Chemistry:Antimony triselenide

From HandWiki
Antimony triselenide
Structure of Sb2Se3.jpg
Names
Other names
  • Antimonselite
  • Antimony(III) selenide
  • Selenoxyantimony
Identifiers
3D model (JSmol)
ChemSpider
Properties
Sb2Se3
Molar mass 480.433 g·mol−1
Appearance black crystals
Density 5.81 g/cm3, solid
Melting point 611 °C (1,132 °F; 884 K)
Structure
Orthorhombic, oP20, SpaceGroup = Pnma, No. 62
Hazards
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.5 mg/m3 (as Sb)[1]
REL (Recommended)
TWA 0.5 mg/m3 (as Sb)[1]
Related compounds
Other anions
antimony(III) oxide, antimony(III) sulfide, antimony(III) telluride
Other cations
arsenic(III) selenide, bismuth(III) selenide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references

Antimony triselenide is the chemical compound with the formula Sb
2
Se
3
. The material exists as the sulfosalt mineral antimonselite (IMA symbol: Atm[2]), which crystallizes in an orthorhombic space group.[3] In this compound, antimony has a formal oxidation state +3 and selenium −2. The bonding in this compound has covalent character as evidenced by the black color and semiconducting properties of this and related materials.[4] The low-frequency dielectric constant (ε0) has been measured to be 133 along the c axis of the crystal at room temperature, which is unusually large.[5] Its band gap is 1.18 eV at room temperature.[6]

The compound may be formed by the reaction of antimony with selenium and has a melting point of 885 K.[4]

Applications

Sb
2
Se
3
is now being actively explored for application thin-film solar cells.[7] A record light-to-electricity conversion efficiency of 9.2% has been reported.[8]

References

  1. 1.0 1.1 NIOSH Pocket Guide to Chemical Hazards. "#0036". National Institute for Occupational Safety and Health (NIOSH). https://www.cdc.gov/niosh/npg/npgd0036.html. 
  2. Warr, L.N. (2021). "IMA-CNMNC approved mineral symbols". Mineralogical Magazine 85 (3): 291–320. doi:10.1180/mgm.2021.43. Bibcode2021MinM...85..291W. 
  3. Jambor, J. L.; Grew, E. S."New Mineral Names" American Mineralogist, Volume 79, pages 387-391, 1994.
  4. 4.0 4.1 Madelung, O (2004). Semiconductors: data handbook (3rd ed.). Springer. ISBN 9783540404880. 
  5. Petzelt, J.; Grigas, J. (January 1973). "Far infrared dielectric dispersion in Sb2S3, Bi2S3 and Sb2Se3 single crystals". Ferroelectrics 5 (1): 59–68. doi:10.1080/00150197308235780. ISSN 0015-0193. Bibcode1973Fer.....5...59P. 
  6. Birkett, Max; Linhart, Wojciech M.; Stoner, Jessica; Phillips, Laurie J.; Durose, Ken; Alaria, Jonathan; Major, Jonathan D.; Kudrawiec, Robert et al. (2018). "Band gap temperature-dependence of close-space sublimation grown Sb2Se3 by photo-reflectance". APL Materials 6 (8): 084901. doi:10.1063/1.5027157. 
  7. Bosio, Alessio; Foti, Gianluca; Pasini, Stefano; Spoltore, Donato (January 2023). "A Review on the Fundamental Properties of Sb2Se3-Based Thin Film Solar Cells". Energies 16 (19): 6862. doi:10.3390/en16196862. 
  8. Wong, Lydia Helena; Zakutayev, Andriy; Major, Jonathan Douglas; Hao, Xiaojing; Walsh, Aron; Todorov, Teodor K.; Saucedo, Edgardo (2019). "Emerging inorganic solar cell efficiency tables (Version 1)". J Phys Energy 1 (3): 032001. doi:10.1088/2515-7655/ab2338. Bibcode2019JPEn....1c2001W.