Astronomy:HD 3443

From HandWiki
Revision as of 11:48, 8 February 2024 by Unex (talk | contribs) (update)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Binary star system in constellation Cetus

Coordinates: Sky map 00h 37m 20.7196s, −24° 46′ 02.1843″

HD 3443
Observation data
Equinox J2000.0]] (ICRS)
Constellation Cetus
Right ascension  00h 37m 20.7196s[1]
Declination −24° 46′ 02.1843″[1]
Apparent magnitude (V) 5.57[2]
Characteristics
HD 3443A
Evolutionary stage main-sequence star
Spectral type G9V[3]
Apparent magnitude (g) 5.95[4]
HD 3443B
Evolutionary stage main-sequence star
Spectral type K0.5V[3]
Astrometry
Radial velocity (Rv)18.63[5] km/s
Proper motion (μ) RA: 1450.34[1] mas/yr
Dec.: −19.38[1] mas/yr
Parallax (π)64.93 ± 1.85[3] mas
Distance50 ± 1 ly
(15.4 ± 0.4 pc)
Absolute magnitude (MV)5.31±0.08[2]
Orbit[6]
PrimaryHD 3443A
CompanionHD 3443B
Period (P)25.09 y
Semi-major axis (a)0.4627[7]"
(8.9 AU[8])
Eccentricity (e)0.235
Inclination (i)65.9[9]°
Semi-amplitude (K1)
(primary)
18.4 km/s
Details[9]
HD 3443A
Mass0.915±0.005[3] M
Radius0.92±0.05 R
Luminosity1.2[8] L
Temperature5449[8] K
Metallicity [Fe/H]−0.12[2] dex
Rotation32.6±4.89 d
Rotational velocity (v sin i)2.7±1.3 km/s
Age9.36[2] Gyr
HD 3443B
Mass0.864±0.005[3] M
Other designations
CD-25 225, CPD CPD-25 64, Gliese 25, HIP 2941, HR 159, 2MASS J00372057-2446023, WDS 00373–2446
HD 3443A: Gaia EDR3 2347260998051944448, TYC 6421-1924-1
HD 3443B: TYC 6421-1924-2
Database references
SIMBADdata

HD 3443 is a binary system composed of medium-mass main sequence stars in the constellation of Cetus about 50 light years away.

System

This binary star system, with an orbital semimajor axis 8.9 AU, has not had any circumstellar dust detected as of 2020.[8] While the habitable zones of the stars stretch from 0.55 to 0.95 AU from the stars, planetary orbits with a semimajor axis beyond 1.87 AU would become unstable due to the influence of the binary companion.[10]

Properties

The star system is enriched in oxygen compared to the Solar System, having 140% of solar oxygen abundance,[11] but is depleted in heavier elements, having 75% of solar abundance of iron.[2]

References

  1. 1.0 1.1 1.2 van Leeuwen, F. (November 2007). "Validation of the new Hipparcos reduction". Astronomy and Astrophysics 474 (2): 653–664. doi:10.1051/0004-6361:20078357. Bibcode2007A&A...474..653V. 
  2. 2.0 2.1 2.2 2.3 2.4 Davidson, James W.; Baptista, Brian J.; Horch, Elliott P.; Franz, Otto; Van Altena, William F. (2009). "A Photometric Analysis of Seventeen Binary Stars Using Speckle Imaging". The Astronomical Journal 138 (5): 1354–1364. doi:10.1088/0004-6256/138/5/1354. Bibcode2009AJ....138.1354D. 
  3. 3.0 3.1 3.2 3.3 3.4 Andrade, Manuel (2019). "Colour-dependent accurate modelling of dynamical parallaxes and masses of visual binaries". Astronomy & Astrophysics 630: A96. doi:10.1051/0004-6361/201936199. Bibcode2019A&A...630A..96A. 
  4. Brown, A. G. A. (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics 649: A1. doi:10.1051/0004-6361/202039657. Bibcode2021A&A...649A...1G.  Gaia EDR3 record for this source at VizieR.
  5. Pourbaix, D. et al. (September 2004). "SB9: The ninth catalogue of spectroscopic binary orbits". Astronomy and Astrophysics 424: 727–732. doi:10.1051/0004-6361:20041213. Bibcode2004A&A...424..727P. 
  6. Pourbaix, D. (2000). "Resolved double-lined spectroscopic binaries: A neglected source of hypothesis-free parallaxes and stellar masses". Astronomy and Astrophysics Supplement Series 145 (2): 215–222. doi:10.1051/aas:2000237. Bibcode2000A&AS..145..215P. 
  7. Tokovinin, A.; Cantarutti, R.; Tighe, R.; Schurter, P.; Van Der Bliek, N.; Martinez, M.; Mondaca, E. (2010). "High-Resolution Imaging at the SOAR Telescope". Publications of the Astronomical Society of the Pacific 122 (898): 1483–1494. doi:10.1086/657903. Bibcode2010PASP..122.1483T. 
  8. 8.0 8.1 8.2 8.3 Su, Kate Y L.; Kennedy, Grant M.; Yelverton, Ben (2020). "No significant correlation between radial velocity planet presence and debris disc properties". Monthly Notices of the Royal Astronomical Society 495 (2): 1943–1957. doi:10.1093/mnras/staa1316. 
  9. 9.0 9.1 Justesen, A. B.; Albrecht, S. (2020). "The spin-orbit alignment of visual binaries". Astronomy & Astrophysics 642: A212. doi:10.1051/0004-6361/202039138. Bibcode2020A&A...642A.212J. 
  10. Jaime, Luisa G.; Aguilar, Luis; Pichardo, Barbara (2014). "Habitable zones with stable orbits for planets around binary systems". Monthly Notices of the Royal Astronomical Society 443 (1): 260–274. doi:10.1093/mnras/stu1052. Bibcode2014MNRAS.443..260J. 
  11. Maldonado, J.; Villaver, E. (2016). "Evolved stars and the origin of abundance trends in planet hosts". Astronomy & Astrophysics 588: A98. doi:10.1051/0004-6361/201527883. Bibcode2016A&A...588A..98M.