guangdong, South China: Taxonomical Significance and Implication for Phytogeography and Ecology". Frontiers in Ecology and Evolution 10: Article 900687. doi:10.3389/fevo.2022.900687. 
  55. Li, X.-C.; Hu, Y.; Zhang, X.; Xiao, L.; Liang, L.-N.; Zhang, R.-Z.; Qiao, L. (2022). "A novel seed cone of Pinus from the Miocene of coastal Southeast China indicates kinship with Southeast Asian pines". Plant Diversity 45 (6): 732–747. doi:10.1016/j.pld.2022.12.002. PMID 38197003. 
  56. 56.0 56.1 56.2 56.3 56.4 56.5 Pujana, R. R.; Bostelmann, J. E.; Ugalde, R. A.; Riquelme, M. P.; Torres, T. (2022). "Fossil woods from the Pato Raro Heights, Patagonia National Park, Aysén, Chile: A new paleobotanical assemblage at the Oligocene climate transition". Review of Palaeobotany and Palynology 309: 104814. doi:10.1016/j.revpalbo.2022.104814. 
  57. Castañeda, C. (2022). "Podocarpus (Podocarpaceae) wood from Miocene rocks in Panotla, Tlaxcala, Mexico". Journal of South American Earth Sciences 121: 104118. doi:10.1016/j.jsames.2022.104118. 
  58. Jiang, Z.; Tian, N.; Wang, Y.; Li, Y.; Zheng, S.; Xie, A.; Zhu, Y. (2022). "A new structurally preserved fossil umbrella pine from the Jurassic of East Asia". Geological Journal 57 (9): 3521–3537. doi:10.1002/gj.4467. Bibcode2022GeolJ..57.3521J. 
  59. Wang, X.; Yang, Y.; Hua, Y.; Sun, B.; Miao, Y. (2022). "Hexicladia, a new genus of the Cisuralian conifer from Hexi Corridor, China". Review of Palaeobotany and Palynology 308: 104789. doi:10.1016/j.revpalbo.2022.104789. 
  60. 60.0 60.1 Barbacka, M.; Górecki, A.; Pacyna, G.; Pieńkowski, G.; Philippe, M.; Bóka, K.; Ziaja, J.; Jarzynka, A. et al. (2022). "Early Jurassic coprolites: insights into palaeobotany and the feeding behaviour of dinosaurs". Papers in Palaeontology 8 (2): e1425. doi:10.1002/spp2.1425. Bibcode2022PPal....8E1425B. 
  61. Cai, Y.; Zhang, H.; Feng, Z.; Gou, X.; Byambajav, U.; Zhang, Y.; Yuan, D.; Qie, W. et al. (2022). "A new conifer stem, Ductoagathoxylon tsaaganensis, from the Upper Permian of the South Gobi Basin, Mongolia and its palaeoclimatic and palaeoecological implications". Review of Palaeobotany and Palynology 304: Article 104719. doi:10.1016/j.revpalbo.2022.104719. Bibcode2022RPaPa.30404719C. 
  62. Forte, G.; Kustatscher, E.; Nowak, H.; Van Konijnenburg-van Cittert, J. H. A. (2022). "Conifer Cone and Dwarf Shoot Diversity in the Anisian (Middle Triassic) of Kühwiesenkopf/Monte Prà della Vacca (Dolomites, Northeastern Italy)". International Journal of Plant Sciences 183 (9): 729–767. doi:10.1086/722036. 
  63. Kerp, H.; Bödige, H.; Bomfleur, B.; Schneider, J. W. (2022). "First records of the conifers Majonica and Ortiseia from the German Zechstein (upper Permian) of east Thuringia and west Saxony, Germany". Botany Letters 169 (4): 423–441. doi:10.1080/23818107.2022.2122555. Bibcode2022BotL..169..423K. 
  64. Bodnar, J.; Cuesta, V.; Escapa, I. H.; Nunes, G. C. (2022). "Exploring the first appearance of the main derived conifer families of Gondwana: evidence provided by the Triassic woods from Argentina". Ameghiniana 60 (1): 18–47. doi:10.5710/AMGH.16.11.2022.3520. 
  65. Berry, K. (2022). "Conifer turnover across the K/Pg boundary in Colorado, U.S.A., parallels South American patterns: New and emerging perspectives". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 303 (1): 11–28. doi:10.1127/njgpa/2022/1035. 
  66. Mantzouka, D.; Akkemik, Ü.; Güngör, Y. (2022). "Miocene Cupressinoxylon from Gökçeada (Imbros), Turkey with Protophytobia cambium mining and the study of ecological signals of wood anatomy". PeerJ 10: e14212. doi:10.7717/peerj.14212. PMID 36530400. 
  67. 67.0 67.1 67.2 67.3 67.4 67.5 Friis, E. M.; Crane, P. R.; Pedersen, K. R.; Mendes, M. M.; Kvaček, J. (2022). "The Early Cretaceous mesofossil flora of Catefica, Portugal: angiosperms". Fossil Imprint 78 (2): 341–424. doi:10.37520/fi.2022.016. http://fi.nm.cz/en/clanek/the-early-cretaceous-mesofossil-flora-of-catefica-portugal-angiosperms-2/. 
  68. Rubalcava-Knoth, M. A.; Cevallos-Ferriz, S. R. S. (2022). "Lauraceous palmately lobed leaf from the middle Cretaceous Cintura Formation (Albian–Cenomanian), Sonora, Mexico: identification based on two comparative models". Cretaceous Research 140: 105355. doi:10.1016/j.cretres.2022.105355. Bibcode2022CrRes.14005355R. 
  69. 69.0 69.1 69.2 69.3 69.4 Vasquez-Loranca, A. R.; Cevallos-Ferriz, S. R. S. (2022). "A diverse assemblage of Miocene Lauraceae in Chalatenango, El Salvador". IAWA Journal 43 (4): 479–507. doi:10.1163/22941932-bja10096. 
  70. Maccracken, S. A.; Miller, I. M.; Johnson, K. R.; Sertich, J. J. W.; Labandeira, C. C. (2022). "Insect herbivory on Catula gettyi gen. et sp. nov. (Lauraceae) from the Kaiparowits Formation (Late Cretaceous, Utah, USA)". PLOS ONE 17 (1): e0261397. doi:10.1371/journal.pone.0261397. PMID 35061696. Bibcode2022PLoSO..1761397M. 
  71. Maccracken, S. A.; Miller, I. M.; Johnson, K. R.; Sertich, J. J. W.; Labandeira, C. C. (2022). "Correction: Insect herbivory on Catula gettyi gen. et sp. nov. (Lauraceae) from the Kaiparowits Formation (Late Cretaceous, Utah, USA)". PLOS ONE 17 (8): e0272757. doi:10.1371/journal.pone.0272757. PMID 35921305. Bibcode2022PLoSO..1772757M. 
  72. 72.0 72.1 72.2 Akkemik, Ü.; Iamandei, S.; Çelik, H. (2022). "Further contribution to the early Miocene woody flora of Galatian Volcanic Province from Doğanyurt Village, Ankara (Turkey)". Turkish Journal of Earth Sciences 31 (2): 208–234. doi:10.3906/yer-2103-7. https://journals.tubitak.gov.tr/earth/abstract.htm?id=30836. 
  73. Niccolini, G.; Martinetto, E.; Lanini, B.; Menichetti, E.; Fusco, F.; Hakobyan, E.; Bertini, A. (2022). "Late Messinian flora from the post-evaporitic deposits of the Piedmont Basin (Northwest Italy)". Fossil Imprint 78 (1): 189–216. doi:10.37520/fi.2022.008. http://fi.nm.cz/en/clanek/late-messinian-flora-from-the-post-evaporitic-deposits-of-the-piedmont-basin-northwest-italy-2/. 
  74. 74.0 74.1 Friis, E. M.; Crane, P. R.; Pedersen, K. R. (2022). "Early and Mid-Cretaceous Aristolochiaceous Seeds from Portugal and Eastern North America". International Journal of Plant Sciences 183 (7): 587–603. doi:10.1086/721259. http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-4976. 
  75. Rozefelds, A. C.; Rudall, P. J.; Herne, M. C.; Milroy, A. K.; Bridgeman, J. (2022). "A Fossil Syncarpous Fruit from Australia Provides Support for a Gondwanan History for the Screw Pines (Pandanus, Pandanaceae)". International Journal of Plant Sciences 183 (4): 320–329. doi:10.1086/719431. 
  76. 76.0 76.1 Kumar, S.; Hazra, T.; Spicer, R. A.; Hazra, M.; Spicer, T. E. V.; Bera, S.; Khan, M. A. (2023). "Coryphoid palms from the K-Pg boundary of central India and their biogeographical implications: Evidence from megafossil remains". Plant Diversity 45 (1): 80–97. doi:10.1016/j.pld.2022.01.001. PMID 36876312. 
  77. Greenwood, D. R.; Conran, J. G.; West, C. K. (2022). "Palm fronds from western Canada are the northernmost palms from the Late Cretaceous of North America and may include the oldest Arecaceae". Review of Palaeobotany and Palynology 301: Article 104641. doi:10.1016/j.revpalbo.2022.104641. Bibcode2022RPaPa.30104641G. 
  78. Onstein, R. E.; Kissling, W. D.; Linder, H. P. (2022). "The megaherbivore gap after the non-avian dinosaur extinctions modified trait evolution and diversification of tropical palms". Proceedings of the Royal Society B: Biological Sciences 289 (1972): Article ID 20212633. doi:10.1098/rspb.2021.2633. PMID 35414237. 
  79. Bacon, C. D.; Silvestro, D.; Hoorn, C.; Bogotá-Ángel, G.; Antonelli, A.; Chazot, N. (2022). "The origin of modern patterns of continental diversity in Mauritiinae palms: the Neotropical museum and the Afrotropical graveyard". Biology Letters 18 (11): 20220214. doi:10.1098/rsbl.2022.0214. PMID 36382374. 
  80. Huegele, I. B.; Wang, H. (2022). "An unusual plane tree from the Early Cretaceous of Kansas, USA". Review of Palaeobotany and Palynology 309: 104815. doi:10.1016/j.revpalbo.2022.104815. 
  81. 81.0 81.1 Huegele, I. B.; Manchester, S. R. (2022). "Newly Recognized Reproductive Structures Linked with Langeria from the Eocene of Washington, USA, and their Affinities with Platanaceae". International Journal of Plant Sciences 183 (5): 367–379. doi:10.1086/720138. 
  82. Moiseeva, M. G.; Kodrul, T. M.; Tekleva, M. V.; Maslova, N. P.; Wu, X.; Jin, J. (2022). "Fossil Leaves of Meliosma (Sabiaceae) With Associated Pollen and a Eupodid Mite From the Eocene of Maoming Basin, South China". Frontiers in Ecology and Evolution 9: Article 770687. doi:10.3389/fevo.2021.770687. 
  83. Luo, M.; Jia, H.; Li, Q.; Meng, X.; Ferguson, D. K.; Liu, P.; Han, Z.; Wang, J. et al. (2022). "Middle Miocene lotus (Nelumbonaceae, Nelumbo) from the Qaidam Basin, Northern Tibet Plateau". Biology 11 (9): 1261. doi:10.3390/biology11091261. PMID 36138740. 
  84. Dong, J.-L.; Gao, J.-X.; Li, Z.; Sun, B.-N. (2022). "A tropical lotus from the middle Miocene tropical rainforest flora of South China". Review of Palaeobotany and Palynology 299: Article 104611. doi:10.1016/j.revpalbo.2022.104611. Bibcode2022RPaPa.29904611D. 
  85. 85.0 85.1 Huegele, I.B.; Zhu, H.; Zhao, B.; Wang, Y.-F.; Manchester, S. R. (2021). "Trans-Beringial Distribution of Platimeliphyllum (Platanaceae) in the Eocene of Eastern Asia and Western North America". International Journal of Plant Sciences 183 (2): 139–153. doi:10.1086/717692. 
  86. 86.0 86.1 Golovneva, L. B.; Volynets, E. B.; Zolina, A. A.; Sun, Y. (2022). "New species of Sapindopsis Fontaine (Platanaceae) from the mid-Cretaceous of northeastern Asia and their paleogeographical and evolutionary implications". Cretaceous Research 142: 105391. doi:10.1016/j.cretres.2022.105391. 
  87. Denk, T.; Sami, M.; Teodoridis, V.; Martinetto, E. (2022). "The late Early Pleistocene flora of Oriolo, Faenza (Italy): assembly of the modern forest biome". Fossil Imprint 78 (1): 217–262. doi:10.37520/fi.2022.009. http://fi.nm.cz/en/clanek/the-late-early-pleistocene-flora-of-oriolo-faenza-italy-assembly-of-the-modern-forest-biome-2/. 
  88. Tang, D.-L.; Wang, Z.-E.; Ding, H.; Huang, Y.-T.; Ding, S.-T.; Wu, J.-Y. (2022). "New discovery of Mahonia fossils from the Pliocene of Yunnan, China, and its biogeographical significance". Historical Biology: An International Journal of Paleobiology 35 (12): 2435–2448. doi:10.1080/08912963.2022.2142912. 
  89. Wu, M.-X.; Huang, J.; Manchester, S. R.; Tang, H.; Gao, Y.; Wang, T.-X.; Zhou, Z.-K.; Su, T. (2022). "A new fossil record of Palaeosinomenium (Menispermaceae) from the Upper Eocene in the southeastern margin of the Tibetan Plateau and its biogeographic and paleoenvironmental implications". Review of Palaeobotany and Palynology 310: 104827. doi:10.1016/j.revpalbo.2022.104827. 
  90. 90.0 90.1 Doweld, A. B. (2022). "New names of Ilex and Ilexpollenites (Aquifoliaceae), extant and fossil: Addendum Notulae Systematicae ad Palaeofloram Europaeam spectantes II. Aquifoliaceae". Phytotaxa 531 (2): 143–146. doi:10.11646/phytotaxa.531.2.7. 
  91. Estrada-Ruiz, E. (2022). "A new species of winged fruits of Podopterus (Caryophyllales, Polygonaceae) from the Miocene amber, Chiapas, Mexico". Palaeoworld 32: 188–195. doi:10.1016/j.palwor.2022.06.005. 
  92. Deshmukh, U. B. (2022). "Blackwelloxylon, a new generic name for Cornoxylon (Corneaceae) of central Mississippi (U.S.A.)". Journal of the Botanical Research Institute of Texas 16 (1): 75. doi:10.17348/jbrit.v16.i1.1223. 
  93. Manchester, S. R.; Collinson, M. E. (2022). "Mastixioid fruits (Cornales) from the early Eocene London Clay Flora: morphology, anatomy and nomenclatural revision". Fossil Imprint 78 (1): 310–328. doi:10.37520/fi.2022.013. http://fi.nm.cz/en/clanek/mastixioid-fruits-cornales-from-the-early-eocene-london-clay-flora-morphology-anatomy-and-nomenclatural-revision-2/. 
  94. Huang, Y.-J.; Zhu, H.; Hu, J.-J.; Jia, L.-B.; Zhou, Z.-K. (2023). "New fossil evidence from the late Pliocene of Yunnan, South China, sheds light on the distribution and diversification of Sambucus L. (Adoxaceae) in the northern low latitudes". Palaeobiodiversity and Palaeoenvironments 103 (1): 43–56. doi:10.1007/s12549-021-00519-7. Bibcode2023PdPe..103...43H. 
  95. Koutecký, V.; Sakala, J.; Chytrý, V. (2022). "Paradiospyroxylon kvacekii gen. et sp. nov. from the Paleogene of the Czech Republic: a case study of individual variability and its significance for fossil wood systematics". Historical Biology: An International Journal of Paleobiology 35 (7): 1186–1196. doi:10.1080/08912963.2022.2084694. https://figshare.com/articles/dataset/_i_Paradiospyroxylon_kvacekii_i_gen_et_sp_nov_from_the_Paleogene_of_the_Czech_Republic_a_case_study_of_individual_variability_and_its_significance_for_fossil_wood_systematics/20132006. 
  96. Atkinson, B. A. (2022). "Icacinaceae fossil provides evidence for a Cretaceous origin of the lamiids". Nature Plants 8 (12): 1374–1377. doi:10.1038/s41477-022-01275-y. PMID 36376504. 
  97. Estrada-Ruiz, E.; Hernández-Urban, H.; Rodríguez-Reyes, O.; Ortega-Flores, B. (2022). "First report of staminate flowers of Calatola (Metteniusales: Metteniusaceae) from the Miocene Mexican amber". Review of Palaeobotany and Palynology 308: 104786. doi:10.1016/j.revpalbo.2022.104786. 
  98. 98.0 98.1 Huegele, I. B.; Manchester, S. R. (2022). "The mid-Paleocene fruit and seed flora from the Fort Union Formation of Newell's Nook, southeastern Montana, USA". Acta Palaeobotanica 62 (2): 123–143. doi:10.35535/acpa-2022-0009. 
  99. Nguyen, H. B.; Huang, J.; Van Do, T.; Srivastava, G.; Nguyen, H. M. T.; Li, S.-F.; Chen, L.-L.; Nguyen, M. T. et al. (2022). "Pod fossils of Albizia (Fabaceae: Caesalpinioideae) from the late Miocene of northern Vietnam and their phytogeographic history". Review of Palaeobotany and Palynology 308: 104801. doi:10.1016/j.revpalbo.2022.104801. 
  100. 100.0 100.1 100.2 100.3 100.4 100.5 100.6 Ramos, R. S.; Brea, M.; Kröhling, D. M.; Contreras, S. A. (2022). "New data for palaeoclimatic reconstructions in the upper/middle Uruguay River Basin: caesalpinioid Fabaceae woods in the Late Pleistocene". Botanical Journal of the Linnean Society 200 (4): 491–523. doi:10.1093/botlinnean/boac023. 
  101. 101.0 101.1 Bhatia, H.; Srivastava, G.; Mehrotra, R. C. (2022). "Legumes from the Paleocene sediments of India and their ecological significance". Plant Diversity 45 (2): 199–210. doi:10.1016/j.pld.2022.08.001. PMID 37069925. 
  102. 102.0 102.1 Herendeen, P. S.; Cardoso, D. B. O. S.; Herrera, F.; Wing, S. L. (2022). "Fossil papilionoids of the Bowdichia clade (Leguminosae) from the Paleogene of North America". American Journal of Botany 109 (1): 130–150. doi:10.1002/ajb2.1808. PMID 35014023. 
  103. Li, W.-C.; Huang, J.; Chen, L.-L.; Spicer, R. A.; Li, S.-F.; Liu, J.; Gao, Y.; Wu, F.-X. et al. (2022). "Podocarpium (Fabaceae) from the late Eocene of central Tibetan Plateau and its biogeographic implication". Review of Palaeobotany and Palynology 305: Article 104745. doi:10.1016/j.revpalbo.2022.104745. Bibcode2022RPaPa.30504745L. 
  104. Jia, L.-B.; Hu, J.-J.; Zhang, S.-T.; Su, T.; Spicer, R. A.; Liu, J.; Yang, J.-C.; Zou, P. et al. (2022). "Bauhinia (Leguminosae) Fossils from the Paleogene of Southwestern China and Its Species Accumulation in Asia". Diversity 14 (3): Article 173. doi:10.3390/d14030173. 
  105. Moya, E.; Soledad Ramos, R.; Jimena Franco, M.; Brea, M. (2022). "African legume affinities with the flora from the lower La Plata Basin (upper Cenozoic), South America". Ameghiniana 60 (1): 48–64. doi:10.5710/AMGH.25.08.2022.3521. 
  106. Wang, Z.; Wu, X.; Sun, B.; Yin, S.; Quan, C.; Shi, G. (2022). "First fossil record of Castanopsis (Fagaceae) from the middle Miocene Fotan Group of Fujian, southeastern China". Review of Palaeobotany and Palynology 305: Article 104729. doi:10.1016/j.revpalbo.2022.104729. Bibcode2022RPaPa.30504729W. 
  107. Ji, D.; Xiao, L.; Guo, L.; Li, X.; Wu, Z.; Liang, J.; Wang, M.; Xia, X. et al. (2022). "A New Species of Comptonia (Myricaceae) from the Early Miocene of Central Inner Mongolia, China, and Phytogeographic History of Sweet–Fern". Biology 11 (9): 1326. doi:10.3390/biology11091326. PMID 36138805. 
  108. Stults, D. Z.; Tiffney, B. H.; Axsmith, B. J. (2022). "New Observations on the Last Pterocarya (Juglandaceae) Occurrences in Eastern North America". International Journal of Plant Sciences 183 (5): 380–392. doi:10.1086/720182. 
  109. 109.0 109.1 109.2 109.3 Liu, X.-Y.; Song, H.-Z.; Wu, X.-K.; Hu, J.-R.; Huang, W.; Quan, C.; Jin, J.-H. (2022). "Late Oligocene fossil acorns and nuts of Quercus section Cyclobalanopsis from Nanning Basin, Guangxi Province, South China". Plant Diversity 45 (4): 434–445. doi:10.1016/j.pld.2022.08.002. PMID 37601538. 
  110. Hamersma, A.; Herrera, F.; Wurdack, K.; Manchester, S. R. (2022). "Belenocarpa tertiara (Berry) gen. et comb. nov. (Euphorbiaceae): Fossil Fruits with Carunculate Seeds from the Oligocene of Peru". International Journal of Plant Sciences 183 (4): 296–306. doi:10.1086/718830. 
  111. Bennike, O.; Colgan, W.; Hedenäs, L.; Heiri, O.; Lemdahl, G.; Wiberg-Larsen, P.; Ribeiro, S.; Pronzato, R. et al. (2022). "An Early Pleistocene interglacial deposit at Pingorsuit, North-West Greenland". Boreas 52 (1): 27–41. doi:10.1111/bor.12596. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-116450. 
  112. 112.0 112.1 Akkemik, Ü.; Güngör, Y.; Mantzouka, D.; Azaz, D. (2022). "Mammeoxylon beylikduezuense Akkemik, Güngör, D. Mantzouka & Azaz sp. nov.: The First Report of the Genus for the Oligo/Miocene of Eurasia". Forestist. doi:10.5152/forestist.2022.22024. 
  113. 113.0 113.1 Grote, P. J.; Duangkrayom, J.; Jintasakul, P. (2022). "Endocarps of Parinari (Chrysobalanaceae) from the Neogene of Northeastern Thailand". Acta Palaeobotanica 62 (1): 24–35. doi:10.35535/acpa-2022-0003. 
  114. Poinar, G. (2022). "Plukenetia minima sp. nov. (Euphorbiaceae) in Dominican Republic amber". Historical Biology: An International Journal of Paleobiology 35 (7): 1250–1254. doi:10.1080/08912963.2022.2086053. 
  115. 115.0 115.1 Manchester, S. R.; Kapgate, D. K.; Samant, B.; Mohabey, D. M.; Dhobale, A. (2022). "Fruits and Pollen of Malvoideae (Malvaceae) in the Maastrichtian–Danian Deccan Intertrappean Beds of Central India". International Journal of Plant Sciences 184: 68–84. doi:10.1086/723016. 
  116. Hazra, T.; Mahato, S.; Bera, S.; Khan, M. A. (2022). "First fossil evidence of Indian tulip tree". Botany Letters 169 (2): 284–293. doi:10.1080/23818107.2021.2014358. Bibcode2022BotL..169..284H. 
  117. Bansal, M.; Morley, R. J.; Nagaraju, S. K.; Dutta, S.; Mishra, A. K.; Selveraj, J.; Kumar, S.; Niyolia, D. et al. (2022). "Southeast Asian Dipterocarp origin and diversification driven by Africa-India floristic interchange". Science 375 (6579): 455–460. doi:10.1126/science.abk2177. PMID 35084986. Bibcode2022Sci...375..455B. 
  118. Dong, J.-L.; Li, Z.; Sun, B.-N.; Gao, J.-X. (2022). "Hemitrapa Miki (Lythraceae) from the middle Miocene tropical lowland rainforest of southern China". Palaeoworld 32 (4): 626–636. doi:10.1016/j.palwor.2022.11.005. 
  119. Han, Z.; Jia, H.; Meng, X.; Ferguson, D. K.; Luo, M.; Liu, P.; Wang, J.; Quan, C. (2022). "A New Clue for the Late Eocene Freshwater Ecosystem of Central China Evidenced by New Fossils of Trapa L. and Hemitrapa Miki (Lythraceae)". Biology 11 (10): 1442. doi:10.3390/biology11101442. PMID 36290345. 
  120. Cai, J.; Tang, T.; Liang, W.; Han, L.; Li, X.; Dai, Y.; Li, W.; Zhao, J. et al. (2022). "Fossil fruits of Trapa L. from the late Miocene of southeastern Qaidam Basin (Qinghai, China)". Historical Biology: An International Journal of Paleobiology 35 (12): 2306–2318. doi:10.1080/08912963.2022.2140045. 
  121. 121.0 121.1 Tang, K. K.; Smith, S. Y.; Atkinson, B. A. (2022). "Extending beyond Gondwana: Cretaceous Cunoniaceae from western North America.". New Phytologist 234 (2): 704–718. doi:10.1111/nph.17976. PMID 35043416. 
  122. 122.0 122.1 Baas, P.; Manchester, S. R.; Wheeler, E. A.; Srivastava, R. (2022). "Validation of the names linked to the oldest fossil Connaraceae wood (Connaroxylon, Connaroxylon dimorphum)". Phytotaxa 558 (2): 249–250. doi:10.11646/phytotaxa.558.2.9. 
  123. Baas, P.; Manchester, S. R.; Wheeler, E. A.; Srivastava, R. (2017). "Fossil wood with dimorphic fibers from the Deccan Intertrappean Beds of India – the oldest fossil Connaraceae?". IAWA Journal 38 (1): 124–133. doi:10.1163/22941932-20170162. 
  124. 124.0 124.1 Matel, T. P.; Gandolfo, M. A.; Hermsen, E. J.; Wilf, P. (2022). "Cunoniaceae infructescences from the early Eocene Laguna del Hunco flora, Patagonia, Argentina". American Journal of Botany 109 (6): 986–1003. doi:10.1002/ajb2.1867. PMID 35567490. 
  125. 125.0 125.1 Shi, C.; Wang, S.; Cai, H.; Zhang, H.; Long, X.; Tihelka, E.; Song, W.; Feng, Q. et al. (2022). "Fire-prone Rhamnaceae with South African affinities in Cretaceous Myanmar amber". Nature Plants 8 (2): 125–135. doi:10.1038/s41477-021-01091-w. PMID 35102275. 
  126. El-Noamani, Z. M. (2022). "Ficoxylon fusiforme (Moraceae), a New Species from Upper Cretaceous Nubian Sandstone in Southern Egypt". Egyptian Journal of Botany 62 (1): 31–44. doi:10.21608/ejbo.2021.53712.1594. 
  127. 127.0 127.1 Dong, J.-L.; Li, Z.; Gao, J.-X.; Sun, B.-N.; He, Y.-L. (2022). "Ficus leaves within the Ficus subgenus Urostigma (Moraceae) from the middle Miocene in South China and their biogeography implications". Review of Palaeobotany and Palynology 302: Article 104671. doi:10.1016/j.revpalbo.2022.104671. Bibcode2022RPaPa.30204671D. 
  128. 128.0 128.1 Hazra, T.; Kundu, S.; Bera, S.; Chakraborty, T.; Khan, M. A. (2022). "First fossil evidence of samaras of Ventilago Gaertn. (Rhamnaceae) from India and its implications". Journal of Systematics and Evolution 61 (6): 1079–1090. doi:10.1111/jse.12936. 
  129. Manchester, S. R.; Judd, W. S. (2022). "Extinct Anacardiaceous Samaras and Sumac-Like Leaves from the Eocene of Western North America". International Journal of Plant Sciences 183 (5): 357–366. doi:10.1086/719948. 
  130. Yin, S.-X.; Wu, X.-T.; Wang, Z.-X.; Shi, G.-L. (2023). "First fossil record of Canarium (Burseraceae) from the middle Miocene of Fujian, southeastern China and its paleoecological implications". Palaeoworld 32 (4): 607–617. doi:10.1016/j.palwor.2022.03.009. 
  131. Xiang, H.; Kodrul, T. M.; Romanov, M. S.; Maslova, N. P.; Han, M.; Huang, L.; Wu, X.; Jin, J. (2022). "Mummified fossil fruits of Canarium from the upper Pleistocene of South China". iScience 25 (11): 105385. doi:10.1016/j.isci.2022.105385. PMID 36388987. 
  132. 132.0 132.1 Xiao, L.; Wu, Z.; Guo, L.; Li, X.; Ji, D.; Xia, X.; Wang, J.; Liang, J. et al. (2022). "Late Miocene Leaves and Endocarps of Choerospondias (Anacardiaceae) from Zhejiang, Eastern China: Implications for Paleogeography and Paleoclimate". Biology 11 (10): 1399. doi:10.3390/biology11101399. PMID 36290304. 
  133. Huang, H.; Morley, R. J.; van der Ham, R.; Mao, L.; Licht, A.; Dupont-Nivet, G.; Win, Z.; Aung, D. W. et al. (2022). "Grimmipollis burmanica gen. et sp. nov.: New genus of the soapberry family (Sapindaceae) from the late Eocene of central Myanmar". Review of Palaeobotany and Palynology 309: 104818. doi:10.1016/j.revpalbo.2022.104818. 
  134. Chen, P.-R.; Del Rio, C.; Huang, J.; Liu, J.; Zhao, J.-G.; Spicer, R. A.; Li, S.-F.; Wang, T.-X. et al. (2022). "Fossil Capsular Valves of Koelreuteria (Sapindaceae) from the Eocene of Central Tibetan Plateau and Their Biogeographic Implications". International Journal of Plant Sciences 183 (4): 307–319. doi:10.1086/719401. 
  135. Manchester, S. R.; Judd, W. S. (2022). "Loxopteroides weeksae gen. et sp. nov. (Anacardiaceae) samaras and associated foliage from the Eocene of western North America". Acta Palaeobotanica 62 (1): 1–10. doi:10.35535/acpa-2022-0001. https://acpa.botany.pl/-Loxopteroides-weeksae-gen-et-sp-nov-Anacardiaceae-samaras-and-associated-foliage,149603,0,2.html. 
  136. Strullu-Derrien, C.; Spencer, A. R. T.; Kenrick, P.; Judd, W. S.; De Franceschi, D.; Manchester, S. R. (2022). "Revisions to the Eocene carpoflora of Anjou, western France, with new data from X-ray tomography". Botany Letters 169 (4): 454–465. doi:10.1080/23818107.2022.2101518. Bibcode2022BotL..169..454S. 
  137. Rothwell, G. W.; Stockey, R. A. (2022). "Enriching our knowledge of Late Cretaceous wetland plant communities: Zlatkovia crenulata gen. et sp. nov., an amphibious angiosperm from the St. Mary River Formation, Alberta, Canada". Cretaceous Research 140: Article 105328. doi:10.1016/j.cretres.2022.105328. Bibcode2022CrRes.14005328R. 
  138. Chen, L.-J.; Wang, X. (2022). "A Flower Bud from the Lower Cretaceous of China". Biology 11 (11): 1598. doi:10.3390/biology11111598. PMID 36358299. 
  139. 139.0 139.1 Čepičková, J.; Kvaček, J. (2022). "Fossil leaves of Cenomanian basal angiosperms from the Peruc-Korycany Formation, Czechia, central Europe". Review of Palaeobotany and Palynology 309: 104802. doi:10.1016/j.revpalbo.2022.104802. 
  140. Heřmanová, Z.; Čepičková, J.; Kvaček, J.; von Balthazar, M.; Schönenberger, J. (2022). "A multicarpellate fruit from Late Cretaceous sediments of South Bohemia, Czech Republic". Palaeontologia Electronica 25 (1): Article number 25.1.5A. doi:10.26879/1192. 
  141. Du, B.; Zhang, M.; Zhang, J.; Li, A.; Lin, S.; Ma, G.; Hui, J. (2022). "Herbaceous eudicot Fairlingtonia from the Lower Cretaceous of Jiuquan Basin, Northwest China and its radiation in Laurasia". Journal of Systematics and Evolution 61 (6): 1065–1078. doi:10.1111/jse.12934. 
  142. Cui, D.-F.; Hou, Y.; Yin, P.; Wang, X. (2021). "A Jurassic flower bud from the Jurassic of China". Mesozoic Biological Events and Ecosystems in East Asia. The Geological Society of London. doi:10.1144/SP521-2021-122. 
  143. Wu, G.-T.; Ren, W.-X.; Han, L.; Wang, H.-S.; Hua, Y.-F.; Sun, B.-N. (2022). "A new fossil angiosperm from the Early Cretaceous (early Aptian) of the Zhongkouzi Basin in the Beishan area, Northwest China". Historical Biology: An International Journal of Paleobiology 35 (11): 2206–2216. doi:10.1080/08912963.2022.2138374. 
  144. Frolov, A.; Enushchenko, I. (2022). "Monocotyledon-like Leaves from the Middle Jurassic of East Siberia (Russia)". Acta Geologica Sinica (English Edition) 96 (6): 1884–1896. doi:10.1111/1755-6724.14986. Bibcode2022AcGlS..96.1884F. 
  145. Wang, X. (2022). "A Novel Early Cretaceous Flower and Its Implications on Flower Derivation". Biology 11 (7): Article 1036. doi:10.3390/biology11071036. PMID 36101417. 
  146. Oskolski, A. A.; Morris, B. B.; Severova, E. E.; Sokoloff, D. D. (2024). "Flowers from Myanmar amber confirm the Cretaceous age of Rhamnaceae but not of the extant genus Phylica". Nature Plants: 1–4. doi:10.1038/s41477-023-01591-x. PMID 38278949. 
  147. Beurel, S.; Bachelier, J. B.; Schmidt, A. R.; Sadowski, E.-M. (2024). "Novel three-dimensional reconstructions of presumed Phylica (Rhamnaceae) from Cretaceous amber suggest Lauralean affinities". Nature Plants: 1–5. doi:10.1038/s41477-023-01592-w. PMID 38278948. 
  148. Gobo, W. V.; Kunzmann, L.; Iannuzzi, R.; Bachelier, J. B.; Coiffard, C. (2022). "First evidence of ranunculids in Early Cretaceous tropics". Scientific Reports 12 (1): Article number 5040. doi:10.1038/s41598-022-07920-y. PMID 35322034. Bibcode2022NatSR..12.5040G. 
  149. Pessoa, E. M.; Ribeiro, A. C.; Christenhuz, M. J. M.; Coan, A. I.; Jud, N. A. (2023). "Is Santaniella a ranuculid? Re-assessment of this enigmatic fossil angiosperm from the Lower Cretaceous (Aptian, Crato Konservat-Lagerstätte, Brazil) provides a new interpretation.". American Journal of Botany 110 (5): e16163. doi:10.1002/ajb2.16163. PMID 37014186. 
  150. Edmonds, N. L.; Stockey, R. A.; Rothwell, G. W. (2022). "Late Cretaceous Aquatic Vegetation: Tolmania aquatica gen. et sp. nov., from Southern Alberta, Canada". International Journal of Plant Sciences 183 (7): 567–575. doi:10.1086/721261. 
  151. Ramteke, D.; Smith, S. Y.; Kapgate, D. K.; Stanley, E. L.; Manchester, S. R. (2022). "Angiosperm affinities of Surangea from the late Cretaceous Deccan Intertrappean Beds of central India". Acta Palaeobotanica 62 (2): 196–204. doi:10.35535/acpa-2022-0013. 
  152. Zhang, X.; Gélin, U.; Spicer, R. A.; Wu, F.; Farnsworth, A.; Chen, P.; Del Rio, C.; Li, S. et al. (2022). "Rapid Eocene diversification of spiny plants in subtropical woodlands of central Tibet". Nature Communications 13 (1): Article number 3787. doi:10.1038/s41467-022-31512-z. PMID 35778378. Bibcode2022NatCo..13.3787Z. 
  153. Kafetzidou, A.; Kouli, K.; Zidianakis, G.; Kostopoulos, D. S.; Zouros, N. (2022). "The early Miocene angiosperm flora of Akrocheiras in Lesvos Petrified Forest (North Aegean, Greece)-Preliminary results". Review of Palaeobotany and Palynology 296: 104559. doi:10.1016/j.revpalbo.2021.104559. Bibcode2022RPaPa.29604559K. 
  154. Palazzesi, L.; Hidalgo, O.; Barreda, V. D.; Forest, F.; Höhna, S. (2022). "The rise of grasslands is linked to atmospheric CO2 decline in the late Palaeogene". Nature Communications 13 (1): Article number 293. doi:10.1038/s41467-021-27897-y. PMID 35022396. Bibcode2022NatCo..13..293P. 
  155. Nosova, N.; Tekleva, M. (2022). "Pollen cones and in situ pollen of Aegianthus Krassilov from the Middle Jurassic of East Siberia, Russia". Review of Palaeobotany and Palynology 304: Article 104723. doi:10.1016/j.revpalbo.2022.104723. Bibcode2022RPaPa.30404723N. 
  156. 156.0 156.1 Frolov, A. O.; Kazanovsky, S. G.; Enushchenko, I. V. (2022). "The first discovery of mosses (Bryopsida) in the Lower Jurassic of Eastern Siberia". Journal of Palaeosciences 71 (2): 219–233. doi:10.54991/jop.2022.1842. 
  157. Santos, A. A.; Wang, X. (2022). "Pre-Carpels from the Middle Triassic of Spain". Plants 11 (21): 2833. doi:10.3390/plants11212833. PMID 36365286. 
  158. Gomankov, A. V. (2022). "Cycads in the Permian of thе Subangara Region". Paleontological Journal 56 (3): 317–326. doi:10.1134/S0031030122030066. Bibcode2022PalJ...56..317G. https://elibrary.ru/item.asp?id=48457657. 
  159. 159.0 159.1 da Conceição, D. M.; Esperança Júnior, M. G. F.; Iannuzzi, R.; Cisneros, J. C. (2022). "Two new petrified gymnosperms with solenoid piths from the Pedra de Fogo Formation, Permian of Maranhão, Brazil". Review of Palaeobotany and Palynology 299: Article 104622. doi:10.1016/j.revpalbo.2022.104622. Bibcode2022RPaPa.29904622C. 
  160. Shi, G.; Herrera, F.; Herendeen, P. S.; Clark, E. G.; Crane, P. R. (2022). "Silicified cupulate seed-bearing structures from the Early Cretaceous of eastern Inner Mongolia, China: rethinking the corystosperm concept". Journal of Systematic Palaeontology 20 (1): 2133644. doi:10.1080/14772019.2022.2133644. 
  161. Correia, P.; Barbosa, C.; Šimůnek, Z.; Muchagata, J.; Sá, A. A. (2023). "A new species of Lesleya (Spermatopsida) from the Carboniferous of Iberia and its palaeoecological and evolutionary significance". Historical Biology: An International Journal of Paleobiology 35 (2): 185–196. doi:10.1080/08912963.2021.2025364. Bibcode2023HBio...35..185C. 
  162. Ma, F.-J.; Sun, B.-N.; Li, H.-Q.; Liu, S.; Zhou, G.-H.; Ling, C.-C.; Hu, X.-P.; Han, D. et al. (2022). "A new gigantopterid taxon Paragigantopteris qingloongensis gen. et sp. nov. from the Permian (Wuchiapingian) of southwestern China: Taxonomic and biogeographic implications". Review of Palaeobotany and Palynology 300: Article 104625. doi:10.1016/j.revpalbo.2022.104625. Bibcode2022RPaPa.30004625M. 
  163. Wang, Y.; Bai, J.; Liu, B.-C.; Wang, Y.; Xu, H.-H. (2022). "New insights into the South China Lower Devonian flora based on fossils from Hezhang, Guizhou Province". Philosophical Transactions of the Royal Society B: Biological Sciences 377 (1847): Article ID 20210312. doi:10.1098/rstb.2021.0312. PMID 35124997. 
  164. Naugolnykh, S. V. (2022). "Piterophyton gen. nov., a new genus of archaic land plants from the Upper Ordovician deposits of the European part of Russia". Wulfenia 29: 115–130. https://www.researchgate.net/publication/370871609. 
  165. Colston, C. M.; Landaw, K.; Tomescu, A. M. F. (2022). "An early snapshot of plant-herbivore interactions: Psilophyton diakanthon sp. nov. from the Early Devonian of Gaspé (Quebec, Canada)". American Journal of Botany 110 (1): e16082. doi:10.1002/ajb2.16082. PMID 36219504. 
  166. Friis, E. M.; Crane, P. R.; Pedersen, K. R. (2022). "Extinct seed plant diversity in the Early Cretaceous: An enigmatic new microsporangiate fossil with Decussosporites pollen in situ". Review of Palaeobotany and Palynology 304: Article 104716. doi:10.1016/j.revpalbo.2022.104716. Bibcode2022RPaPa.30404716F. http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-4977. 
  167. Krings, M. (2022). "Algae from the Lower Devonian Rhynie chert: Populations of a probable saccoderm desmid (Mesotaeniaceae, Zygnematales) preserved in a microbial mat". Review of Palaeobotany and Palynology 304: Article 104697. doi:10.1016/j.revpalbo.2022.104697. Bibcode2022RPaPa.30404697K. 
  168. Zhang, Y.; Zheng, S.; Singh, K. J.; Wang, Y.; Zhang, S.; Saxena, A. (2022). "Glossopterids survived end-Permian mass extinction in North Hemisphere". Global Geology (English Edition) 25 (4): 214–254. doi:10.3969/j.issn.1673-9736.2022.04.02. https://www.researchgate.net/publication/366657763. 
  169. Naugolnykh, S. V.; Mogutcheva, N. K. (2022). "Taimyria gen. nov., a new genus of evolutionary advanced gymnosperms from Triassic of the Taimyr Peninsula, Siberia, Russia". Fossil Imprint 78 (2): 432–444. doi:10.37520/fi.2022.018. http://fi.nm.cz/en/clanek/taimyria-gen-nov-a-new-genus-of-evolutionary-advanced-gymnosperms-from-triassic-of-the-taimyr-peninsula-siberia-russia-2/. 
  170. McSweeney, F. R.; Shimeta, J.; Buckeridge, J. S. (2022). "Taungurungia gen. nov., from the Lower Devonian of Yea, central Victoria, Australia". Memoirs of Museum Victoria 81: 43–53. doi:10.24199/j.mmv.2022.81.03. 
  171. Huang, P.; Liu, L.; Xue, J.-Z. (2022). "A new polysporangiate land plant with novel fertile organs from the Lower Devonian of Guizhou, southwestern China". Review of Palaeobotany and Palynology 302: Article 104661. doi:10.1016/j.revpalbo.2022.104661. Bibcode2022RPaPa.30204661H. 
  172. Rothwell, G. W.; Stockey, R. A.; Stevenson, D. W.; Zumajo-Cardona, C. (2022). "Large Permineralized Seeds in the Jurassic of Haida Gwaii, Western Canada: Exploring the Mode and Tempo of Cycad Evolution". International Journal of Plant Sciences 183 (8): 674–690. doi:10.1086/721710. 
  173. Li, Y.; Wang, Y.-D.; Feldberg, K.; Wang, S.; Shi, C.; Cui, Y.-M.; Zhang, X.-Q. (2022). "New insights into the moss genus Vetiplanaxis with a description of V. obtusus sp. nov. from the mid-Cretaceous Kachin amber, Myanmar". Review of Palaeobotany and Palynology 301: Article 104659. doi:10.1016/j.revpalbo.2022.104659. Bibcode2022RPaPa.30104659L. 
  174. Gensel, P. G. (2022). "Partially Permineralized Adpressions of Wilhowia phocarum Gensel gen. et sp. nov., a New Basal Euphyllophyte from the Lower Devonian Battery Point Formation, North Shore of Gaspé Bay, Quebec, Canada". International Journal of Plant Sciences 183 (7): 604–629. doi:10.1086/721263. 
  175. Klymiuk, A. A.; Rothwell, G. W.; Stockey, R. A. (2022). "A novel cupulate seed plant, Xadzigacalix quatsinoensis gen. et sp. nov., provides new insight into the Mesozoic radiation of gymnosperms". American Journal of Botany 109 (6): 966–985. doi:10.1002/ajb2.1853. PMID 35435244. 
  176. Yang, J.-N.; Wang, D.-M. (2022). "A New Fern-like Plant Xinhangia spina Gen. et sp. Nov. from the Upper Devonian of China". Biology 11 (11): 1568. doi:10.3390/biology11111568. PMID 36358269. 
  177. Tomescu, A. M. F.; McQueen, C. R. (2022). "A protoxylem pathway to evolution of pith? An hypothesis based on the Early Devonian euphyllophyte Leptocentroxyla". Annals of Botany 130 (6): 785–798. doi:10.1093/aob/mcac083. PMID 35724420. 
  178. Decombeix, A.-L.; Harper, C. J.; Galtier, J.; Meyer-Berthaud, B.; Krings, M. (2022). "Tyloses in fossil plants: New data from a Mississippian tree, with a review of previous records". Botany Letters 169 (4): 510–526. doi:10.1080/23818107.2022.2099461. Bibcode2022BotL..169..510D. https://hal.inrae.fr/hal-03728230/file/Tyloses%20for%20Botany%20Letters%20ACCEPTED.pdf. 
  179. Luthardt, L.; Merbitz, M.; Fridland, E.; Rößler, R. (2022). "Upside-down in volcanic ash: crown reconstruction of the early Permian seed fern Medullosa stellata with attached foliated fronds". PeerJ 10: e13051. doi:10.7717/peerj.13051. PMID 35341054. 
  180. Blomenkemper, P.; Kerp, H.; Abu Hamad, A.; Bomfleur, B. (2022). "Rhabdotaenia – a typical Gondwanan leaf from the upper Permian of Jordan". Alcheringa: An Australasian Journal of Palaeontology 46 (1): 85–93. doi:10.1080/03115518.2022.2028899. Bibcode2022Alch...46...85B. 
  181. 181.0 181.1 181.2 181.3 181.4 181.5 181.6 181.7 Playford, G. (2022). "Mississippian palynoflora from the Clarke River Basin, north Queensland, Australia". Ameghiniana 59 (4): 225–264. doi:10.5710/AMGH.15.06.2022.3504. 
  182. Sui, Q.; Lin, Y.; McLoughlin, S.; Yang, S.-L.; Feng, Z. (2022). "A new lycophyte megaspore, Paxillitriletes permicus, from the upper Permian of Southwest China". Review of Palaeobotany and Palynology 304: Article 104722. doi:10.1016/j.revpalbo.2022.104722. Bibcode2022RPaPa.30404722S. 
  183. Hu, Y.; Hu, J.; Du, Y.; Lu, H.; Yang, N.; Wang, L.; Xu, H.-H. (2022). "Early Cretaceous palynofloras from the Bongor basin, Chad, and their palaeoenvironmental and palaeoclimatic significances". Journal of African Earth Sciences 198: 104792. doi:10.1016/j.jafrearsci.2022.104792. 
  184. Narváez, P. L.; Mego, N.; Silva Nieto, D. G.; Prámparo, M. B.; Cabaleri, N. G. (2022). "The angiosperm pollen Volkheimerites labyrinthus gen. et sp. nov. from the earliest Paleogene (Danian) of Patagonia, Argentina". Palynology 46 (4): 1–13. doi:10.1080/01916122.2021.2023681. Bibcode2022Paly...4623681N. 
  185. Legrand, J.; Yamada, T.; Nishida, H. (2022). "Yezopollis mikasaensis gen. et sp. nov., a new Normapolles-type angiosperm pollen from the Upper Cretaceous of Hokkaido, Japan". Cretaceous Research 136: Article 105216. doi:10.1016/j.cretres.2022.105216. Bibcode2022CrRes.13605216L. 
  186. Bowman, J. L. (2022). "The origin of a land flora". Nature Plants 8 (12): 1352–1369. doi:10.1038/s41477-022-01283-y. PMID 36550365. 
  187. Niklas, K. J.; Tiffney, B. H. (2022). "Viridiplantae Body Plans Viewed Through the Lens of the Fossil Record and Molecular Biology". Integrative and Comparative Biology 63 (6): 1316–1330. doi:10.1093/icb/icac150. PMID 36316013. 
  188. Wellman, C. H.; Berry, C. M.; Davies, N. S.; Lindemann, F.-H.; Marshall, J. E. A.; Wyatt, A. (2022). "Low tropical diversity during the adaptive radiation of early land plants". Nature Plants 8 (2): 104–109. doi:10.1038/s41477-021-01067-w. PMID 35115726. https://eprints.soton.ac.uk/455610/1/Wellmen_Revised_manuscript_2_unmarked_.docx. 
  189. Leslie, A. B.; Bonacorsi, N. K. (2022). "Understanding the appearance of heterospory and derived plant reproductive strategies in the Devonian". Paleobiology 48 (3): 496–512. doi:10.1017/pab.2021.44. Bibcode2022Pbio...48..496L. 
  190. Feng, Z.; Gou, X.-D.; McLoughlin, S.; Wei, H.-B.; Guo, Y. (2022). "Nurse logs: A common seedling strategy in the Permian Cathaysian Flora". iScience 25 (11): 105433. doi:10.1016/j.isci.2022.105433. PMID 36388991. Bibcode2022iSci...25j5433F. 
  191. Carvalho, M. A.; Lana, C. C.; Sá, N. P.; Santiago, G.; Giannerini, M. C. S.; Bengtson, P. (2022). "Influence of the Intertropical Convergence Zone on Early Cretaceous plant distribution in the South Atlantic". Scientific Reports 12 (1): 12600. doi:10.1038/s41598-022-16580-x. PMID 35871172. Bibcode2022NatSR..1212600D. 
  192. Kalyniuk, J. E.; West, C. K.; Greenwood, D. R.; Basinger, J. F.; Brown, C. M. (2022). "The Albian vegetation of central Alberta as a food source for the nodosaurid Borealopelta markmitchelli". Palaeogeography, Palaeoclimatology, Palaeoecology 611: 111356. doi:10.1016/j.palaeo.2022.111356. 
  193. Berry, K.; Jaganathan, G. K. (2022). "Did selection for seed traits across the Cretaceous/Paleogene boundary sort plants based on ploidy?". Acta Palaeobotanica 62 (2): 182–195. doi:10.35535/acpa-2022-0012. 
  194. Huang, J.; Spicer, R. A.; Li, S.-F.; Liu, J.; Do, T. V.; Nguyen, H. B.; Zhou, Z.-K.; Su, T. (2022). "Long-term floristic and climatic stability of northern Indochina: Evidence from the Oligocene Ha Long flora, Vietnam". Palaeogeography, Palaeoclimatology, Palaeoecology 593: Article 110930. doi:10.1016/j.palaeo.2022.110930. Bibcode2022PPP...59310930H. 
  195. Gentis, N.; Licht, A.; Boura, A.; De Franceschi, D.; Zaw Win; Day Wa Aung; Dupont-Nivet, G. (2022). "Fossil wood from the lower Miocene of Myanmar (Natma Formation): palaeoenvironmental and biogeographic implications". Geodiversitas 44 (28): 853–909. doi:10.5252/geodiversitas2022v44a28. https://sciencepress.mnhn.fr/en/periodiques/geodiversitas/44/28. 
  196. Wilf, P.; Zou, X.; Donovan, M. P.; Kocsis, L.; Briguglio, A.; Shaw, D.; Slik, J. W. F.; Lambiase, J. J. (2022). "First fossil-leaf floras from Brunei Darussalam show dipterocarp dominance in Borneo by the Pliocene". PeerJ 10: e12949. doi:10.7717/peerj.12949. PMID 35356469. 
  197. Dantas, V. L.; Pausas, J. G. (2022). "The legacy of the extinct Neotropical megafauna on plants and biomes". Nature Communications 13 (1): Article number 129. doi:10.1038/s41467-021-27749-9. PMID 35013233. Bibcode2022NatCo..13..129D. 
  198. Pole, M (2022). "A vanished ecosystem: Sophora microphylla (Kōwhai) dominated forest recorded in mid-late Holocene rock shelters in Central Otago, New Zealand". Palaeontologia Electronica 25 (1): Article number 25.1.1A. doi:10.26879/1169. 
  199. Bouda, Martin; Huggett, Brett A.; Prats, Kyra A.; Wason, Jay W.; Wilson, Jonathan P.; Brodersen, Craig R. (2022-11-11). "Hydraulic failure as a primary driver of xylem network evolution in early vascular plants" (in en). Science 378 (6620): 642–646. doi:10.1126/science.add2910. ISSN 0036-8075. PMID 36356120. Bibcode2022Sci...378..642B. https://www.science.org/doi/10.1126/science.add2910.