Chemistry:Niobium phosphide
| Names | |
|---|---|
| Other names
Phosphanylidyneniobium
| |
| Identifiers | |
3D model (JSmol)
|
|
| ChemSpider | |
| EC Number |
|
PubChem CID
|
|
| |
| |
| Properties | |
| NbP | |
| Molar mass | 123.88 |
| Appearance | Dark-gray crystals |
| Density | 6,48 g/cm3 |
| Insoluble | |
| Structure | |
| Tetragonal | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
| Infobox references | |
Niobium phosphide is an inorganic compound of niobium and phosphorus with the chemical formula NbP.[1]
Synthesis
Sintering powdered niobium and phosphorus:
- 4 Nb + P
4 → 4 NbP
Physical properties
The compound is a unique material combining topological and conventional electronic phases. Its superfast electrons demonstrate extremely large magnetoresistance, so NbP may be suitable for use in new electronic components.[2]
Niobium phosphide forms dark gray crystals of the tetragonal system, space group I 41md, cell parameters a = 0.3334 nm, c = 1.1378 nm, Z = 4.[3][4]
It does not dissolve in water.
Niobium phosphide, like tantalum arsenide TaAs, is a topological Weyl semimetal.[5][6]
Uses
The compound is a semiconductor used in high power, high frequency applications and in laser diodes.[1]
Niobium phosphate is also being explored specifically for replacing copper as an ultra-thin nanometer film, where it exhibits much lower resistance than the conventional metal.[7]
References
- ↑ 1.0 1.1 "Niobium Phosphide" (in en). American Elements. https://www.americanelements.com/niobium-phosphide-12034-66-1.
- ↑ Chen, Yulin (July 13, 2015). "Niobium Phosphide (NbP) Holds Promise for New Magnetoresistance Components". https://www.powerelectronics.com/technologies/passive-components/article/21862723/niobium-phosphide-nbp-holds-promise-for-new-magnetoresistance-components.
- ↑ Lomnits'ka, Ya. F.; Shupars'ka, A. I. (1 July 2006). "Reactions of niobium and tungsten with phosphorus" (in en). Powder Metallurgy and Metal Ceramics 45 (7–8): 361–364. doi:10.1007/s11106-006-0090-1. https://link.springer.com/article/10.1007%2Fs11106-006-0090-1. Retrieved 15 December 2021.
- ↑ Sapkota, Deepak; Mukherjee, Rupam; Mandrus, David (2016-12-06). "Single Crystal Growth, Resistivity, and Electronic Structure of the Weyl Semimetals NbP and TaP" (in en). Crystals 6 (12): 160. doi:10.3390/cryst6120160. ISSN 2073-4352. Bibcode: 2016Cryst...6..160S.
- ↑ Xu, Di-Fei; Du, Yong-Ping; Wang, Zhen; Li, Yu-Peng; Niu, Xiao-Hai; Yao, Qi; Pavel, Dudin; Xu, Zhu-An et al. (18 September 2015). "Observation of Fermi Arcs in Non-Centrosymmetric Weyl Semi-Metal Candidate NbP" (in en). Chinese Physics Letters 32 (10). doi:10.1088/0256-307x/32/10/107101. Bibcode: 2015ChPhL..32j7101X. https://iopscience.iop.org/article/10.1088/0256-307X/32/10/107101. Retrieved 15 December 2021.
- ↑ Fu, Yan-Long; Sang, Hai-Bo; Cheng, Wei; Zhang, Feng-Shou (1 September 2020). "Topological properties after light ion irradiation on Weyl semimetal niobium phosphide from first principles" (in en). Materials Today Communications 24. doi:10.1016/j.mtcomm.2020.100939. https://www.sciencedirect.com/science/article/abs/pii/S2352492819312772. Retrieved 15 December 2021.
- ↑ Zhai, Enzi; Liang, Tianyu; Liu, Ruizi; Cai, Mingyang; Li, Ran; Shao, Qiming; Su, Cong; Lin, Yuxuan Cosmi (August 2024). "The rise of semi-metal electronics" (in en). Nature Reviews Electrical Engineering 1 (8): 497–515. doi:10.1038/s44287-024-00068-z. ISSN 2948-1201. https://www.nature.com/articles/s44287-024-00068-z.
