Biology:Beta-amylase

From HandWiki
Revision as of 09:46, 10 February 2024 by JTerm (talk | contribs) (simplify)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Enzyme that hydrolyses alpha-1,4-D-glucosidic bonds in polysaccharides
β-amylase
2xfr b amylase.png
Structure of barley beta-amylase. PDB 2xfr[1]
Identifiers
EC number3.2.1.2
CAS number9000-91-3
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO

β-Amylase (EC 3.2.1.2 , saccharogen amylase, glycogenase) is an enzyme with the systematic name 4-α-D-glucan maltohydrolase.[2][3][4] It catalyses the following reaction:

Hydrolysis of (1→4)-α-D-glucosidic linkages in polysaccharides so as to remove successive maltose units from the non-reducing ends of the chains

This enzyme acts on starch, glycogen and related polysaccharides and oligosaccharides producing beta-maltose by an inversion. Beta-amylase is found in bacteria, fungi, and plants; bacteria and cereal sources are the most heat stable. Working from the non-reducing end, β-amylase catalyzes the hydrolysis of the second α-1,4 glycosidic bond, cleaving off two glucose units (maltose) at a time. During the ripening of fruit, β-amylase breaks starch into maltose, resulting in the sweet flavor of ripe fruit.

β-amylase is present in an inactive form prior to seed germination. Many microbes also produce amylase to degrade extracellular starches.  Animal tissues do not contain β-amylase, although it may be present in microorganisms contained within the digestive tract. The optimum pH for β-amylase is 4.0–5.0[5] They belong to Glycoside hydrolase family 14.

See also

References

  1. "Chemical genetics and cereal starch metabolism: structural basis of the non-covalent and covalent inhibition of barley β-amylase". Molecular BioSystems 7 (3): 718–30. March 2011. doi:10.1039/c0mb00204f. PMID 21085740. 
  2. "A crystalline β-amylase from sweet potatoes". The Journal of Biological Chemistry 173 (1): 9–19. March 1948. doi:10.1016/S0021-9258(18)35550-9. PMID 18902365. 
  3. "β-Amylases". The Enzymes. 4 (2nd ed.). New York: Academic Press. 1960. pp. 345–368. 
  4. "Enzymic synthesis and degradation of starch and glycogen". Advances in Carbohydrate Chemistry 17: 371–430. 1962. doi:10.1016/s0096-5332(08)60139-3. ISBN 9780120072170. 
  5. "Amylase, Alpha" , I.U.B.: 3.2.1.11,4-α-D-Glucan glucanohydrolase.

Further reading

External links

External links