Chemistry:Antimony trisulfide

From HandWiki
Antimony trisulfide
Kristallstruktur Stibnit.png
Sulfid antimonitý.JPG
Names
IUPAC names
Antimony(III) sulfide
Diantimony trisulfide
Other names
  • Antimonous sulfide
  • Antimony sesquisulfide
  • Antimony sulfide
  • Antimony vermilion
  • Black antimony
  • Sulphuret of antimony
Identifiers
3D model (JSmol)
ChemSpider
UNII
Properties
Sb
2
S
3
Molar mass 339.70 g·mol−1
Appearance Grey or black orthorhombic crystals (stibnite)
Density 4.562g cm−3 (stibnite)[1]
Melting point 550 °C (1,022 °F; 823 K) (stibnite)[1]
Boiling point 1,150 °C (2,100 °F; 1,420 K)
0.00017 g/(100 mL) (18 °C)
−86.0·10−6 cm3/mol
4.046
Thermochemistry
123.32 J/(mol·K)
−157.8 kJ/mol
Hazards
NFPA 704 (fire diamond)
Flammability code 0: Will not burn. E.g. waterHealth code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformReactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no codeNFPA 704 four-colored diamond
0
2
0
Lethal dose or concentration (LD, LC):
> 2000 mg/kg (rat, oral)
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.5 mg/m3 (as Sb)[2]
REL (Recommended)
TWA 0.5 mg/m3 (as Sb)[2]
Related compounds
Other anions
Other cations
Arsenic trisulfide
Bismuth(III) sulfide
Related compounds
Antimony pentasulfide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Antimony trisulfide (Sb
2
S
3
) is found in nature as the crystalline mineral stibnite and the amorphous red mineral (actually a mineraloid)[3] metastibnite.[4] It is manufactured for use in safety matches, military ammunition, explosives and fireworks. It also is used in the production of ruby-colored glass and in plastics as a flame retardant.[5] Historically the stibnite form was used as a grey pigment in paintings produced in the 16th century.[6] In 1817, the dye and fabric chemist, John Mercer discovered the non-stoichiometric compound Antimony Orange (approximate formula Sb
2
S
3
 · Sb
2
O
3
), the first good orange pigment available for cotton fabric printing.[7]

Antimony trisulfide was also used as the image sensitive photoconductor in vidicon camera tubes. It is a semiconductor with a direct band gap of 1.8–2.5 eV.[citation needed] With suitable doping, p and n type materials can be produced.[8]

Preparation and reactions

Sb
2
S
3
can be prepared from the elements at temperature 500–900 °C:[5]

2 Sb + 3 S → Sb
2
S
3

Sb
2
S
3
is precipitated when H
2
S
is passed through an acidified solution of Sb(III).[9] This reaction has been used as a gravimetric method for determining antimony, bubbling H
2
S
through a solution of Sb(III) compound in hot HCl deposits an orange form of Sb
2
S
3
which turns black under the reaction conditions.[10]

Sb
2
S
3
is readily oxidised, reacting vigorously with oxidising agents.[5] It burns in air with a blue flame. It reacts with incandescence with cadmium, magnesium and zinc chlorates. Mixtures of Sb
2
S
3
and chlorates may explode.[11]

In the extraction of antimony from antimony ores the alkaline sulfide process is employed where Sb
2
S
3
reacts to form thioantimonate(III) salts (also called thioantimonite):[12]

3 Na
2
S + Sb
2
S
3
→ 2 Na
3
SbS
3

A number of salts containing different thioantimonate(III) ions can be prepared from Sb
2
S
3
. These include:[13]

[SbS
3
]3−, [SbS
2
]
, [Sb
2
S
5
]4−, [Sb
4
S
9
]6−, [Sb
4
S
7
]2− and [Sb
8
S
17
]10−

Schlippe's salt, Na
3
SbS
4
 · 9H2O
, a thioantimonate(V) salt is formed when Sb
2
S
3
is boiled with sulfur and sodium hydroxide. The reaction can be represented as:[9]

Sb
2
S
3
+ 3 S2− + 2 S → 2 [SbS
4
]3−

Structure

The structure of the black needle-like form of Sb
2
S
3
, stibnite, consists of linked ribbons in which antimony atoms are in two different coordination environments, trigonal pyramidal and square pyramidal.[9] Similar ribbons occur in Bi
2
S
3
and Sb
2
Se
3
.[14] The red form, metastibnite, is amorphous. Recent work suggests that there are a number of closely related temperature dependent structures of stibnite which have been termed stibnite (I) the high temperature form, identified previously, stibnite (II) and stibnite (III).[15] Other paper shows that the actual coordination polyhedra of antimony are in fact SbS
7
, with (3+4) coordination at the M1 site and (5+2) at the M2 site.[clarification needed] These coordinations consider the presence of secondary bonds. Some of the secondary bonds impart cohesion and are connected with packing.[16]

References

  1. 1.0 1.1 Haynes, W. M., ed (2014). CRC Handbook of Chemistry and Physics (95th ed.). Boca Raton, FL: CRC Press. pp. 4–48. ISBN 978-1-4822-0867-2. 
  2. 2.0 2.1 NIOSH Pocket Guide to Chemical Hazards. "#0036". National Institute for Occupational Safety and Health (NIOSH). https://www.cdc.gov/niosh/npg/npgd0036.html. 
  3. "Metastibnite". https://www.mindat.org/min-2686.html. 
  4. SUPERGENE METASTIBNITE FROM MINA ALACRAN, PAMPA LARGA, COPIAPO, CHILE, Alan H Clark, THE AMERICAN MINERALOGIST. VOL. 55., 1970
  5. 5.0 5.1 5.2 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 581–582. ISBN 978-0-08-037941-8. 
  6. Eastaugh, Nicholas (2004). Pigment Compendium: A Dictionary of Historical Pigments. Butterworth-Heinemann. p. 359. ISBN 978-0-7506-5749-5. 
  7. Parnell, Edward A (1886). The life and labours of John Mercer. London: Longmans, Green & Co.. pp. 23. 
  8. Electrochemistry of Metal Chalcogenides, Mirtat Bouroushian, Springer, 2010
  9. 9.0 9.1 9.2 Holleman, Arnold Frederik; Wiberg, Egon (2001), Wiberg, Nils, ed., Inorganic Chemistry, San Diego/Berlin: Academic Press/De Gruyter, p. 765-766, ISBN 0-12-352651-5 
  10. A.I. Vogel, (1951), Quantitative Inorganic analysis, (2d edition), Longmans Green and Co
  11. Hazardous Laboratory Chemicals Disposal Guide, Third Edition, CRC Press, 2003, Margaret-Ann Armour, ISBN:9781566705677
  12. Anderson, Corby G. (2012). "The metallurgy of antimony". Chemie der Erde - Geochemistry 72: 3–8. doi:10.1016/j.chemer.2012.04.001. ISSN 0009-2819. Bibcode2012ChEG...72....3A. 
  13. Inorganic Reactions and Methods, The Formation of Bonds to Group VIB (O, S, Se, Te, Po) Elements (Part 1) (Volume 5) Ed. A.P, Hagen,1991, Wiley-VCH, ISBN:0-471-18658-9
  14. Wells A.F. (1984) Structural Inorganic Chemistry 5th edition Oxford Science Publications ISBN:0-19-855370-6
  15. Kuze S., Du Boulay D., Ishizawa N., Saiki A, Pring A.; (2004), X ray diffraction evidence for a monoclinic form of stibnite, Sb2S3, below 290K; American Mineralogist, 9(89), 1022-1025.
  16. Kyono, A.; Kimata, M.; Matsuhisa, M.; Miyashita, Y.; Okamoto, K. (2002). "Low-temperature crystal structures of stibnite implying orbital overlap of Sb 5s 2 inert pair electrons". Physics and Chemistry of Minerals 29 (4): 254–260. doi:10.1007/s00269-001-0227-1. Bibcode2002PCM....29..254K.