Tetrahedrally diminished dodecahedron

From HandWiki
Revision as of 20:31, 6 February 2024 by OrgMain (talk | contribs) (fixing)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Family of derived polyhedra
Dorman Luke self-dual form
Tetrahedral self-dual hexadecahedron.png
Tetrahedrally stellated icosahedron
Tetrahedrally stellated icosahedron.png
Tetrahedrally diminished dodecahedron
Tetrahedrally diminished regular dodecahedron.png
Conway polyhedron notation pT
Faces 16: 4 {3} + 12 quadrilaterals
Edges 30
Vertices 16
Vertex configuration 3.4.4.4
4.4.4
Symmetry group T, [3,3]+, (332), order 12
Dual polyhedron Self-dual
Properties convex, chiral
Tetrahedrally diminished icosahedron net.png80pxTetrahedrally diminished regular dodecahedron net.png
Nets

In geometry, a tetrahedrally diminished[lower-alpha 1] dodecahedron (also tetrahedrally stellated icosahedron or propello tetrahedron[1]) is a topologically self-dual polyhedron made of 16 vertices, 30 edges, and 16 faces (4 equilateral triangles and 12 identical quadrilaterals).[2]

A canonical form exists with two edge lengths at 0.849 : 1.057, assuming that the radius of the midsphere is 1. The kites remain isosceles.

It has chiral tetrahedral symmetry, and so its geometry can be constructed from pyritohedral symmetry of the pseudoicosahedron with 4 faces stellated, or from the pyritohedron, with 4 vertices diminished. Within its tetrahedral symmetry, it has geometric varied proportions. By Dorman Luke dual construction, a unique geometric proportion can be defined. The kite faces have edges of length ratio ~ 1:0.633.

Topologically, the triangles are always equilateral, while the quadrilaterals are irregular, although the two adjacent edges that meet at the vertices of a tetrahedron are equal.

As a self-dual hexadecahedron, it is one of 302404 forms, 1476 with at least order 2 symmetry, and the only one with tetrahedral symmetry.[3]

As a diminished regular dodecahedron, with 4 vertices removed, the quadrilaterals faces are trapezoids.

As a stellation of the regular icosahedron it is one of 32 stellations defined with tetrahedral symmetry. It has kite faces.[4]

In Conway polyhedron notation, it can be represented as pT, applying George W. Hart's propeller operator to a regular tetrahedron.[5]

Related polytopes and honeycombs

This polyhedron represents the vertex figure of a hyperbolic uniform honeycomb, the partially diminished icosahedral honeycomb, pd{3,5,3}, with 12 pentagonal antiprisms and 4 dodecahedron cells meeting at every vertex.

Partial truncation order-3 icosahedral honeycomb verf.png
Vertex figure projected as Schlegel diagram

Notes

  1. It is also less accurately called a tetrahedrally truncated dodecahedron

References

External links