Chemistry:Niobium nitride

From HandWiki
Niobium nitride
NaCl polyhedra.png
Names
IUPAC name
Niobium nitride
Identifiers
Properties
NbN
Molar mass 106.91 g/mol
Appearance gray solid
Density 8.470 g/cm3
Melting point 2,573 °C (4,663 °F; 2,846 K)
reacts to form ammonia
Structure
cubic, cF8
Fm3m, No. 225
Hazards
Safety data sheet External MSDS
Flash point Non-flammable
Related compounds
Other cations
Vanadium nitride
Tantalum nitride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references

Niobium nitride is a compound of niobium and nitrogen (nitride) with the chemical formula NbN. At low temperatures (about 16 K) NbN becomes a superconductor, and is used in detectors for infrared light.[1][2][3]

Uses

  • Niobium nitride's main use is as a superconductor.
    • Detectors based on it can detect a single photon in the 1-10 micrometer section of the infrared spectrum,[4] which is important for astronomy and telecommunications. It can detect changes up to 25 gigahertz.
    • Superconducting NbN nanowires can be used in particle detectors with high magnetic fields.[5]
  • Niobium nitride is also used in absorbing anti-reflective coatings.
  • In 2015, it was reported that Panasonic Corp. has developed a photocatalyst based on niobium nitride that can absorb 57% of sunlight to support the decomposition of water to produce hydrogen gas as fuel for electrochemical fuel cells.[6]

References

  1. Y. M. Shy, L. E. Toth and R. Somasundaram (1973). "Superconducting properties, electrical resistivities, and structure of NbN thin films". Journal of Applied Physics 44 (12): 5539–5545. doi:10.1063/1.1662193. Bibcode1973JAP....44.5539S. 
  2. J. W. Kooi; J. J. A. Baselmans; M. Hajenius; J. R. Gao; T. M. Klapwijk; P. Dieleman; A. Baryshev; G. de Lange (2007). "IF impedance and mixer gain of NbN hot electron bolometers". Journal of Applied Physics 101 (4): 044511. doi:10.1063/1.2400086. Bibcode2007JAP...101d4511K. https://pure.rug.nl/ws/files/58255219/IF_impedance_and_mixer_gain_of_NbN_hot_electron_bolometers.pdf. 
  3. S. P. Chockalingam; Madhavi Chand; John Jesudasan; Vikram Tripathi; Pratap Raychaudhuri (2009). "Superconducting properties and Hall effect in epitaxial NbN thin films". Physical Review B 77 (21): 214503. doi:10.1103/PhysRevB.77.214503. Bibcode2008PhRvB..77u4503C. 
  4. M Hajenius, J J A Baselmans, J R Gao, T M Klapwijk, P A J de Korte, B Voronov and G Gol'tsman (2004). "Low noise NbN superconducting hot electron bolometer mixers at 1.9 and 2.5 THz". Superconductor Science and Technology 17 (5): S224–S228. doi:10.1088/0953-2048/17/5/026. Bibcode2004SuScT..17S.224H. 
  5. "When superconductivity material science meets nuclear physics". https://phys.org/news/2020-03-superconductivity-material-science-nuclear-physics.html. Retrieved 9 June 2020. 
  6. Yamamura, Tetsushi (August 2, 2015). "Panasonic moves closer to home energy self-sufficiency with fuel cells". Asahi Shimbun. Archived from the original on August 7, 2015. https://web.archive.org/web/20150807010324/http://ajw.asahi.com/article/sci_tech/technology/AJ201508020014. Retrieved 2015-08-02. 
Salts and covalent derivatives of the nitride ion
NH3 He(N2)11
Li3N Be3N2 BN β-C3N4
g-C3N4
N2 NxOy NF3 Ne
Na3N Mg3N2 AlN Si3N4 PN
P3N5
SxNy
SN
S4N4
NCl3 Ar
K3N Ca3N2 ScN TiN VN CrN
Cr2N
MnxNy FexNy CoN Ni3N CuN Zn3N2 GaN Ge3N4 As Se NBr3 Kr
Rb3N Sr3N2 YN ZrN NbN β-Mo2N Tc Ru Rh PdN Ag3N CdN InN Sn Sb Te NI3 Xe
Cs3N Ba3N2   Hf3N4 TaN WN Re Os Ir Pt Au Hg3N2 TlN Pb BiN Po At Rn
Fr3N Ra3N   Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
La CeN Pr Nd Pm Sm Eu GdN Tb Dy Ho Er Tm Yb Lu
Ac Th Pa UN Np Pu Am Cm Bk Cf Es Fm Md No Lr