Quotient rule

From HandWiki
Short description: Formula for the derivative of a ratio of functions

In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions.[1][2][3] Let [math]\displaystyle{ h(x)=\frac{f(x)}{g(x)} }[/math], where both f and g are differentiable and [math]\displaystyle{ g(x)\neq 0. }[/math] The quotient rule states that the derivative of h(x) is

[math]\displaystyle{ h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}. }[/math]

It is provable in many ways by using other derivative rules.

Examples

Example 1: Basic example

Given [math]\displaystyle{ h(x)=\frac{e^x}{x^2} }[/math], let [math]\displaystyle{ f(x)=e^x, g(x)=x^2 }[/math], then using the quotient rule:[math]\displaystyle{ \begin{align} \frac{d}{dx} \left(\frac{e^x}{x^2}\right) &= \frac{\left(\frac{d}{dx}e^x\right)(x^2) - (e^x)\left(\frac{d}{dx} x^2\right)}{(x^2)^2} \\ &= \frac{(e^x)(x^2) - (e^x)(2x)}{x^4} \\ &= \frac{x^2 e^x - 2x e^x}{x^4} \\ &= \frac{x e^x - 2 e^x}{x^3} \\ &= \frac{e^x(x - 2)}{x^3}. \end{align} }[/math]

Example 2: Derivative of tangent function

The quotient rule can be used to find the derivative of [math]\displaystyle{ \tan x = \frac{\sin x}{\cos x} }[/math] as follows: [math]\displaystyle{ \begin{align} \frac{d}{dx} \tan x &= \frac{d}{dx} \left(\frac{\sin x}{\cos x}\right) \\ &= \frac{\left(\frac{d}{dx}\sin x\right)(\cos x) - (\sin x)\left(\frac{d}{dx}\cos x\right)}{\cos^2 x} \\ &= \frac{(\cos x)(\cos x) - (\sin x)(-\sin x)}{\cos^2 x} \\ &= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} \\ &= \frac{1}{\cos^2 x} = \sec^2 x. \end{align} }[/math]

Reciprocal rule

Main page: Reciprocal rule

The reciprocal rule is a special case of the quotient rule in which the numerator [math]\displaystyle{ f(x)=1 }[/math]. Applying the quotient rule gives[math]\displaystyle{ h'(x)=\frac{d}{dx}\left[\frac{1}{g(x)}\right]=\frac{0 \cdot g(x) - 1 \cdot g'(x)}{g(x)^2}=\frac{-g'(x)}{g(x)^2}. }[/math]

Utilizing the chain rule yields the same result.

Proofs

Proof from derivative definition and limit properties

Let [math]\displaystyle{ h(x) = \frac{f(x)}{g(x)}. }[/math] Applying the definition of the derivative and properties of limits gives the following proof, with the term [math]\displaystyle{ f(x) g(x) }[/math] added and subtracted to allow splitting and factoring in subsequent steps without affecting the value:[math]\displaystyle{ \begin{align} h'(x) &= \lim_{k\to 0} \frac{h(x+k) - h(x)}{k} \\ &= \lim_{k\to 0} \frac{\frac{f(x+k)}{g(x+k)} - \frac{f(x)}{g(x)}}{k} \\ &= \lim_{k\to 0} \frac{f(x+k)g(x) - f(x)g(x+k)}{k \cdot g(x)g(x+k)} \\ &= \lim_{k\to 0} \frac{f(x+k)g(x) - f(x)g(x+k)}{k} \cdot \lim_{k\to 0}\frac{1}{g(x)g(x+k)} \\ &= \lim_{k\to 0} \left[\frac{f(x+k)g(x) - f(x)g(x) + f(x)g(x) - f(x)g(x+k)}{k} \right] \cdot \frac{1}{g(x)^2} \\ &= \left[\lim_{k\to 0} \frac{f(x+k)g(x) - f(x)g(x)}{k} - \lim_{k\to 0}\frac{f(x)g(x+k) - f(x)g(x)}{k} \right] \cdot \frac{1}{g(x)^2} \\ &= \left[\lim_{k\to 0} \frac{f(x+k) - f(x)}{k} \cdot g(x) - f(x) \cdot \lim_{k\to 0}\frac{g(x+k) - g(x)}{k} \right] \cdot \frac{1}{g(x)^2} \\ &= \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}. \end{align} }[/math]The limit evaluation [math]\displaystyle{ \lim_{k \to 0}\frac{1}{g(x+k)g(x)}=\frac{1}{g(x)^2} }[/math] is justified by the differentiability of [math]\displaystyle{ g(x) }[/math], implying continuity, which can be expressed as [math]\displaystyle{ \lim_{k \to 0}g(x+k) = g(x) }[/math].

Proof using implicit differentiation

Let [math]\displaystyle{ h(x) = \frac{f(x)}{g(x)}, }[/math] so that [math]\displaystyle{ f(x) = g(x)h(x). }[/math]

The product rule then gives [math]\displaystyle{ f'(x)=g'(x)h(x) + g(x)h'(x). }[/math]

Solving for [math]\displaystyle{ h'(x) }[/math] and substituting back for [math]\displaystyle{ h(x) }[/math] gives: [math]\displaystyle{ \begin{align} h'(x) &= \frac{f'(x) -g'(x)h(x)}{g(x)} \\ &= \frac{f'(x) - g'(x)\cdot\frac{f(x)}{g(x)}}{g(x)} \\ &= \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}. \end{align} }[/math]

Proof using the reciprocal rule or chain rule

Let [math]\displaystyle{ h(x) = \frac{f(x)}{g(x)} = f(x) \cdot \frac{1}{g(x)}. }[/math]

Then the product rule gives [math]\displaystyle{ h'(x) = f'(x)\cdot\frac{1}{g(x)} + f(x) \cdot \frac{d}{dx}\left[\frac{1}{g(x)}\right]. }[/math]

To evaluate the derivative in the second term, apply the reciprocal rule, or the power rule along with the chain rule: [math]\displaystyle{ \frac{d}{dx}\left[\frac{1}{g(x)}\right] = -\frac{1}{g(x)^2} \cdot g'(x) = \frac{-g'(x)}{g(x)^2}. }[/math]

Substituting the result into the expression gives[math]\displaystyle{ \begin{align} h'(x) &= f'(x)\cdot\frac{1}{g(x)} + f(x)\cdot\left[\frac{-g'(x)}{g(x)^2}\right] \\ &= \frac{f'(x)}{g(x)} - \frac{f(x)g'(x)}{g(x)^2} \\ &= {\frac{g(x)}{g(x)}}\cdot{\frac{f'(x)}{g(x)}} - \frac{f(x)g'(x)}{g(x)^2} \\ &= \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}. \end{align} }[/math]

Proof by logarithmic differentiation

Let [math]\displaystyle{ h(x)=\frac{f(x)}{g(x)}. }[/math] Taking the absolute value and natural logarithm of both sides of the equation gives [math]\displaystyle{ \ln|h(x)|=\ln\left|\frac{f(x)}{g(x)}\right| }[/math]

Applying properties of the absolute value and logarithms, [math]\displaystyle{ \ln|h(x)|=\ln|f(x)|-\ln|g(x)| }[/math]

Taking the logarithmic derivative of both sides, [math]\displaystyle{ \frac{h'(x)}{h(x)}=\frac{f'(x)}{f(x)}-\frac{g'(x)}{g(x)} }[/math]

Solving for [math]\displaystyle{ h'(x) }[/math] and substituting back [math]\displaystyle{ \tfrac{f(x)}{g(x)} }[/math] for [math]\displaystyle{ h(x) }[/math] gives: [math]\displaystyle{ \begin{align} h'(x)&=h(x)\left[\frac{f'(x)}{f(x)}-\frac{g'(x)}{g(x)}\right]\\ &=\frac{f(x)}{g(x)}\left[\frac{f'(x)}{f(x)}-\frac{g'(x)}{g(x)}\right]\\ &=\frac{f'(x)}{g(x)}-\frac{f(x)g'(x)}{g(x)^2}\\ &=\frac{f'(x)g(x)-f(x)g'(x)}{g(x)^2}. \end{align} }[/math]

Taking the absolute value of the functions is necessary for the logarithmic differentiation of functions that may have negative values, as logarithms are only real-valued for positive arguments. This works because [math]\displaystyle{ \tfrac{d}{dx}(\ln|u|)=\tfrac{u'}{u} }[/math], which justifies taking the absolute value of the functions for logarithmic differentiation.

Higher order derivatives

Implicit differentiation can be used to compute the nth derivative of a quotient (partially in terms of its first n − 1 derivatives). For example, differentiating [math]\displaystyle{ f=gh }[/math] twice (resulting in [math]\displaystyle{ f'' = g''h + 2g'h' + gh'' }[/math]) and then solving for [math]\displaystyle{ h'' }[/math] yields[math]\displaystyle{ h'' = \left(\frac{f}{g}\right)'' = \frac{f''-g''h-2g'h'}{g}. }[/math]

See also

References

  1. Stewart, James (2008). Calculus: Early Transcendentals (6th ed.). Brooks/Cole. ISBN 978-0-495-01166-8. https://archive.org/details/calculusearlytra00stew_1. 
  2. Larson, Ron; Edwards, Bruce H. (2009). Calculus (9th ed.). Brooks/Cole. ISBN 978-0-547-16702-2. 
  3. Thomas, George B.; Weir, Maurice D.; Hass, Joel (2010). Thomas' Calculus: Early Transcendentals (12th ed.). Addison-Wesley. ISBN 978-0-321-58876-0.