Biology:2023 in paleobotany

From HandWiki
Revision as of 01:50, 11 February 2024 by Sherlock (talk | contribs) (over-write)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

This paleobotany list records new fossil plant taxa that were to be described during the year 2023, as well as notes other significant paleobotany discoveries and events which occurred during 2023.

Algae

Charophytes

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Chara chhindwaraensis[1]

Sp. nov

Valid

Khosla et al.

Late Cretaceous-Paleocene transition

Deccan Intertrappean Beds

 India

A species of Chara.

Hornichara jianglingensis[2]

Comb. nov

(Wang)

Eocene

 China

A member of the family Characeae. Moved from Obtusochara jianglingensis Wang (1978).

Microchara shivarudrappai[1]

Sp. nov

Valid

Khosla et al.

Late Cretaceous-Paleocene transition

Deccan Intertrappean Beds

 India

Platychara closasi[1]

Sp. nov

Valid

Khosla et al.

Late Cretaceous-Paleocene transition

Deccan Intertrappean Beds

 India

Chlorophytes

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Acicularia guizhouensis[3]

Sp. nov

Valid

Bucur, Enos & Minzoni

Middle Triassic

 China

A green alga belonging to the group Dasycladales.

Archaeochaeta[4]

Gen. et sp. nov

Valid

Maloney et al.

Tonian

Dolores Creek Formation

 Canada
( Yukon)

The type species is A. guncho.

Chaetocladus vasalemmense[5]

Sp. nov

Kröger & Tinn in Kröger et al.

Ordovician (Sandbian)

Vasalemma Formation

 Estonia

Eocladus estoniense[5]

Sp. nov

Kröger & Tinn in Kröger et al.

Ordovician (Sandbian)

Vasalemma Formation

 Estonia

Kantia granieri[3]

Sp. nov

Valid

Bucur, Enos & Minzoni

Middle Triassic

 China

A green alga belonging to the group Dasycladales.

Kantia intusannulata[3]

Sp. nov

Valid

Bucur, Enos & Minzoni

Middle Triassic

 China

A green alga belonging to the group Dasycladales.

Kantia muxinanii[3]

Sp. nov

Valid

Bucur, Enos & Minzoni

Middle Triassic

 China

A green alga belonging to the group Dasycladales.

Palaeoulvaria[6]

Gen. et sp. nov

Valid

Kolosov

Ediacaran

Byuk Formation

 Russia

A green alga belonging to the group Ulvales. The type species is P. plate.

Sphaeroplea striatocristata[7]

Sp. nov

Perez Loinaze et al.

Late Cretaceous (Maastrichtian)

Chorrillo Formation

 Argentina

A species of Sphaeroplea.

Voronocladus[8]

Gen. et sp. nov

In press

Skompski et al.

Silurian

 Ukraine

Originally described as a green alga belonging to the group Dasycladales and the family Triploporellaceae; subsequently argued by LoDuca (2024) to be a member of Bryopsidales.[9] Genus includes new species V. dryganti.

Phycological research

Lycophytes

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Nothostigma sepeensis[13]

Sp nov

Spiekermann, Jasper, Guerra-Sommer & D. Uhl

Early Permian
Cisuralian

 Brazil

An herbaceous lycopsid

Selaginella quatsinoense[14]

Sp. nov

Valid

Rothwell & Stockey

Early Cretaceous (Valanginian)

Longarm Formation

 Canada
( British Columbia)

A species of Selaginella.

Thomasites[15]

Gen., sp. et comb. nov

Bek et al.

Carboniferous

 Czech Republic
 Germany

A herbaceous lycophyte.
Genus includes new species T. serratus
also includes Lycopodites elongatus Goldenberg (1855).

Lycophyte research

  • A study on the ground-level trunk vasculature of Sigillaria approximata from the Pennsylvanian Calhoun Coal of Illinois (United States ) is published by D'Antonio (2023), who finds evidence indicating that wood growth at the base of the trunk was different from the arborescent lycopsid wood growth model of Cichan (1985).[16][17]
  • Turner et al. (2023) report diverse phyllotaxis in leaves of the lycopod Asteroxylon mackiei from the Devonian Rhynie chert (United Kingdom ), including whorls and spirals, and interpret this finding as suggesting that Fibonacci-style patterning was not ancestral to living land plants, as well as indicative of developmental similarities between lycophyte leaves and reproductive structures.[18]

Ferns and fern allies

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Botryopteridium sinensis[19]

Sp. nov

Zhou et al.

Permian

 China

A botryopterid fern.

Conustheca[20]

Gen. et comb. nov

Fernández & Césari

Carboniferous-Permian transition

Bajo de Véliz Formation

 Argentina

A member of Equisetales. The type species is Tchernovia? velizensis Durán, Hünicken & Antón (1997).

Diplazites campbellii[21]

Sp. nov

Pšenička et al.

Carboniferous
Kasimovian

 Canada
 Nova Scotia

A psaroniaceous marattialean fern.

Dizeugotheca saudica[22]

Comb. nov

(Wagner, Hill & El-Khayal)

Permian

 Saudi Arabia

A member of the family Marattiaceae. Moved from Gemellitheca saudica Wagner, Hill & El-Khayal (1985).

Dryopterites beishanensis[23]

Sp nov

Ren & Sun

Late Cretaceous

Chijinbao Formation

 China

A fern
First announced in 2022
Officially published in 2023

Equisetum kekeense[24]

Sp. nov

Zhang & Xie in Cao et al.

Miocene

Youshashan Formation

 China

A species of Equisetum.

Equisetum siwalikum[25]

Sp. nov

Kundu, Hazra & Khan in Kundu et al.

Miocene

 India

A species of Equisetum.

Equisetum wulanense[24]

Sp. nov

Zhang & Xie in Cao et al.

Miocene

Youshashan Formation

 China

A species of Equisetum.

Goeppertella unicyclica[26]

Sp. nov

Escapa & Yañez in Yañez, Escapa & Choo

Early Jurassic (Pliensbachian)

 Argentina

A member of the family Dipteridaceae.

Microlepia burmasia[27]

Sp. nov

In press

Long, Wang, & Shi

Cretaceous

Burmese amber

 Myanmar

A dennstaedtiaceous fern.

Palaeosorum siwalikum[28]

Sp. nov

Valid

Kundu, Hazra & Khan in Kundu et al.

Miocene

 India

A member of the family Polypodiaceae. Announced in 2023; the final version of the article naming it was published in 2024.

Prosperifilix[29]

Gen. et sp. nov

In press

Wang, Shi & Engel in et al.

Cretaceous

Burmese amber

 Myanmar

A member of the family Dryopteridaceae.
The type species is P. sepeliogladius.

Qasimia archangelskyi[22]

Sp. nov

Kerp et al.

Permian

Umm Irna Formation

 Jordan

A member of the family Marattiaceae.

Szea yunnanensis[30]

Sp. nov

Guo, Zhou & Feng in Guo et al.

Permian (Lopingian)

Xuanwei Formation

 China

A leptosporangiate fern.

Todea minutacaulis[31]

Sp. nov

Walker, Rothwell & Stockey

Early Cretaceous (Valanginian)

 Canada
( British Columbia)

A species of Todea.

Trichomanes angustum[32]

Comb. nov

(Li & Wang)

Cretaceous (Albian-Cenomanian)

Burmese amber

 Myanmar

A member of the family Hymenophyllaceae, a species of Trichomanes sensu lato. Moved from Hymenophyllites angustus Li & Wang (2022).

Pteridological research

  • A study on fossils of Pecopteris from the Mazon Creek fossil beds (Illinois, United States ), indicative of association of a suite of saturated phytohopanoid and aromatised terpenoid diagenetic biomarker products with true fern fossils, is published by Tripp et al. (2023).[33]
  • Blanco-Moreno & Buscalioni (2023) identify Sphenopteris wonnacottii as a junior synonym of Coniopteris laciniata, provide whole plant reconstruction of C. laciniata, and interpret the variability of the pinnules of C. laciniata as likely caused by the submersion of the apical part of fronds in water during their development.[34]

Ginkgophytes

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Austroginkgoxylon[35]

Gen. et sp. nov

Martínez & Leppe in Martínez et al.

Late Cretaceous (Maastrichtian)

Dorotea Formation

 Chile

A member of Ginkgoales. The type species is A. dutrae.

Eretmophyllum polypapillosum[36]

Sp. nov

Valid

Frolov & Mashchuk

Jurassic

Prisayan Formation

 Russia

Eretmophyllum yershowskiensis[36]

Sp. nov

Valid

Frolov & Mashchuk

Jurassic

Prisayan Formation

 Russia

Ginkgo henanensis[37]

Sp. nov

Valid

Li & Xu in Li et al.

Paleocene

Dazhang Formation

 China

A species of Ginkgo.

Karkenia archangelskiana[38]

Sp. nov

Nosova in Nosova, Kostina & Afonin

Early Cretaceous (Aptian–Albian)

Khuren Dukh Formation

 Mongolia

A member of the family Karkeniaceae.

Sphenobaiera krassilovii[38]

Sp. nov

Nosova, Kostina & Afonin

Early Cretaceous (Aptian–Albian)

Khuren Dukh Formation

 Mongolia

Conifers

Cheirolepidiaceae

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Classostrobus archangelskyi[39]

Sp. nov

Kvaček, Mendes & Tekleva

Cretaceous
(late Aptian-early Albian)

Figueira da Foz Formation

 Portugal

Pararaucaria laiyangensis[40]

Sp. nov

Jin et al.

Early Cretaceous

Laiyang Formation

 China

Pseudofrenelopsis dinisii[41]

Sp. nov

Mendes, Kvaček & Doyle

Cretaceous
(Hauterivian?)

Santa Susana Formation

 Portugal

A cheirolepidiaceous foliage morphospecies

Pseudofrenelopsis zlatkoi[42]

Sp. nov

Kvaček & Mendes

Cretaceous
(late Aptian-early Albian)

Figueira da Foz Formation

 Portugal

A cheirolepidiaceous foliage morphospecies

Cordaitaceae

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Florinanthus bussacensis[43]

Sp. nov

Correia et al.

Carboniferous (Gzhelian)

 Portugal

Florinanthus longiantheratus[44]

Sp. nov

Bureš et al.

Carboniferous (Moscovian)

Plzeň Basin

 Czech Republic

Pollen-bearing organs of a member of Cordaitales.

Cupressaceae

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Juniperus chifengensis[45]

Sp. nov

Xiao & Guo in Guo et al.

Miocene

 China

A species of Juniper.

Mukawastrobus arnoldii[46]

Sp. nov

Valid

Rothwell, Stockey & Smith

Late Cretaceous

 United States
( Alaska)

A taiwanioid cupressaceous conifer.

Pinaceae

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Keteleeria farjonii[47]

Sp. nov

Valid

Wheeler, Manchester & Baas

Eocene

John Day Formation

 United States
( Oregon)

A species of Keteleeria.

Keteleeria huolinhensis[48]

Sp. nov

Zhu et al.

Early Cretaceous

Huolinhe Formation

 China

A species of Keteleeria.

Pinus bukatkinii[49]

Sp. nov

Valid

Bazhenova et al.

Middle Jurassic

 Russia
(Template:Country data Belgorod Oblast)

A pine.

Tsuga weichangensis[50]

Sp. nov

In press

Li et al.

Miocene

 China

A species of Tsuga.

Podocarpaceae

Name Novelty Status Authors Age Type locality Location Synonymy Notes Images

Acmopyle grayae[51]

Sp. nov

Andruchow-Colombo et al.

Eocene

Laguna del Hunco Formation

 Argentina

A species of Acmopyle.

Dacrycarpus engelhardti[51]

Comb. nov

(Berry)

Eocene

 Argentina

A species of Dacrycarpus. Moved from Podocarpus engelhardti Berry (1938).

Phyllocladoxylon antarcticum[52]

Sp. nov

valid

Pujana et al.

Oligocene

San José Formation

 Chile

A podocarpaceous wood morphospecies
Announced in 2022
Officially published in 2023

Podocarpoxylon paradoxi[35]

Sp. nov

Martínez & Leppe in Martínez et al.

Late Cretaceous (Maastrichtian)

Dorotea Formation

 Chile

A podocarpaceous wood morphospecies.

Podocarpoxylon resinosum[52]

Sp. nov

valid

Pujana et al.

Oligocene

San José Formation

 Chile

A podocarpaceous wood morphospecies
Announced in 2022
Officially published in 2023

Voltziales

Name Novelty Status Authors Age Type locality Location Synonymy Notes Images

Hexicladia[53]

Gen. et sp. nov

Valid

Wang et al.

Permian (Cisuralian)

Shanxi Formation

 China

A voltzialean conifer.
The type species is H. yongchangensis.
Announced in 2022
Officially published in 2023

Other conifers

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Brachyoxylon qijiangense[54]

Sp. nov

Xie, Wang & Tian in Xie et al.

Middle Jurassic

Shaximiao Formation

 China

A member of Pinales of uncertain affinities.

Brachyphyllum dimorpha[55]

Sp. nov

Morales-Toledo & Cevallos-Ferriz

Middle Jurassic

Otlaltepec Formation

 Mexico

Coniferous foliage of uncertain affinities.

Mirovia oskolica[56]

Sp. nov

Nosova in Nosova & Lyubarova

Middle Jurassic (Bajocian–Callovian)

 Russia
(Template:Country data Belgorod Oblast)

Coniferous leaves assigned to the family Miroviaceae.

Parnaiboxylon wangi[57]

Sp. nov

Wang et al.

Carboniferous
(Moscovian)

Benxi Formation

 China

A coniferous petrified wood.

Platycladium mexicana[55]

Sp. nov

Morales-Toledo & Cevallos-Ferriz

Middle Jurassic

Otlaltepec Formation

 Mexico

Secrospiroxylon[58]

Gen. et sp. nov

Valid

Cai, Zhang & Feng in Cai et al.

Permian

 Mongolia

A coniferous stem. The type species is S. tolgoyensis.

Yiwupitys[59]

Gen. et sp. nov

Gou & Feng in Gou et al.

Middle Jurassic

Xishanyao Formation

 China

A conifer stem of uncertain affinities. The type species is Y. elegans.

Conifer research

  • Trümper et al. (2023) report the discovery of fossil trees from the Athesian Volcanic Group (Italy) interpreted as remains of a Permian (Kungurian) forest where conifers were the major arborescent plants, substantiating the presence of coniferopsids in wetlands around the Carboniferous/Permian boundary.[60]
  • Slodownik et al. (2023) describe new fossil material (including the first putative female reproductive remains) of Araucarioides linearis from the Eocene Macquarie Harbour Formation (Australia ), interpret Araucarioides sinuosa to be a junior synonym of A. linearis, and consider A. linearis to be a non-Agathis agathioid belonging to an extinct lineage that originated in the Cretaceous, lived in high paleolatitudes and had adaptations to seasonal environments which allowed it to survive the Cretaceous–Paleogene extinction event.[61]
  • Andruchow-Colombo et al. (2023) review the fossil record of Podocarpaceae, and argue that the earliest reliable occurrences of members of this family are from the Jurassic of both hemispheres.[62]

Flowering plants

Monocots

Alismatales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Appianospadix[63]

Gen. et sp. nov

Valid

Stockey et al.

Eocene

 Canada
( British Columbia)

A member of the family Araceae. The type species is A. bogneri

Nichima[64]

Gen. et 2 sp. nov

Hernández-Sandoval, Cevallos-Ferriz & Hernández-Damián

Oligocene-Miocene

 Mexico

A member of the family Alismataceae. Genus includes N. magalloniae and N. gonzalez-medranoi.

Arecales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Palmocarpon dicellaformis[65]

Comb. nov

(Berry)

Oligocene

 Peru

A palm fruit with affinities to extant Bactridinae.
Moved from Carpolithus dicellaformis Berry (1929).

Basal eudicots

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Macginitiea basilobata[66]

Comb. nov

(Ward)

Paleocene

 United States
( Montana)

Moved from Platanus basilobata Ward (1887).

Macginitiea rannii[66]

Sp. nov

Huegele & Correa Narvaez

Eocene

 United States
( Wyoming)

Macginitiea rileyi[66]

Comb. nov

(Ball)

Eocene

 United States
( Texas)

Moved from Platanus rileyi Ball (1939).

Megahertzia paleoamplexicaulis[67]

Sp. nov

Valid

Carpenter & Rozefelds

Eocene

Salt Creek Formation

 Australia

A species of Megahertzia

Notocyamus[68]

Gen. et sp. nov

Gobo et al in Gobo et al.

Early Cretaceous
(Barremian?/Aptian)

Crato Formation

 Brazil

A Nelumbonaceous lotus.
The type species is N. hydrophobus.

Palaeosinomenium oisensis[69]

Sp. nov

Kara et al.

Paleocene

 France

A member of the family Menispermaceae.

Basal eudicot research

  • Evidence from the palynomorph fossil record, interpreted as indicating that members of the family Proteaceae reached South African Cape in the Late Cretaceous from North-Central Africa rather than from Australia across the Indian Ocean, is presented by Lamont, He & Cowling (2023).[70]

Superasterids

Apiales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Plerandreoxylon oskolskii[47]

Sp. nov

Valid

Wheeler, Manchester & Baas

Eocene

John Day Formation

 United States
( Oregon)

A member of the family Araliaceae.

Boraginales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Cordioxylon indicum[71]

Sp. nov

Bhatia, Srivastava & Mehrotra

Miocene

Tipam Sandstone

 India

Fossil wood of a member of the genus Cordia.

Ericales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Symplocos kowalewskii[72]

Comb nov

Valid

(Casp.) Sadowski & Hofmann

Eocene
Priabonian

Baltic Amber

 Europe

A Symplocaceous flower species.
Moved from Stewartia kowalewskii (1886).

Icacinales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Palaeophytocrene ga[73]

Sp. nov

Poore, Jud & Gandolfo

Paleocene (Danian)

Salamanca Formation

 Argentina

A member of the family Icacinaceae belonging to the tribe Phytocreneae.

Lamiales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Phillyreoxylon phillyreoides[74]

Sp. nov

Akkemik & Mantzouka in Akkemik et al.

Neogene

 Turkey

Fossil wood of a member of the genus Phillyrea.

Solanales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Eophysaloides[75]

Gen. et sp. nov

Valid

Deanna et al.

Eocene

Esmeraldas Formation

 Colombia

A member of the family Solanaceae. The type species is E. inflata.

Lycianthoides[75]

Gen. et sp. nov

Valid

Deanna et al.

Eocene

Green River Formation

 United States
( Colorado)

A member of the family Solanaceae. The type species is L. calycina.

General Superasterid research

Superrosids

Cucurbitales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Parvaspicula[76]

Gen. et comb. nov

Valid

Correa Narvaez et al.

Eocene
Ypresian

Green River Formation

 United States
( Colorado)

A tetramelaceous leaf morphotype
The type species is Clethra (?) lepidioides Cockerell (1925)[77][78]

Punctaphyllum[76]

Gen. et comb. nov

Valid

Correa Narvaez et al.

Eocene
Ypresian

Green River Formation

 United States
( Colorado)

A tetramelaceous seed morphotype
The type species is Cucurbita glandulosa Brown (1929)[79][78]

Fabales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Acacia haominiae[80]

Sp. nov

Wang et al.

Miocene

Fotan Group

 China

A species of Acacia.

Albizia yenbaiensis[81]

Sp. nov

Valid

Nguyen, Su & J. Huang in Nguyen et al.

Miocene

Yen Bai Basin

 Vietnam

An Albizia species.
Announced in 2022
Officially published January 2023

Anthonotha shimaglae[82]

Sp. nov

Valid

Pan et al.

Miocene

Mush Valley

 Ethiopia

A species of Anthonotha.

Bauhinia tibetensis[83]

Sp. nov

Gao & Su in Gao et al.

Paleocene

 China

A species of Bauhinia.

Englerodendron mulugetanum[84]

Sp. nov

Valid

Pan et al.

Miocene

Mush Valley

 Ethiopia

A species of Englerodendron.

Entada simojovelensis[85]

Sp. nov

Estrada-Ruiz & Gómez-Acevedo

Miocene

Simojovel Group

 Mexico

A species of Entada.

Goniorrhachisinoxylon[86]

Gen. et sp. nov

Dutra, Martínez & Wilberger

Oligocene

 Brazil

A member of Detarioideae. The type species is G. sergioarchangelskii.

Fagales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Carya leroyii[47]

Sp. nov

Valid

Wheeler, Manchester & Baas

Eocene

John Day Formation

 United States
( Oregon)

A hickory.

Engelhardia guipingensis[87]

Sp. nov

Song & Jin in Song et al.

Miocene

Erzitang Formation

 China

A species of Engelhardia.

Gymnostoma stuartii[88]

Sp. nov

Whang, Hill & Hill

Neogene

 Australia

A species of Gymnostoma.

Leguminocarpum meghalayensis[89]

Sp. nov

valid

Bhatia, Srivastava & Mehrotra

Late Paleocene

Tura Formation

 India

A fabaceous seed pod morphospecies.
Announced in 2022
Officially published in 2023

Nothofagoxylon ruei[52]

Sp. nov

valid

Pujana et al.

Oligocene

San José Formation

 Chile

A nothofagaceous wood morphospecies
Announced in 2022
Officially published in 2023

Parvileguminophyllum damalgiriensis[89]

Sp. nov

Valid

Bhatia, Srivastava & Mehrotra

Late Paleocene

Tura Formation

 India

A fabaceous legume leaf morphospecies.
Announced in 2022
Officially published in 2023

Malpighiales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Elatine odgaardii[90]

Sp. nov

Valid

Bennike in Bennike et al.

Probably early Pleistocene

 Greenland

A species of Elatine. Announced in 2022; the final article version was published in 2023.

Macaranga kirkjohnsonii[91]

Sp. nov

Wilf, Iglesias & Gandolfo

Eocene (Ypresian)

Huitrera Formation

 Argentina

A species of Macaranga.

Passiflora sulcatasperma[92]

Sp. nov

Hermsen

Pliocene

Gray Fossil Site

 United States
( Tennessee)

A species of Passiflora.

Tineafructus[91]

Gen. et sp. nov

Wilf, Iglesias & Gandolfo

Eocene (Ypresian)

Huitrera Formation

 Argentina

A member of the family Euphorbiaceae belonging to the subfamily Acalyphoideae and the tribe Acalypheae. The type species is T. casamiquelae.

Trigonostemon zhangpuensis[93]

Sp. nov

Valid

Dong & Sun in Zheng et al.

Miocene

Fotan Group

 China

A species of Trigonostemon.

Malvales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Bombax asiatica[94]

Sp. nov

Valid

Hazra, Bera & Khan

Pliocene

 India

A species of Bombax.

Cistoxylon cistoides[74]

Sp. nov

Akkemik & Mantzouka in Akkemik et al.

Neogene

 Turkey

Elizabethiaxylon[95]

Gen. et sp. nov

In press

Ruiz, Pujana & Brea

Paleocene

Salamanca Formation

 Argentina

Fossil wood of a plant related to the Malvaceae. The type species is E. patagonicum.

Notomalvaceoxylon[35]

Gen. et sp. nov

Martínez & Leppe in Martínez et al.

Late Cretaceous (Maastrichtian)

Dorotea Formation

 Chile

Fossil wood of a plant belonging to the Malvaceae. The type species is N. magallanense.

Pterospermum shuangxingii[96]

Sp. nov

Valid

Zhao, Huang & Su in Zhao et al.

Miocene

Sanhaogou Formation

 China

A species of Pterospermum.

Myrtales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Conocarpoxylon[97]

Gen. et sp. nov

Ramos et al.

Pleistocene

El Palmar Formation

 Argentina

Fossil wood of a member of the family Combretaceae. Genus includes new species C. cristalliferum.

Duabanga makumensis[98]

Sp. nov

Valid

Bhatia, Srivastava & Mehrotra

Oligocene (Chattian)

Tikak Parbat Formation

 India

A species of Duabanga.

Myrtineoxylon hoffmannae[52]

Sp. nov

valid

Pujana et al.

Oligocene

San José Formation

 Chile

A myrtaceous wood morphospecies.
Announced in 2022
Officially published in 2023

Sonneratioxylon barrocoloradoensis[99]

Sp. nov

Pérez-Lara in Martínez et al.

Miocene (Aquitanian)

 Panama

A member of the family Lythraceae.

Terminalioxylon paravirens[97]

Sp. nov

Ramos et al.

Pleistocene

El Palmar Formation

 Argentina

Fossil wood of a member of the family Combretaceae.

Terminalioxylon ushun[97]

Sp. nov

Ramos et al.

Pleistocene

El Palmar Formation

 Argentina

Fossil wood of a member of the family Combretaceae.

Trapa haominiae[100]

Sp. nov

Wu et al.

Miocene

Fotan Group

 China

A species of Trapa.

Oxalidales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Weinmannioxylon trichospermoides[52]

Sp. nov

valid

Pujana et al.

Oligocene

San José Formation

 Chile

A cunoniaceous wood morphospecies.
Announced in 2022
Officially published in 2023

Rosales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Aphananthe manchesteri[101]

Sp. nov

Valid

Hernández-Damián, Rubalcava-Knoth & Cevallos Ferriz

Miocene

La Quinta Formation (Mexican amber)

 Mexico

A species of Aphananthe.

Eopaliura[102]

Gen. et sp. nov

Patel, Rana & Khan in Patel et al.

Eocene

Palana Formation

 India

A member of the family Rhamnaceae belonging to the tribe Paliureae. The type species is E. indica.

Ficus paleoauriculata[103]

Sp. nov

Chandra et al.

Paleogene

 India

A species of Ficus.

Ficus paleodicranostyla[103]

Sp. nov

Chandra et al.

Paleogene

 India

A species of Ficus.

Ficus paleovariegata[103]

Sp. nov

Chandra et al.

Paleogene

 India

A species of Ficus.

Gouianiaites[104]

Gen. et sp. nov

Valid

Centeno-González, Porras-Múzquiz & Estrada-Ruiz

Late Cretaceous (Campanian)

Olmos Formation

 Mexico

A member of the family Rhamnaceae. Genus includes new species G. muzquizensis.

Helicostyloxylon[105]

Gen. et sp. nov

Valid

Martinez Martinez

Miocene

Ituzaingó Formation

 Argentina

A member of the family Moraceae. Genus includes new species H. paranensis.

Kageneckia coloradensis[106]

Comb. nov

Valid

(Knowlton) Denk et al.

Eocene
Priabonian

Florissant Formation

 United States
( Colorado)

A species of Kageneckia.
Moved from Myrica coloradensis (1916).

Ulmus palaeoparvifolia[107]

Sp. nov

Lu et al.

Miocene

Xiaolongtan Formation

 China

An elm.

Urticaleoxylon[47]

Gen. et sp. nov

Valid

Wheeler, Manchester & Baas

Eocene

John Day Formation

 United States
( Oregon)

A member of Rosales with features found in urticalean families. The type species is U. stevensii.

Vauquelinia aculeata[106]

Comb. nov

Valid

(Saporta) Denk et al.

Oligocene
Chattian

Aix-en-Provence Formation

 France

A species of Vauquelinia.
Moved from Myrica aculeata (1873)
First named Banksites aculeatus (1862).

Vauquelinia obscura[106]

Comb. nov

Valid

(Saporta) Denk et al.

Oligocene
Rupelian

Saint-Zacharie Limestone

 France

A species of Vauquelinia.
Moved from Banksites obscurus Saporta (1863).

Vauquelinia serra[106]

Comb. nov

Valid

(Unger) Denk et al.

Miocene

Parschlug Basin

 Austria

A species of Vauquelinia.
Moved from Prinsepia serra (2004)
First named Quercus serra (1847).

Sapindales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Aesculus constabularisii[47]

Sp. nov

Valid

Wheeler, Manchester & Baas

Eocene

John Day Formation

 United States
( Oregon)

A species of Aesculus.

Bursericarpum indicum[108]

Sp. nov

Valid

Kumar et al.

Cretaceous-Paleogene transition

Deccan Intertrappean Beds

 India

A burseraceous fruit.

Burseroxylon panzai[109]

Sp. nov

Rombola et al.

Late Cretaceous

Cardiel Formation

 Argentina

Fossil wood with possible affinities with Anacardiaceae or Burseraceae.

Canarium leenhoutsii[110]

Sp. nov

In press

Beurel et al.

Miocene

Zhangpu amber

 China

A species of Canarium.

Canarium wangboi[110]

Sp. nov

In press

Beurel et al.

Miocene

Zhangpu amber

 China

A species of Canarium.

Cyrtocarpa biapertura[111]

Sp. nov

Valid

Del Rio et al.

Paleocene and Eocene

 France

A species of Cyrtocarpa.

Debursera[108]

Gen. et sp. nov

Valid

Kumar et al.

Cretaceous-Paleogene transition

Deccan Intertrappean Beds

 India

A burseraceous flower. The type species is D. indica.

Klaassenoxylon[47]

Gen. et sp. et comb. nov

Wheeler, Manchester & Baas

Eocene

John Day Formation

 United States
( Oregon)

A member of the family Sapindaceae. Genus includes new species K. wilkinsonii, as well as "Sapindoxylon" klaassenii Wheeler & Manchester (2002).

Sahniocarpon deccanensis[112]

Comb. nov

(Karanjekar)

Late Cretaceous

 India

A member of the family Burseraceae. Moved from Cremocarpon deccanii Karanjekar (1984).

Swietenia palaeomahagoni[113]

Sp. nov

Valid

Chandra et al.

Paleogene

 India

A species of Swietenia.

Saxifragales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Liquidambar hainanensis[114]

Sp. nov

Maslova et al.

Eocene

Changchang Formation

 China

A species of Liquidambar.

Liquidambar ovoidea[114]

Sp. nov

Maslova et al.

Eocene

Changchang Formation

 China

A species of Liquidambar.

Parrotia zhiyani[115]

Sp. nov

In press

Wu et al.

Miocene

Zhangpu amber

 China

A species of Parrotia.

Other superrosids

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Friisifructus[116]

Gen. et sp. nov

Valid

Tang, Smith & Atkinson

Late Cretaceous
(Campanian)

Cedar District Formation

 United States
 Washington

Rosid clade fruits of uncertain affinities.
The type species is F. aligeri.

Superrosid research

  • Nishino et al. (2023) study the composition of a fossil forest from the Miocene Nakamura Formation of the Mizunami Group (Japan ), including stumps of Wataria parvipora and leaves of Byttneriophyllum tiliifolium, and interpret their finding as suggesting that W. parvipora and B. tiliifolium were parts of the same plant, as well as suggesting that Byttneriophyllum-bearing plants might have belonged to the subfamily Helicteroideae.[117]

Other angiosperms

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Ascarinophyllum[118]

Gen. et sp. nov

valid

Čepičková & Kvaček

Late Cretaceous
(Cenomanian)

Peruc–Korycany Formation

 Czech Republic

A Basal angiosperm leaf morphogenus
Similar to Mesodescolea plicata and Chloranthaceae.
The type species is A. pecinovense.
Officially published in 2023

Cinnamomum miocenicum[119]

Sp. nov

Mahato, Hazra & Khan in Mahato et al.

Miocene

Chunabati Formation

 India

A species of Cinnamomum.

Compitoxylon[120]

Gen. et sp. nov

Gentis, De Franceschi & Boura in Gentis et al.

Paleocene (Danian-Selandian)

Paunggyi Formation

 Myanmar

Fossil wood with anatomical features found in diverse extant flowering plant groups, might be placed at the base of the asterids, close to Malpighiales, close to Proteales at the base of eudicots, or even in Laurales. The type species is C. paleocenicum.

Magnolia hansnooteboomii[47]

Sp. nov

Valid

Wheeler, Manchester & Baas

Eocene

John Day Formation

 United States
( Oregon)

A species of Magnolia.

Palibinia comptonifolia[121]

Comb. nov

(Brown) Manchester, Judd, & Kodrul

Eocene
Ypresian

Green River Formation

 United States
( Colorado)

A pentapetalean eudicot of uncertain affiliation.
Moved from Vauquelinia comptonifolia (1969)
Originally named Banksia comptonifolia (1934)

Papillaephyllum[122]

Gen. et sp. nov

Čepičková & Kvaček

Late Cretaceous
(Cenomanian)

Peruc–Korycany Formation

 Czech Republic

Foliage of a flowering plant, possibly with affinities with the family Chloranthaceae.
The type species is P. labutae.

Pteroheterochrosperma[123]

Gen. et sp. nov

Valid

Smith, Greenwalt & Manchester

Eocene

Kishenehn Formation

 United States
( Montana)

Disseminules of uncertain affinities.
The type species is P. horseflyensis.

Pteroheterochrosperma horseflyensis

Quadrasubulaflora[123]

Gen. et sp. nov

Valid

Smith, Greenwalt & Manchester

Eocene

Kishenehn Formation

 United States
( Montana)

Flower of uncertain affinities, possibly related to members of the family Apiaceae belonging to the tribe Saniculeae or to the subtribe Scandicinae within the tribe Scandiceae.
The type species is Q. kishenehnensis.

Racheliflora[124]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous

Potomac Group

 United States
( Virginia)

An early angiosperm of uncertain phylogenetic placement, most closely related to magnoliids, possibly with lauralean affinities.
The type species is R. virginiensis.

Todziaphyllum saportanum[118]

Comb. nov

valid

(Velenovský) Čepičková & Kvaček

Late Cretaceous
(Cenomanian)

Peruc–Korycany Formation

 Czech Republic

A Basal angiosperm leaf morphogenus
A new combination for Banksites saportanus
Officially published in 2023

Tortorellixylon[109]

Gen. et sp. nov

Rombola et al.

Late Cretaceous

Cardiel Formation

 Argentina

Fossil wood of a flowering plant of uncertain affinities. The type species is T. oligoporosum.

Xilinia[125]

Gen. et sp. nov

Wang et al.

Early Cretaceous (Albian)

Shengli Formation

 China

An early angiosperm of uncertain affinities.
The type species is X. shengliensis.

  • A study on the affinities of Santaniella, based on data from new fossil material from the Lower Cretaceous Crato Formation (Brazil ), is published by Pessoa et al. (2023), who don't support the interpretation of Santaniella as a ranuculid, and consider it to be a mesangiosperm of uncertain affinities, possibly a magnoliid.[126]
  • Pessoa, Ribeiro & Christenhusz (2023) describe new fossil material of Araripia florifera from the Early Cretaceous of Brazil , interpret its anatomy as indicating that it did not belong to the family Calycanthaceae, and assign it to the new family Araripiaceae in the stem group of Laurales.[127]

Angiosperm research

  • A study aiming to determine the affinities of 24 exceptionally preserved fossil flowers is published by López-Martínez et al. (2023).[128]
  • A study aiming to determine the phylogenetic relationships of nine putative magnolialean fossils is published by Doyle & Endress (2023).[129]
  • A study on the diversification of the flowering plant throughout their evolutionary history is published by Thompson & Ramírez-Barahona (2023), who report evidence of stable extinction rates through time and find no evidence of a significant impact of the Cretaceous–Paleogene extinction event on the extinction rates of major flowering plant lineages.[130]

Other plants

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Aberlemnia junggaria[131]

Sp. nov

In press

Liu & Xu in Liu et al.

Silurian (Přídolí)

 China

Aberlemnia krizii[132]

Sp. nov

Libertín, Kvaček & Bek

Silurian (Přídolí)

 Czech Republic

A vascular plant related to Lycophytina.

Archangelskyoxylon[133]

Gen. et sp. nov

Gnaedinger, Brea & Martínez

Early Jurassic (Sinemurian–Toarcian)

Roca Blanca Formation

 Argentina

A member of the family Gnetidae. The type species is A. carlquistii.

Arlenea[134]

Gen. et sp. nov

Ribeiro et al.

Early Cretaceous

Crato Formation

 Brazil

A member of the family Ephedraceae. The type species is A. delicata.

Aysenoxylon[52]

Gen et sp nov

valid

Pujana et al.

Oligocene

San José Formation

 Chile

A wood morphospecies of uncertain affinity.
The type species is A. patorarensis.
Announced in 2022
Officially published in 2023

Campylopus lusitanicus[135]

Sp. nov

Valid

Hedenäs, Bomfleur & Friis in Bomfleur et al.

Early Cretaceous (Aptian–Albian)

Almargem Formation

 Portugal

A moss, a species of Campylopus.

Canaliculidium[135]

Gen. et sp. nov

Valid

Hedenäs, Bomfleur & Friis in Bomfleur et al.

Early Cretaceous (Aptian–Albian)

Almargem Formation

 Portugal

A moss belonging to the family Leucobryaceae. The type species is C. fissuratum.

Capesporangites[136]

Gen. et sp. nov

Uhlířová, Pšenička & Sakala

Silurian (Přídolí)

 Czech Republic

A rhyniophytoid with bryophyte-like features. The type species is C. petrkraftii.

Chlorosphagnum[135]

Gen. et sp. nov

Valid

Hedenäs, Bomfleur & Friis in Bomfleur et al.

Early Cretaceous (Aptian–Albian)

Almargem Formation

 Portugal

A moss, a member of Sphagnales of uncertain affinities. The type species is C. cateficense.

Cycadodendron[137]

Gen. et sp. nov

Valid

Luthardt, Rößler & Stevenson

Permian (Sakmarian–Artinskian)

Leukersdorf Formation

 Germany

A gymnosperm with cycadalean affinities. The type species is C. galtieri.

Daohugoucladus[138]

Gen. et sp. nov

Yang et al.

Middle Jurassic

Daohugou Beds

 China

A member of the family Gnetidae. The type species is D. sinensis.

Dicranodontium minutum[135]

Sp. nov

Valid

Hedenäs, Bomfleur & Friis in Bomfleur et al.

Early Cretaceous (Aptian–Albian)

Almargem Formation

 Portugal

A moss, a species of Dicranodontium.

Hanophyllum[139]

Gen. et sp. nov

Barbacka et al.

Early Jurassic (Pliensbachian)

 United States
( Alaska)

A cycadophyte foliage. The type species is H. varioserratum.

Komlopteris artabeae[140]

Comb. nov

(Herbst & Gnaedinger)

Early Jurassic

Nestares Formation

 Argentina

A corystosperm. Moved from Alicurana artabei Herbst & Gnaedinger (2002).

Komlopteris boolensis[140]

Sp. nov

Slodownik, Hill & McLoughlin

Early Cretaceous (Valanginian–Barremian)

Rintoul Creek Formation

 Australia

A corystosperm.

Komlopteris constricta[140]

Comb. nov

(Halle)

Late Jurassic (Oxfordian)

Upper Mount Flora Formation

Antarctica

A corystosperm. Moved from Thinnfeldia constricta Halle (1913).

Komlopteris khatangiensis[140]

Comb. nov

(Sengupta)

Late Jurassic or Early Cretaceous

Dubrajpur Formation

 India

A corystosperm. Moved from Thinnfeldia khatangiensis Sengupta (1988).

Komlopteris nestarensis[140]

Comb. nov

(Herbst & Gnaedinger)

Early Jurassic

Nestares Formation

 Argentina

A corystosperm. Moved from Alicurana nestarensis Herbst & Gnaedinger (2002).

Komlopteris purlawaughensis[140]

Sp. nov

Slodownik, Hill & McLoughlin

Late Jurassic

Purlawaugh Formation

 Australia

A corystosperm.

Komlopteris tiruchirapalliense[140]

Comb. nov

(Sukh-Dev & Rajanikanth)

Early Cretaceous

Sivaganga Formation

 India

A corystosperm. Moved from Sphenopteris tiruchirapalliense Sukh-Dev & Rajanikanth (1988).

Komlopteris victoriensis[140]

Sp. nov

Slodownik, Hill & McLoughlin

Early Cretaceous (Aptian)

Eumeralla Formation

 Australia

A corystosperm.

Mongolitria[141]

Gen. et 2 sp. nov

Bickner et al.

Early Cretaceous

 China
 Mongolia

A gymnosperm seed. Genus includes M. friisae and M. exesum.

Nebuloxyla[142]

Gen. et sp. nov

Valid

Lalica & Tomescu

Devonian (Emsian)

 Canada
( Quebec)

An early euphyllophyte. Genus includes new species N. mikmaqiana.

Pachytesta duquesnei[143]

Sp. nov

Vallois & Nel

Carboniferous (Pennsylvanian)

Bruay Formation

 France

A medullosalean "seed".

Paradoxa[144]

Gen. et sp. nov

Liu, Shen & Wang

Middle Jurassic (Callovian)

Jiulongshan Formation

 China

A gymnosperm with several morphological features formerly restricted to angiosperms. The type species is P. huangii.

Paraephedra[145]

Gen. et sp. nov

Trajano et al.

Early Cretaceous

Serra do Tucano Formation

 Brazil

Possibly a member of Ephedrales. Genus includes new species P. amazonensis.

Perplexa[146]

Gen. et sp. nov

Valid

Pfeiler & Tomescu

Devonian

Battery Point Formation

 Canada
( Quebec)

An early euphyllophyte. The type species is P. praestigians.

Petalophyllites[147]

Gen. et sp. nov

Valid

Hoffman & Crandall-Stotler

Paleocene

Paskapoo Formation

 Canada
( Alberta)

A liverwort belonging to the family Petalophyllaceae. The type species is P. speirsiae.

Petrosjania[148]

Gen. et sp. nov

Valid

Snigirevsky & Lyubarova

Devonian

 Russia

A plant of uncertain affinities, with features characteristic of different groups of higher plants. The type species is P. salarina.

Phasmatocycas mazongshanensis[149]

Sp. nov

Li & Du in Li et al.

Early Cretaceous

 China

A relative of Paleozoic primitive Cycadales.

Physcidium[135]

Gen. et 2 sp. nov

Valid

Hedenäs, Bomfleur & Friis in Bomfleur et al.

Early Cretaceous (Aptian–Albian)

Almargem Formation

 Portugal

A moss belonging to the family Diphysciaceae. The type species is P. tortuosum; genus also includes P. simsimiae.

Polytrichastrum incurvum[135]

Sp. nov

Valid

Hedenäs, Bomfleur & Friis in Bomfleur et al.

Early Cretaceous (Aptian–Albian)

Almargem Formation

 Portugal

A moss, a species of Polytrichastrum.

Pterophyllum beishanensis[149]

Sp. nov

Li & Du in Li et al.

Early Cretaceous

Tuomatan Formation

 China

Psilophyton diakanthon[150]

Sp nov

in press

Colston, Landaw, & Tomescu

Devonian
Emsian

Battery Point Formation

 Canada
 Quebec

A trimerophytopsid land plant
Bimodal spines suggest active levels of defense against herbivores

Qingganninginfructus[151]

Gen. et sp. nov

Wang & Sun in Han et al.

Middle Jurassic

Yaojie Formation

 China

Possibly an early angiosperm. The type species is Q. formosa.

Rhaphidopteris zhouii[152]

Sp. nov

In press

Yang

Early Jurassic

Sangonghe Formation

 China

A gymnosperm.

Skyttegaardia nagalingumiae[153]

Sp. nov

Elgorriaga & Atkinson

Late Cretaceous (Campanian)

Holz Shale

 United States
( California)

A member of Cycadales belonging to the family Zamiaceae.

Tregiovia[154]

Gen. et sp. nov

Forte & Kustatscher

Permian (Kungurian)

Tregiovo Formation

 Italy

A plant of uncertain affinities, with the closest resemblance to the seed fern Auritifolia anomala. The type species is T. furcata.

Tricosta priapiana[155]

Sp. nov

Valid

Blanco-Moreno et al.

Early Cretaceous (Valanginian)

 Canada
( British Columbia)

A moss belonging to the family Tricostaceae.

Xenoxylon kazuoense[156]

Sp. nov

Xie, Wang, Tian & Uhl in Xie et al.

Early Cretaceous (Aptian)

Jiufotang Formation

 China

Fossil wood of a gymnosperm of uncertain affinities.

Xenoxylon shehongense[157]

Sp. nov

Xie, Wang & Tian in Xie et al.

Late Jurassic

Penglaizhen Formation

 China

Zirabia[158]

Gen. et comb. nov

Elgorriaga & Atkinson

Early Jurassic

Shemshak Group

 Iran

A member of Doyleales; a new genus for "Karkenia" cylindrica Schweitzer & Kirchner (1995).

Other plant research

  • A study on the evolutionary history of Marchantiopsida, as indicated by data from extant and fossil taxa, is published by Flores et al. (2023).[159]
  • Decombeix et al. (2023) document tyloses in Late Devonian Callixylon wood.[160]
  • A study on the anatomy and affinities of Tingia unita, based on data from specimens from the Permian Taiyuan Formation (China), is published by Yang, Wang & Wang (2023), who confirm that T. unita was a progymnosperm belonging to the group Noeggerathiales.[161]
  • A study on the phylogenetic relationships and evolutionary history of cycads, based on data from extant and fossil taxa, is published by Coiro et al. (2023).[162]
  • Evidence from nitrogen isotopic measurements from fossilized cycad leaves and ancestral state reconstructions, interpreted as indicating that symbiosis of with N2-fixing cyanobacteria wasn't ancestral within cycads but rather arose independently in the lineages leading to living cycads during or after the Jurassic, is published by Kipp et al. (2023).[163]
  • Fu et al. (2023) report the presence of ovules enclosed within the ovaries of specimens of Nanjinganthus dendrostyla, and consider their findings to be consistent with the interpretation of Nanjinganthus as an Early Jurassic angiosperm.[164]

Palynology

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Acanthodiporites[165]

Gen. et sp. nov

Parmar et al.

Paleogene

 India

Pollen of a member of the family Arecaceae. Genus includes new species A. spinatus.

Acylomurus silviae[7]

Sp. nov

Perez Loinaze et al.

Late Cretaceous (Maastrichtian)

Chorrillo Formation

 Argentina

A spore of uncertain affinities.

Ailanthipites diminutus[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Ailanthipites feruglioi[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Ailanthipites hexagonalis[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Alisporites libyaensis[167]

Nom. nov

Valid

Gutierrez & Zavattieri

Permian and Triassic

 Libya

A replacement name for Alisporites plicatus Kar, Kieser & Jain (1972).

Aratrisporites circularis[167]

Sp. nov

Valid

Gutierrez & Zavattieri

Middle Triassic

Quebrada de los Fósiles Formation

 Argentina

Arecipites botrus[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Baculatisporites magnus[167]

Sp. nov

Valid

Gutierrez & Zavattieri

Middle Triassic

Quebrada de los Fósiles Formation

 Argentina

Brevitriletes decorus[167]

Comb. nov

Valid

(Ouyang & Norris)

Triassic

 China

Moved from Anapiculatisporites decorus Ouyang & Norris (1999).

Brevitriletes pamelae[167]

Comb. nov

Valid

(Ottone in Ottone et al.)

Triassic

 Argentina

Moved from Anapiculatisporites pamelae Ottone in Ottone et al. (1992).

Brevitriletes sandrae[167]

Comb. nov

Valid

(Ottone in Ottone et al.)

Triassic

 Argentina

Moved from Anapiculatisporites sandrae Ottone in Ottone et al. (1992).

Carnisporites microspinous[167]

Sp. nov

Valid

Gutierrez & Zavattieri

Middle Triassic

Quebrada de los Fósiles Formation

 Argentina

Casuarinidites foveolatus[168]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Pollen of a flowering plant.

Classopollis patagonicus[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Clavapalmaedites clavatus[165]

Sp. nov

Parmar et al.

Paleogene

 India

Clavatriporites[168]

Gen. et 2 sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Pollen of a flowering plant. Genus includes new species C. dispersiclavatus and C. spicatus.

Cuneatisporites cacheutensis[167]

Comb. nov

Valid

(Jain)

Triassic

Cacheuta Formation

 Argentina

Moved from Jansoniuspollenites cacheutensis Jain (1968).

Cuneatisporites salujhai[167]

Comb. nov

Valid

(Jain)

Triassic

Cacheuta Formation

 Argentina

Moved from Jansoniuspollenites salujhai Jain (1968).

Echitricolpites serratus[168]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Ericipites verrucatus[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Flabellisporites zhaotongensis[169]

Sp. nov

Sui, McLoughlin & Feng in Sui et al.

Permian (Lopingian)

Xuanwei Formation

 China

A spore of a member of Isoetales.

Gemmamonocolpites barmerensis[165]

Sp. nov

Parmar et al.

Paleogene

 India

Gemmamonocolpites chubutensis[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Grimmipollis[170]

Gen et sp nov

Huang, Morley, & Hoorn

late Eocene

Yaw Formation

 Myanmar

A cupaniean sapindaceous pollen morphotype
The type species is G. burmanica

Henrisporites qujingensis[171]

Sp. nov

Sui, McLoughlin & Feng in Sui et al.

Permian (Lopingian)

Xuanwei Formation

 China

A lycopsid megaspore.

Henrisporites yunnanensis[171]

Sp. nov

Sui, McLoughlin & Feng in Sui et al.

Permian (Lopingian)

Xuanwei Formation

 China

A lycopsid megaspore.

Inaperturopollenites fossulatus[168]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Krutzschipollis argentinum[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Lagenicula morbelliae[172]

Sp. nov

Quetglas, Di Pasquo & Macluf

Carboniferous (Tournaisian)

Toregua Formation

 Bolivia

Leschikisporis variabilis[167]

Sp. nov

Valid

Gutierrez & Zavattieri

Middle Triassic

Quebrada de los Fósiles Formation

 Argentina

Liliacidites buitrensis[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Liliacidites lacunosus[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Limatulasporites rugulatus[167]

Sp. nov

Valid

Gutierrez & Zavattieri

Middle Triassic

Quebrada de los Fósiles Formation

 Argentina

Longapertites crassireticuloides[168]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Pollen of a flowering plant.

Luminidites microreticulatus[168]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Pollen of a flowering plant.

Lusatisporis choiols[7]

Sp. nov

Perez Loinaze et al.

Late Cretaceous (Maastrichtian)

Chorrillo Formation

 Argentina

A spore of uncertain affinities.

Nelumbopollenites patagonicus[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Pollen of a member of the family Nelumbonaceae.

Neoraistrickia stricta[167]

Sp. nov

Valid

Gutierrez & Zavattieri

Middle Triassic

Quebrada de los Fósiles Formation

 Argentina

Nyssapollenites scabratus[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Parviprojectus archangelskyi[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Periporopollenites delicatus[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Pityosporites thoracatus[167]

Comb. nov

Valid

(Balme)

Triassic

 Pakistan

Moved from Pinuspollenites thoracatus Balme (1970).

Podocarpidites rectangularis[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Proteacidites baibianae[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Proteacidites mirasolensis[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Protohaploxypinus bonapartei[167]

Sp. nov

Valid

Gutierrez & Zavattieri

Middle Triassic

Quebrada de los Fósiles Formation

 Argentina

Protohaploxypinus diazii[167]

Sp. nov

Valid

Gutierrez & Zavattieri

Middle Triassic

Quebrada de los Fósiles Formation

 Argentina

Psilabrevitricolporites porolatus[168]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Pollen of a flowering plant.

Psilatriletes brevilaesuratus[168]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

A spore.

Punctatisporites interfoveolatus[168]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

A spore.

Retimonocolpites perforatus[165]

Sp. nov

Parmar et al.

Paleogene

 India

Retimonoporites heterobrochatus[168]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Pollen of a flowering plant.

Retitrescolpites miriabilis[168]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Pollen of a flowering plant.

Retitricolporites ganganensis[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Retitricolporites irupensis[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Retitriporites irregularis[168]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Rousea robusta[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Rugutricolporites cumulus[168]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Slavicekia[173]

Gen. et sp. nov

Valid

Heřmanová et al.

Late Cretaceous

 Czech Republic

Pollen from the Normapolles complex, likely produced by angiosperms belonging to the order Fagales. Genus includes new species S. inaequalis.

Sparganiaceaepollenites annulatus[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Spinizonocolpites coloniensis[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Spinizonocolpites variabilis[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Symplocoipollenites microechinatus[166]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene boundary

La Colonia Formation

 Argentina

Syncolporites angusticolpatus[168]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Syncolporites rostro[168]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Tetracolporopollenites torus[168]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Pollen of a flowering plant.

Thomasospora[15]

Gen. et comb. nov

Bek et al.

Paleozoic

 France

Spores produced by the lycophyte Thomasites serratus. Genus includes "Lycospora" gigantea Alpern.

Tricolpites brevicolpatus[168]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Tricolpites multiornamentus[168]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Tricolporites densus[168]

Sp. nov

Mander, Jaramillo & Oboh-Ikuenobe

Paleogene

 Nigeria

Palynological research

  • Vajda et al. (2023) interpret Ricciisporites tuberculatus as an aberrant pollen procuded by Lepidopteris ottonis plants, and interpret its fossil record as indicative of the competitive success of plants which adopted the asexual reproductive strategy under stressed environmental conditions before and during the Triassic–Jurassic extinction event;[174] their interpretation of Ricciisporites and Cycadopites as produced by the same plant is subsequently contested by Zavialova (2024).[175]
  • A study on the vegetation in Central Africa from the middle Aptian to early Albian, as indicated by palynomorphs from the Doseo Basin in the Central African Rift system, is published by Dou et al. (2023), who identify two assemblages of spore and pollen fossils, and interpret the differences between the assemblages as indicative of a vegetation change related to change from relatively arid to humid climate.[176]
  • Malaikanok et al. (2023) describe fossil pollen grains of members of the family Fagaceae from the Oligocene to Miocene Ban Pa Kha Subbasin of the Li Basin (Thailand), and interpret the studied fossils as indicating that, contrary to previous interpretations of the palynological record, tropical Fagaceae-dominated forests existed in northern Thailand at least since the late Paleogene and persisted into the modern vegetation of Thailand.[177]
  • A study on the environmental changes in the Lake Baikal region during the Marine Isotope Stage 3, as indicated by palynological data, is published by Shichi et al. (2023), who find that the dispersal of Homo sapiens into Baikal Siberia coincided with climate changes resulting in warm and humid conditions and vegetation changes.[178]
  • Evidence from the study of Last Interglacial pollen records across Europe, interpreted as indicating that European forests before the arrival of Homo sapiens included substantial open and light woodland elements, is presented by Pearce et al. (2023).[179]

Research

  • A study on the evolution of the phenotypic disparity of plants, based on data from extant and fossil taxa, is published by Clark et al. (2023), who find that the morphological distinctiveness of extant plant group is in part the result of extinction of fossil plants with intermediate morphologies, and report evidence of a pattern of episodic sharp increases of morphological diversity throughout the evolutionary history of plants.[180]
  • A study on the evolution of the complexity of vascular plant reproductive structures, indicating that major reproductive innovations were associated with increased integration through greater interactions among component parts, is published by Leslie & Mander (2023).[181]
  • Evidence from mercury concentration and isotopic signatures of marine sedimentary rock samples spanning from the Cambrian to Permian, interpreted as indicating that vascular plants were already widely distributed on land during the Ordovician-Silurian transition, is presented by Yuan et al. (2023).[182]
  • Evidence indicating that the knowledge of the early plant diversity from the latest Silurian–Early Devonian fossil record is at least partly affected by the variation of the rock record is presented by Capel et al. (2023).[183]
  • A study on early land plant diversity patterns across known paleogeographical units (Laurussia, Siberia, Kazakhstania, Gondwana) throughout the Silurian and Devonian periods is published by Capel et al. (2023)[184]
  • A study on the survivorship and migration dynamics of plants from the paleocontinent Angarida during the Frasnian-Tournaisian internal, as indicated by fossil record from the Siberian platform (Russia ), is published by Dowding, Akulov & Mashchuk (2023).[185]
  • Barrón et al. (2023) study the floral assemblages from the Cretaceous Maestrazgo Basin (Spain ), providing evidence of the existence of conifer woodlands and fern/angiosperm communities thriving in the mid‐Cretaceous Iberian Desert System, and report that the studied assemblages can generally be related to others from Europe and North America, but also included plants that were typical for northern Gondwana.[186]
  • A study on the fossil material of plants from the Cenomanian deposits of the Western Desert (Egypt) is published by El Atfy et al. (2023), who report the presence of five main vegetation types, and interpret the studied fossils as indicative of an overall warm and humid climate, punctuated by repeated phases of drier conditions.[187]
  • Moreau & Néraudeau (2023) describe an assemblage of Cenomanian plants from a new paleontological site La Gripperie-Saint-Symphorien (Charente-Maritime, France ), which (unlike most of Albian-Cenomanian coastal floras from the Aquitaine Basin) is dominated by angiosperms.[188]
  • A study on the mid-Eocene vegetation in the southern Central Andes, based on spore-pollen record from the Casa Grande Formation (Jujuy, Argentina), is published by Tapia et al. (2023), who interpret their findings as indicative of a plant community with no close analogue in the modern South American vegetation, as well as indicative of subtropical or tropical conditions and frost-free winters.[189]
  • Description of fossil wood from the Brown Sands and Flat Sands localities in the Pliocene Usno Formation (Lower Omo valley, Ethiopia) is published by Jolly-Saad & Bonnefille (2023), who report that the studied assemblages strongly differ from other Miocene and Pliocene wood assemblages from Ethiopia, and interpret them as indicative of a seasonal climate and more humid climatic conditions compared to the present, but also as indicative of instability of climatic and environmental conditions, with significant changes in the composition of the tree cover during the time of existence of Australopithecus afarensis.[190]
  • A study on changes in functional diversity of plants from southeast Australia during the last 12,000 years, inferred from long-term pollen records, is published by Adeleye et al. (2023).[191]
  • The oldest flower and seed fossils of the wind-pollinated besom heaths, Erica sect. Chlorocodon, were found in Madeira Island within a 1.3 million-year-old fossil deposit.[192]

References

  1. 1.0 1.1 1.2 Khosla, A.; Verma, O.; Kania, S.; Lucas, S. (2023). "Indian Late Cretaceous-Early Palaeocene Deccan Microbiota from the Intertrappean Beds of the Chhindwara District, Madhya Pradesh and Their Systematic Palaeontology". Microbiota from the Late Cretaceous-Early Palaeocene Boundary Transition in the Deccan Intertrappean Beds of Central India. Topics in Geobiology. 54. Springer. pp. 77–205. doi:10.1007/978-3-031-28855-5_4. ISBN 978-3-031-28854-8. 
  2. Xing, Y.; Li, S.; Song, B.; Jiang, G.; Wei, Y.; Han, F.; Zhang, K. (2023). "Middle to late Eocene charophytes from the Gaize Basin in central Tibet". Review of Palaeobotany and Palynology 321: 105024. doi:10.1016/j.revpalbo.2023.105024. 
  3. 3.0 3.1 3.2 3.3 Bucur, I. I.; Enos, P.; Minzoni, M. (2023). "Middle Triassic calcareous algae and microproblematica from south China". Micropaleontology 69 (1): 61–102. doi:10.47894/mpal.69.1.02. Bibcode2023MiPal..69...61B. 
  4. Maloney, K. M.; Maverick, D. P.; Schiffbauer, J. D.; Halverson, G. P.; Xiao, S.; Laflamme, M. (2023). "Systematic paleontology of macroalgal fossils from the Tonian Mackenzie Mountains Supergroup". Journal of Paleontology 97 (2): 499–515. doi:10.1017/jpa.2023.4. Bibcode2023JPal...97..499M. 
  5. 5.0 5.1 Kröger, B.; Tinn, O.; Rikkinen, J.; Jolis, E. M.; Butcher, A. R.; Toom, U.; Hints, O. (2023). "Noncalcified dasyclad algae from the Vasalemma Formation, late Sandbian (Late Ordovician) of Estonia". Review of Palaeobotany and Palynology: 104970. doi:10.1016/j.revpalbo.2023.104970. 
  6. Kolosov, P. N. (2023). "Palaeoulvaria green algae of the Vendian (Ediacaran) Berezovsky Trough (south of the Siberian Platform)". Paleontological Journal 57 (2): 231–234. doi:10.1134/S0031030123020090. https://elibrary.ru/item.asp?id=50434963. 
  7. 7.0 7.1 7.2 Perez Loinaze, V. S.; Vera, E. I.; Moyano-Paz, D.; Coronel, M. D.; Manabe, M.; Tsuihiji, T.; Novas, F. E. (2023). "Maastrichtian palynological assemblages from the Chorrillo Formation, Patagonia, Argentina". Review of Palaeobotany and Palynology 314: 104893. doi:10.1016/j.revpalbo.2023.104893. Bibcode2023RPaPa.31404893P. 
  8. Skompski, S.; Kozłowska, A.; Kozłowski, W.; Łuczyński, P. (2023). "Coexistence of algae and a graptolite-like problematicum: a case study from the late Silurian of Podolia (Ukraine)". Acta Geologica Polonica. doi:10.24425/agp.2022.143599. https://geojournals.pgi.gov.pl/agp/article/view/33659. 
  9. LoDuca, S. T. (2024). "Reinterpretation of Voronocladus from the Silurian of Ukraine as a bryopsidalean alga (Chlorophyta): The outlines of a major early Paleozoic macroalgal radiation begin to come into focus". Review of Palaeobotany and Palynology: 105064. doi:10.1016/j.revpalbo.2024.105064. 
  10. Harvey, T. H. P. (2023). "Colonial green algae in the Cambrian plankton". Proceedings of the Royal Society B: Biological Sciences 290 (2009): 20231882. doi:10.1098/rspb.2023.1882. PMID 37876191. 
  11. Yang, J.; Lan, T.; Zhang, X.; Smith, M. R. (2023). "Protomelission is an early dasyclad alga and not a Cambrian bryozoan". Nature 615 (7952): 468–471. doi:10.1038/s41586-023-05775-5. PMID 36890226. Bibcode2023Natur.615..468Y. 
  12. Xiang, K.; Yin, Z.; Liu, W.; Zhao, F.; Zhu, M. (2023). "Early Cambrian Cambroclavus is a scleritomous eumetazoan unrelated to bryozoan or dasyclad algae". Geology. doi:10.1130/G51663.1. 
  13. Spiekermann, R.; Jasper, A.; Pozzebon-Silva, Â.; Carniere, J. S.; Benício, J. R. W.; Guerra-Sommer, M.; Uhl, D. (2023). "Small but not trivial: Nothostigma sepeensis sp. nov., a lycopsid from the Cisuralian (early Permian) of the Paraná Basin, Brazil". Journal of South American Earth Sciences 122: 104188. doi:10.1016/j.jsames.2022.104188. Bibcode2023JSAES.12204188S. 
  14. Rothwell, G. W.; Stockey, R. A (2023). "Anatomically preserved early Cretaceous lycophyte shoots; enriching the paleontological record of Lycopodiales and Selaginellales". Acta Palaeobotanica 63 (2): 119–128. doi:10.35535/acpa-2023-0009. https://acpa.botany.pl/Anatomically-preserved-early-Cretaceous-lycophyte-shoots-enriching-the-paleontological,174250,0,2.html. 
  15. 15.0 15.1 Bek, J.; Pšenička, J.; Drábková, J.; Zhou, W.-M.; Wang, J. (2023). "Thomasites gen. nov. a new herbaceous lycophyte and its spores from late Duckmantian of the Radnice Basin, Czech Republic and palynological grouping of Palaeozoic herbaceous lycophytes". Review of Palaeobotany and Palynology 310: 104842. doi:10.1016/j.revpalbo.2023.104842. Bibcode2023RPaPa.31004842B. 
  16. Cichan, M. A. (1985). "Vascular cambium and wood development in Carboniferous plants. I. Lepidodendrales". American Journal of Botany 72 (8): 1163–1176. 
  17. D'Antonio, M. P. (2023). "Atypical tracheid organization in proximal wood of late Palaeozoic Sigillaria approximata Fontaine et White (Lycopsida)". Botanical Journal of the Linnean Society. doi:10.1093/botlinnean/boad028. 
  18. Turner, H.-A.; Humpage, M.; Kerp, H.; Hetherington, A. J. (2023). "Leaves and sporangia developed in rare non-Fibonacci spirals in early leafy plants". Science 380 (6650): 1188–1192. doi:10.1126/science.adg4014. PMID 37319203. 
  19. Zhou, W.; Pšenička, J.; Bek, J.; Libertín, M.; Wang, S.; Wang, J. (2023). "A new species of Botryopteridium Doweld from the early Permian Wuda Tuff Flora and its evolutionary significance". Review of Palaeobotany and Palynology 311: 104849. doi:10.1016/j.revpalbo.2023.104849. Bibcode2023RPaPa.31104849Z. 
  20. Fernández, J. A.; Césari, S. N. (2023). "Equisetaleans from the Bajo de Veliz Formation (Gzhelian-Asselian): a new key in the evolution of Gondwanan reproductive structures". Historical Biology: 1–15. doi:10.1080/08912963.2023.2228331. 
  21. Pšenička, J.; Votočková Frojdová, J.; Bek, J.; Zodrow, E. L.; Zhou, W.-M.; Wang, J.; Li, D.-D.; Feng, Z. et al. (2023). "A new marattialean fern Diplazites campbellii sp. nov. and its in situ spores from the Pennsylvanian of the Sydney Coalfield, Nova Scotia, Canada". Review of Palaeobotany and Palynology 312: 104850. doi:10.1016/j.revpalbo.2023.104850. Bibcode2023RPaPa.31204850P. 
  22. 22.0 22.1 Kerp, H.; Krause, K. K.; Abu Hamad, A.; Bomfleur, B. (2023). "Early Marattiaceae from the late Permian Umm Irna Formation, Jordan". Review of Palaeobotany and Palynology: 105015. doi:10.1016/j.revpalbo.2023.105015. 
  23. Ren, W. X.; Wu, G. T.; Han, L.; Hua, Y. F.; Sun, B. N. (2023). "New species of fossil Dryopterites from the Lower Cretaceous in the Zhongkouzi Basin, Beishan area, Northwest China, and its geological significance". Historical Biology 35 (1): 84–91. doi:10.1080/08912963.2021.2022135. 
  24. 24.0 24.1 Cao, Z.-D.; Zhang, P.; Zhang, S.-H.; Yang, Y.-H.; Chen, J.-Y.; Liu, L.-M.; Li, X.-C.; Xie, S.-P. (2023). "Miocene Equisetum tubers from the Wulan Basin, Northeast Qinghai-Tibetan Plateau and their paleoecological significance". Palaeoworld. doi:10.1016/j.palwor.2022.12.012. 
  25. Kundu, S.; Hazra, T.; Chakraborty, T.; Bera, S.; Khan, M. A. (2023). "Evidence of the oldest extant vascular plant (horsetails) from the Indian Cenozoic". Plant Diversity. doi:10.1016/j.pld.2023.01.004. 
  26. Yañez, A.; Escapa, I. H.; Choo, T. (2023). "Fertile Goeppertella from the Jurassic of Patagonia: mosaic evolution in the Dipteridaceae-Matoniaceae lineage". AoB Plants 15 (4): plad007. doi:10.1093/aobpla/plad007. PMID 37426174. 
  27. Long, X.; Peng, Y.; Zhang, H.; Fan, Y.; Shi, C.; Wang, S. (2023). "Microlepia burmasia sp. nov., a new fern species from mid-Cretaceous Kachin amber of northern Myanmar (Dennstaedtiaceae, Polypodiales)". Cretaceous Research 143: 105417. doi:10.1016/j.cretres.2022.105417. Bibcode2023CrRes.14305417L. 
  28. Kundu, S.; Hazra, T.; Chakraborty, T.; Bera, S.; Taral, S.; Khan, M. A. (2023). "First Cenozoic macrofossil record of Polypodiaceae from India, and its biogeographic implications". International Journal of Plant Sciences 185 (1): 71–88. doi:10.1086/727457. 
  29. Long, X.; Peng, Y.; Feng, Q.; Engel, M. S.; Shi, C.; Wang, S. (2023). "A new fossil fern of the Dryopteridaceae (Polypodiales) from the mid-Cretaceous Kachin amber". Palaeobiodiversity and Palaeoenvironments 103 (3): 489–494. doi:10.1007/s12549-023-00572-4. 
  30. Guo, Y.; Zhou, Y.; Pšenička, J.; Bek, J.; Votočková Frojdová, J.; Feng, Z. (2023). "Szea yunnanensis sp. nov., a new leptosporangiate fern from the Lopingian of Southwest China". Review of Palaeobotany and Palynology: 105022. doi:10.1016/j.revpalbo.2023.105022. 
  31. Walker, Z.; Rothwell, G. W.; Stockey, R. A. (2023). "Fossil evidence for sporeling development of a Mesozoic osmundaceous fern". American Journal of Botany 110 (8): e16210. doi:10.1002/ajb2.16210. PMID 37534408. 
  32. Li, Y.; Ebihara, A.; Nosova, N.; Tan, Z.-Z.; Cui, Y.-M. (2023). "First Fossil Record of Trichomanes sensu lato (Hymenophyllaceae) from the Mid-Cretaceous Kachin Amber, Myanmar". Life 13 (8): 1709. doi:10.3390/life13081709. PMID 37629566. 
  33. Tripp, M.; Schwark, L.; Brocks, J. J.; Mayer, P.; Whiteside, J. H.; Rickard, W.; Greenwood, P. F.; Grice, K. (2023). "Rapid encapsulation of true ferns and arborane/fernane compounds fossilised in siderite concretions supports analytical distinction of plant fossils". Scientific Reports 13 (1): 19851. doi:10.1038/s41598-023-47009-8. PMID 37963973. 
  34. Blanco-Moreno, C.; Buscalioni, Á. D. (2023). "Revision of the Barremian fern Coniopteris laciniata from Las Hoyas and El Montsec (Spain): Highlighting its importance in the evolution of vegetation during the Early Cretaceous". Taxon 72 (3): 625–637. doi:10.1002/tax.12888. 
  35. 35.0 35.1 35.2 Martínez, L. C. A.; Leppe, M.; Manríquez, L. M. E.; Pino, J. P.; Trevisan, C.; Manfroi, J.; Mansilla, H. (2023). "A unique Late Cretaceous fossil wood assemblage from Chilean Patagonia provides clues to a high-latitude continental environment". Papers in Palaeontology 9 (6): e1536. doi:10.1002/spp2.1536. 
  36. 36.0 36.1 Frolov, A.; Mashchuk, I. (2023). "Two new Species of Eretmophyllum Thomas (Ginkgoales) from the Jurassic of the Eastern Siberia (Russia)". Acta Geologica Sinica (English Edition) 97 (4): 1014–1025. doi:10.1111/1755-6724.15088. 
  37. Li, Q.; Niu, B.; Liu, Y. C.; Jia, H.; Li, Y.; Xu, L.; Quan, C. (2023). "Analysis of leaf economics sheds light on the heterophylly and ecological strategies of Paleocene Ginkgo leaves from Henan Province, China". Palaeogeography, Palaeoclimatology, Palaeoecology: 111816. doi:10.1016/j.palaeo.2023.111816. 
  38. 38.0 38.1 Nosova, N.; Kostina, E.; Afonin, M. (2023). "Ovule-bearing structures of Karkenia Archangelsky and associated leaves of Sphenobaiera Florin from the Lower Cretaceous of Mongolia". Review of Palaeobotany and Palynology 315: 104907. doi:10.1016/j.revpalbo.2023.104907. Bibcode2023RPaPa.31504907N. 
  39. Kvaček, J.; Mendes, M. M.; Tekleva, M. (2023). "A new cheirolepidiaceous pollen cone Classostrobus archangelskyi with in situ pollen from the Lower Cretaceous of Figueira da Foz Formation, central-western mainland Portugal". Review of Palaeobotany and Palynology: 104951. doi:10.1016/j.revpalbo.2023.104951. 
  40. Jin, P.; Zhang, M.; Du, B.; Li, A.; Sun, B. (2023). "A new species of Pararaucaria from the Lower Cretaceous of Shandong province (Eastern China): Insights into the Evolution of the Cheirolepidiaceae cone". Cretaceous Research 146: 105475. doi:10.1016/j.cretres.2023.105475. Bibcode2023CrRes.14605475J. 
  41. Mendes, M. M.; Kvaček, J.; Doyle, J. A. (2023). "Pseudofrenelopsis dinisii, a new species of the extinct conifer family Cheirolepidiaceae from the probable lower Hauterivian (Cretaceous) of western Portugal". Review of Palaeobotany and Palynology 315: 104905. doi:10.1016/j.revpalbo.2023.104905. Bibcode2023RPaPa.31504905M. 
  42. Kvaček, J.; Mendes, M.M. (2023). "A new species of the cheirolepidiaceous conifer Pseudofrenelopsis from the Lower Cretaceous of Figueira da Foz Formation, Portugal". Review of Palaeobotany and Palynology 309 (104821): 104821. doi:10.1016/j.revpalbo.2022.104821. 
  43. Correia, P.; Pereira, S.; Šimůnek, Z.; Cleal, C. J. (2023). "Florinanthus bussacensis sp. nov., a new cordaitalean cone from the Upper Pennsylvanian of Portugal". Review of Palaeobotany and Palynology 316: 104942. doi:10.1016/j.revpalbo.2023.104942. 
  44. Bureš, J.; Šimůnek, Z.; Pšenička, J.; Bek, J.; Drábková, J.; Bruthansová, J. (2023). "Fertile cordaitalean leafy branch with in situ pollen from the volcanic Whetstone Horizon (Radnice Member, early Moscovian, Plzeň Basin, Czech Republic)". Review of Palaeobotany and Palynology 315: 104903. doi:10.1016/j.revpalbo.2023.104903. Bibcode2023RPaPa.31504903B. 
  45. Guo, L.-Y.; Xiao, L.; Ji, D.-S.; Li, X.-C.; Luo, F.; Guo, J.-F.; Sun, N.; Wang, M.-T. et al. (2023). "Juniperus L. (Cupressaceae) from the Miocene of Chifeng, Inner Mongolia: the earliest macrofossil of sect. Sabina in East Asia". Historical Biology: 1–13. doi:10.1080/08912963.2023.2248162. 
  46. Rothwell, G. W.; Stockey, R. A.; Smith, S. (2023). "Evolutionary diversification of taiwanioid conifers illuminated by a new species from the Upper Cretaceous of Alaska". International Journal of Plant Sciences 184 (8): 628–639. doi:10.1086/726082. 
  47. 47.0 47.1 47.2 47.3 47.4 47.5 47.6 Wheeler, E. A.; Manchester, S. R.; Baas, P. (2023). "A late Eocene wood assemblage from the Crooked River Basin, Oregon, USA". PaleoBios 40 (14): 1–55. doi:10.5070/P9401462457. 
  48. Zhu, Y.; Li, Y.; Tian, N.; Wang, Y.; Xie, A.; Zhang, L.; An, P.; Wu, Z. (2023). "A new species of Keteleeria (Pinaceae) from the Lower Cretaceous of Inner Mongolia, Northeast China, and its palaeogeographic and palaeoclimatic implications". Cretaceous Research: 105805. doi:10.1016/j.cretres.2023.105805. 
  49. Bazhenova, N. V.; Bazhenov, A. V.; Tekleva, M. V.; Resvyi, A. S. (2023). "New representative of Pinus L. from Jurassic deposits of Belgorod Region, Russia". Paleontological Journal 57 (1): 102–119. doi:10.1134/S0031030123010033. https://elibrary.ru/item.asp?id=50406209. 
  50. Li, Y.; Gee, C. T.; Tan, Z.-Z.; Zhu, Y.-B.; Yi, T.-M.; Li, C.-S. (2023). "Exceptionally well-preserved seed cones of a new fossil species of hemlock, Tsuga weichangensis sp. nov. (Pinaceae), from the Lower Miocene of Hebei Province, North China". Journal of Systematics and Evolution: jse.12952. doi:10.1111/jse.12952. https://onlinelibrary.wiley.com/doi/10.1111/jse.12952. 
  51. 51.0 51.1 Andruchow-Colombo, A.; Rossetto-Harris, G.; Brodribb, T. J.; Gandolfo, M. A.; Wilf, P. (2023). "A new fossil Acmopyle with accessory transfusion tissue and potential reproductive buds: Direct evidence for ever-wet rainforests in Eocene Patagonia". American Journal of Botany 110 (8): e16221. doi:10.1002/ajb2.16221. PMID 37598386. 
  52. 52.0 52.1 52.2 52.3 52.4 52.5 Pujana, R. R.; Bostelmann, J. E.; Ugalde, R. A.; Riquelme, M. P.; Torres, T. (2022). "Fossil woods from the Pato Raro Heights, Patagonia National Park, Aysén, Chile: A new paleobotanical assemblage at the Oligocene climate transition". Review of Palaeobotany and Palynology 309: 104814. doi:10.1016/j.revpalbo.2022.104814. 
  53. Wang, X.; Yang, Y.; Hua, Y.; Sun, B.; Miao, Y. (2022). "Hexicladia, a new genus of the Cisuralian conifer from Hexi Corridor, China". Review of Palaeobotany and Palynology 308: 104789. doi:10.1016/j.revpalbo.2022.104789. 
  54. Xie, A.; Wang, Y.; Tian, N.; Uhl, D. (2023). "A new extinct conifer Brachyoxylon from the Middle Jurassic in southern China: Wood anatomy, leaf phenology, and paleoclimate". Review of Palaeobotany and Palynology 317: 104945. doi:10.1016/j.revpalbo.2023.104945. 
  55. 55.0 55.1 Morales-Toledo, J.; Cevallos-Ferriz, S. R. S. (2023). "Is biodiversity promoted in rift-associated basins? Evidence from Middle Jurassic conifers from the Otlaltepec Formation in Puebla, Mexico". Review of Palaeobotany and Palynology 318: 104952. doi:10.1016/j.revpalbo.2023.104952. 
  56. Nosova, N.; Lyubarova, A. (2023). "First data on coniferous leaves from the Middle Jurassic of the Belgorod Region, Russia". Review of Palaeobotany and Palynology 317: 104949. doi:10.1016/j.revpalbo.2023.104949. 
  57. Wang, K.; Huang, X.; Yang, W.; Wang, J.; Wan, M. (2023). "A new gymnospermous stem from the Moscovian (Carboniferous) of North China, and its palaeoecological significance for the Cathaysian Flora at the early evolutionary stage". Review of Palaeobotany and Palynology 311: 104858. doi:10.1016/j.revpalbo.2023.104858. Bibcode2023RPaPa.31104858W. 
  58. Cai, Y.-F.; Zhang, H.; Feng, Z.; Zhang, Y.-C.; Yuan, D.-X.; Xu, H.-P.; Byambajav, U.; Yarinpuil, A. et al. (2023). "Secrospiroxylon tolgoyensis gen. nov. et sp. nov., a unique coniferous stem from the uppermost Permian of the South Gobi Basin, Mongolia, and its palaeoclimatic, palaeoecophysiological, and palaeoecological implications". Palaeontographica Abteilung B 305 (1–4): 93–119. doi:10.1127/palb/2023/0080. 
  59. Gou, X.-D.; Sui, Q.; Yang, J.-Y.; Wei, H.-B.; Zhou, Y.; Feng, Z. (2023). "A new conifer stem, Yiwupitys elegans from the Yiwu Jurassic Forest, Hami, Xinjiang, Northwest China". Review of Palaeobotany and Palynology: 105003. doi:10.1016/j.revpalbo.2023.105003. 
  60. Trümper, S.; Rößler, R.; Morelli, C.; Krainer, K.; Karbacher, S.; Vogel, B.; Antonelli, M.; Sacco, E. et al. (2023). "A fossil forest from Italy reveals that wetland conifers thrived in Early Permian Peri-Tethyan Pangea". PALAIOS 38 (10): 407–435. doi:10.2110/palo.2023.015. 
  61. Slodownik, M. A.; Escapa, I.; Mays, C.; Jordan, G. J.; Carpenter, R. J.; Hill, R. S. (2023). "Araucarioides: A Polar Lineage of Araucariaceae with New Paleogene Fossils from Tasmania, Australia". International Journal of Plant Sciences 184 (8): 640–658. doi:10.1086/726183. 
  62. Andruchow-Colombo, A.; Escapa, I. H.; Aagesen, L.; Matsunaga, K. K. S. (2023). "In search of lost time: tracing the fossil diversity of Podocarpaceae through the ages". Botanical Journal of the Linnean Society. doi:10.1093/botlinnean/boad027. 
  63. Stockey, R. A.; Rothwell, G. W.; Beard, G.; Gemmell, J. (2023). "Refining Our Understanding of Late Cretaceous-Paleogene Evolution within the Monocot Family Araceae: Appianospadix bogneri gen. et sp. nov.". International Journal of Plant Sciences 184 (6): 470–484. doi:10.1086/725163. 
  64. Hernández-Sandoval, L.; Cevallos-Ferriz, S. R. S.; Hernández-Damián, A. L. (2023). "Nichima gen. nov. (Alismataceae) based on reproductive structures from the Oligocene-Miocene of Mexico". American Journal of Botany 110 (10): e16231. doi:10.1002/ajb2.16231. 
  65. Hamersma, A.; Herrera, F.; Matsunaga, K.; Manchester, S. R. (2023). "Palm fruits from the Oligocene of west coastal Peru". Review of Palaeobotany and Palynology 320: 105018. doi:10.1016/j.revpalbo.2023.105018. 
  66. 66.0 66.1 66.2 Huegele, I. B.; Correa Narvaez, J. E. (2023). "Revisiting the iconic Macginitiea plant and its implications for biogeography, basilaminar lobe development, and evolution in Platanaceae". International Journal of Plant Sciences. doi:10.1086/728411. 
  67. Carpenter, R. J.; Rozefelds, A. C. (2023). "Leaf fossils show a 40-million-year history for the Australian tropical rainforest genus Megahertzia (Proteaceae)". Australian Systematic Botany 36 (4): 312–321. doi:10.1071/SB23005. 
  68. Gobo, W. V.; Kunzmann, L.; Iannuzzi, R.; Santos, T. B.; Conceição, D. M.; Nascimento, D. R.; Silva Filho, W. F.; Bachelier, J. B. et al. (2023). "A new remarkable Early Cretaceous nelumbonaceous fossil bridges the gap between herbaceous aquatic and woody protealeans". Scientific Reports 13 (1): 8978. doi:10.1038/s41598-023-33356-z. PMID 37268714. Bibcode2023NatSR..13.8978G. 
  69. Kara, E.; Bardin, J.; De Franceschi, D.; Del Rio, C. (2023). "Fossil endocarps of Menispermaceae from the late Paleocene of Paris Basin, France". Journal of Systematics and Evolution. doi:10.1111/jse.13033. 
  70. Lamont, B. B.; He, T.; Cowling, R. M. (2023). "Fossil pollen resolves origin of the South African Proteaceae as transcontinental not transoceanic". Annals of Botany. doi:10.1093/aob/mcad055. PMID 37076271. 
  71. Bhatia, H.; Srivastava, G.; Mehrotra, R. C. (2023). "Cordiaceae wood from the Miocene sediments of northeast India and its phytogeographical significance". IAWA Journal: 1–13. doi:10.1163/22941932-bja10139. 
  72. Sadowski, E.-M.; Hofmann, C.-C. (2023). "The largest amber-preserved flower revisited". Scientific Reports 13 (1): 17. doi:10.1038/s41598-022-24549-z. PMID 36635320. Bibcode2023NatSR..13...17S. 
  73. Poore, C.; Jud, N. A.; Gandolfo, M. A. (2023). "Fossil fruits from the early Paleocene of Patagonia, Argentina reveal west Gondwanan history of Icacinaceae". Review of Palaeobotany and Palynology 317: 104940. doi:10.1016/j.revpalbo.2023.104940. 
  74. 74.0 74.1 Akkemik, Ü.; Toprak, Ö.; Mantzouka, D.; Çelik, H. (2023). "A Mediterranean woody species composition from Late Miocene-Early Pliocene deposits of northeastern Turkey with newly described fossil-taxa palaeoclimatically evaluated". Review of Palaeobotany and Palynology 316: 104916. doi:10.1016/j.revpalbo.2023.104916. 
  75. 75.0 75.1 Deanna, R.; Martínez, C.; Manchester, S.; Wilf, P.; Campos, A.; Knapp, S.; Chiarini, F. E.; Barboza, G. E. et al. (2023). "Fossil berries reveal global radiation of the nightshade family by the early Cenozoic". New Phytologist 238 (6): 2685–2697. doi:10.1111/nph.18904. PMID 36960534. 
  76. 76.0 76.1 Correa Narvaez, J. E.; Allen, S. E.; Huegele, I. B.; Manchester, S. R. (2023). "Fossil leaves and fruits of Tetramelaceae (Curcurbitales) from the Eocene of the Rocky Mountain region, USA, and their biogeographic significance". International Journal of Plant Sciences 184 (3): 177–200. doi:10.1086/724018. 
  77. Cockerell, T.D.A. (1925). "Plant and insect fossils from the Green River Eocene of Colorado.". Proceedings of the U.S. National Museum 66 (19): 1–13. doi:10.5479/si.00963801.66-2556.1. 
  78. 78.0 78.1 LaMotte, R.S. (1952). Catalogue of the Cenozoic plants of North America through 1950. Geological Society of America Memoirs. 51. Geological Society of America. doi:10.1130/MEM51. 
  79. Brown, R. W. (1929). "Additions to the flora of the Green River formation". U.S. Geological Survey Professional Paper 154: 279–292. doi:10.3133/pp154J. 
  80. Wang, Z.X.; Sun, B.N.; Wu, X.T.; Yin, S.X. (2023). "A new pod record of Acacia (Leguminosae) from the Fotan Group, middle Miocene, Southeast China". Review of Palaeobotany and Palynology 317: 104966. doi:10.1016/j.revpalbo.2023.104966. 
  81. Nguyen, H. B.; Huang, J.; Van Do, T.; Srivastava, G.; Nguyen, H. M. T.; Li, S.-F.; Chen, L.-L.; Nguyen, M. T. et al. (2022). "Pod fossils of Albizia (Fabaceae: Caesalpinioideae) from the late Miocene of northern Vietnam and their phytogeographic history". Review of Palaeobotany and Palynology 308: 104801. doi:10.1016/j.revpalbo.2022.104801. 
  82. Pan, A. D.; Jacobs, B. F.; Currano, E. D.; de la Estrella, M.; Herendeen, P. S.; van der Burgt, X. M. (2023). "A fossil Anthonotha (Leguminosae: Detarioideae: Amherstieae) species from the Early Miocene (21.73 Ma) of Ethiopia". International Journal of Plant Sciences 184 (7): 541–548. doi:10.1086/725429. 
  83. Gao, Y.; Song, A.; Deng, W.-Y.-D.; Chen, L.-L.; Liu, J.; Li, W.-C.; Srivastava, G.; Spicer, R. A. et al. (2023). "The oldest fossil record of Bauhinia s.s. (Fabaceae) from the Tibetan Plateau sheds light on its evolutionary and biogeographic implications". Journal of Systematic Palaeontology 21 (1): 2244495. doi:10.1080/14772019.2023.2244495. 
  84. Pan, A. D.; Jacobs, B. F.; Bush, R. T.; de la Estrella, M.; Grímsson, F.; Herendeen, P. S.; van der Burgt, X. M.; Currano, E. D. (2023). "First evidence of a monodominant (Englerodendron, Amherstieae, Detarioideae, Leguminosae) tropical moist forest from the early Miocene (21.73 Ma) of Ethiopia". PLOS ONE 18 (1): e0279491. doi:10.1371/journal.pone.0279491. PMID 36630378. Bibcode2023PLoSO..1879491P. 
  85. Estrada-Ruiz, E.; Gómez-Acevedo, G.-A. (2023). "New species fossil of Entada genus (Fabaceae, Caesalpinioideae, mimosoid clade) from the Miocene amber of Chiapas, Mexico". Journal of South American Earth Sciences: 104499. doi:10.1016/j.jsames.2023.104499. 
  86. Dutra, T. L.; Martínez, L. C. A.; Wilberger, T. (2023). "A new fossil wood of Detarioideae from the Boa Vista Basin, Upper Oligocene (Northeast Brazil): Comparisons with living and fossil Leguminosae Subfamilies. Paleoclimate and biogeography inferences for the Leguminosae story". Review of Palaeobotany and Palynology 317: 104968. doi:10.1016/j.revpalbo.2023.104968. 
  87. Song, H.; Huang, L.; Xiang, H.; Quan, C.; Jin, J. (2023). "First reliable Miocene fossil winged fruits record of Engelhardia in Asia through anatomical investigation". iScience 26 (6): 106867. doi:10.1016/j.isci.2023.106867. PMID 37260748. 
  88. Whang, S. S.; Hill, K. E.; Hill, R. S. (2023). "A new species of Gymnostoma (Casuarinaceae) present during the Neogene aridification of Southern Australia". Review of Palaeobotany and Palynology 312: 104873. doi:10.1016/j.revpalbo.2023.104873. Bibcode2023RPaPa.31204873W. 
  89. 89.0 89.1 Bhatia, H.; Srivastava, G.; Mehrotra, R. C. (2022). "Legumes from the Paleocene sediments of India and their ecological significance". Plant Diversity 45 (2): 199–210. doi:10.1016/j.pld.2022.08.001. PMID 37069925. 
  90. Bennike, O.; Colgan, W.; Hedenäs, L.; Heiri, O.; Lemdahl, G.; Wiberg-Larsen, P.; Ribeiro, S.; Pronzato, R. et al. (2022). "An Early Pleistocene interglacial deposit at Pingorsuit, North-West Greenland". Boreas 52 (1): 27–41. doi:10.1111/bor.12596. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-116450. 
  91. 91.0 91.1 Wilf, P.; Iglesias, A.; Gandolfo, M. A. (2023). "The first Gondwanan Euphorbiaceae fossils reset the biogeographic history of the Macaranga-Mallotus clade". American Journal of Botany 110 (5): e16169. doi:10.1002/ajb2.16169. PMID 37128981. 
  92. Hermsen, E. J. (2023). "Pliocene seeds of Passiflora subgenus Decaloba (Gray Fossil Site, Tennessee) and the impact of the fossil record on understanding the diversification and biogeography of Passiflora". American Journal of Botany 110 (3): e16137. doi:10.1002/ajb2.16137. PMID 36735676. 
  93. Zheng, Q.D.; Dong, J.L.; Zheng, D.Y.; Sun, B.N. (2023). "A new species of Trigonostemon Blume (Euphorbiaceae) from the middle Miocene of Fujian, Southeast China and its paleoclimatic and paleoecological significance". Acta Palaeontologica Sinica 62 (3): 398–409. doi:10.19800/j.cnki.aps.2022044. http://gswxb.cnjournals.cn/gswxb/article/abstract/20230305. 
  94. Hazra, T.; Bera, S.; Khan, M. A. (2023). "First Fossil Mallow Flower from Asia". International Journal of Plant Sciences 184 (2): 106–121. doi:10.1086/723603. 
  95. Ruiz, D. P.; Pujana, R. R.; Brea, M. (2023). "Paleocene fossil wood from Patagonia with storied rays and comments on the fossil record of this character". IAWA Journal: 1–20. doi:10.1163/22941932-bja10129. 
  96. Zhao, Y.; Song, A.; Deng, W.; Huang, J.; Su, T. (2023). "Fossil leaves of Pterospermum (Malvaceae) from the Early Miocene of Jinggu, Yunnan Province with its paleoecological and phytogeographical implications". Quaternary Sciences 43 (3): 884–898. doi:10.11928/j.issn.1001-7410.2023.03.16. 
  97. 97.0 97.1 97.2 Ramos, R. S.; Brea, M.; Kröhling, D. M.; Patterer, N. I. (2023). "Pleistocene subtribe Terminaliinae (Combretaceae) fossils in the middle-lower Uruguay river basin, South America". Review of Palaeobotany and Palynology 311: 104857. doi:10.1016/j.revpalbo.2023.104857. Bibcode2023RPaPa.31104857R. 
  98. Bhatia, H.; Srivastava, G.; Mehrotra, R. C. (2023). "Duabanga (Lythraceae) from the Oligocene of India and its climatic and phytogeographic significance". Geobios 78: 1–13. doi:10.1016/j.geobios.2023.05.003. 
  99. Martínez, C.; Pérez-Lara, D. K.; Avellaneda-Jiménez, D. S.; Caballero-Rodríguez, D.; Rodríguez-Reyes, O.; Crowley, J. L.; Jaramillo, C. (2023). "An early Miocene (Aquitanian) mangrove fossil forest buried by a volcanic lahar at Barro Colorado Island, Panama". Palaeogeography, Palaeoclimatology, Palaeoecology: 112006. doi:10.1016/j.palaeo.2023.112006. 
  100. Wu, X.-T.; Wang, Z.-X.; Shu, J.-W.; Yin, S.-X.; Mao, L.-M.; Shi, G.-L. (2023). "A new Trapa from the middle Miocene of Zhangpu, Fujian, southeastern China". Palaeoworld. doi:10.1016/j.palwor.2023.02.008. 
  101. Hernández-Damián, A. L.; Rubalcava-Knoth, M. A.; Cevallos Ferriz, S. R. S. (2023). "Aphananthe Planch. (Cannabaceae) flower preserved in the Mexican amber". Acta Palaeobotanica 63 (1): 54–64. doi:10.35535/acpa-2023-0004. 
  102. Patel, R.; Rana, R. S.; Ali, A.; Hazra, T.; Khan, M. A. (2023). "First buckthorn (Rhamnaceae) fossil flowers from India". Journal of Systematics and Evolution. doi:10.1111/jse.13024. 
  103. 103.0 103.1 103.2 Chandra, K.; Spicer, R. A.; Shukla, A.; Spicer, T.; Mehrotra, R. C.; Singh, A. K. (2023). "Paleogene Ficus leaves from India and their implications for fig evolution and diversification". American Journal of Botany 110 (3): e16145. doi:10.1002/ajb2.16145. PMID 36821420. 
  104. Centeno-González, N. K.; Porras-Múzquiz, H.; Estrada-Ruiz, E. (2023). "Nuevo género de hojas ovadas de Rhamnaceae de la Formación Olmos (Cretácico Superior) de Coahuila, México". Paleontología Mexicana 12 (1): 33–41. http://www.ojs-igl.unam.mx/index.php/Paleontologia/article/view/677. 
  105. Martinez Martinez, C. M. (2023). "New records of Moraceae from the upper Miocene of northeastern Argentina". Ameghiniana 60 (1): 78–96. doi:10.5710/AMGH.04.12.2022.3519. https://www.ameghiniana.org.ar/index.php/ameghiniana/article/view/3519. 
  106. 106.0 106.1 106.2 106.3 Denk, T.; Bouchal, J. M.; Güner, H. T.; Coiro, M.; Butzmann, R.; Pigg, K. B.; Tiffney, B. H. (2023). "Cenozoic migration of a desert plant lineage across the North Atlantic". New Phytologist 238 (6): 2668–2684. doi:10.1111/nph.18743. PMID 36651063. 
  107. Lu, P.; Zhang, J.-W.; Liang, X.-Q.; Li, H.-M.; Li, D.-L. (2023). "Ancestors of Ulmus parvifolia from late Miocene sediments in Yunnan, Southwest China and its future distribution". Review of Palaeobotany and Palynology 313: 104879. doi:10.1016/j.revpalbo.2023.104879. Bibcode2023RPaPa.31304879L. 
  108. 108.0 108.1 Kumar, S.; Manchester, S.; Judd, W.; Khan, M. (2023). "Earliest fossil record of Burseraceae from the Deccan Intertrappean Beds of Central India and its biogeographic implications". International Journal of Plant Sciences 184 (9): 696–714. doi:10.1086/726627. 
  109. 109.0 109.1 Rombola, C. F.; Pujana, R. R.; Ruiz, D. P.; Bellosi, E. S. (2023). "Angiosperm fossil woods from the Upper Cretaceous (Cardiel Formation) of Argentinean Patagonia". Botanical Journal of the Linnean Society. doi:10.1093/botlinnean/boad072. 
  110. 110.0 110.1 Beurel, S.; Bachelier, J. B.; Hammel, J. U.; Shi, G.-L.; Wu, X.-T.; Rühr, P. T.; Sadowski, E.-M. (2023). "Flower inclusions of Canarium (Burseraceae) from Miocene Zhangpu amber (China)". Palaeoworld. doi:10.1016/j.palwor.2023.02.006. 
  111. Del Rio, C.; Tosal, A.; Kara, E.; Manchester, S. R.; Herrera, F.; Collinson, M. E.; De Franceschi, D. (2023). "Fruits of Anacardiaceae from the Paleogene of the Paris Basin, France". International Journal of Plant Sciences 184 (3): 164–176. doi:10.1086/723841. 
  112. Manchester, S. R.; Kapgate, D. K.; Judd, W. S. (2023). "Burseraceae in the latest Cretaceous of India: Sahniocarpon Chitaley & Patil". International Journal of Plant Sciences. doi:10.1086/729091. 
  113. Chandra, K.; Shukla, A.; Mehrotra, R. C.; Bansal, M.; Prasad, V. (2023). "Fossil Mahogany from the Early Paleogene of India". Journal of the Geological Society of India 99 (1): 65–72. doi:10.1007/s12594-023-2268-2. 
  114. 114.0 114.1 Maslova, N. P.; Kodrul, T. M.; Kachkina, V. V.; Hofmann, C.-C.; Xu, S.-L.; Liu, X.-Y.; Jin, J.-H. (2023). "Evidence for the evolutionary history and diversity of fossil sweetgums: leaves and associated capitate reproductive structures of Liquidambar from the Eocene of Hainan Island, South China". Papers in Palaeontology 9 (6): e1540. doi:10.1002/spp2.1540. 
  115. Wu, X.-T.; Shu, J.-W.; Yin, S.-X.; Sadowski, E.-M.; Shi, G.-L. (2023). "Parrotia flower blooming in Miocene rainforest". Journal of Systematics and Evolution. doi:10.1111/jse.13001. 
  116. Tang, K. K.; Smith, S. Y.; Atkinson, B. A. (2023). "Winged Fruits of Friisifructus aligeri gen. et sp. nov. from the Late Cretaceous of Western North America". International Journal of Plant Sciences 184 (4): 271–281. doi:10.1086/724745. 
  117. Nishino, M.; Terada, K.; Uemura, K.; Ito, Y.; Yamada, T. (2023). "An exceptionally well-preserved monodominant fossil forest of Wataria from the lower Miocene of Japan". Scientific Reports 13 (1): 10172. doi:10.1038/s41598-023-37211-z. PMID 37349406. 
  118. 118.0 118.1 Čepičková, J.; Kvaček, J. (2022). "Fossil leaves of Cenomanian basal angiosperms from the Peruc-Korycany Formation, Czechia, central Europe". Review of Palaeobotany and Palynology 309: 104802. doi:10.1016/j.revpalbo.2022.104802. 
  119. Mahato, S.; Hazra, T.; More, S.; Khan, M. A. (2023). "Triplinerved cinnamon from the Siwalik (middle Miocene) of eastern Himalaya: Systematics, epifoliar fossil fungi, palaeoecology and biogeography". Geobios. doi:10.1016/j.geobios.2023.10.003. 
  120. Gentis, N.; Licht, A.; De Franceschi, D.; Win, Z.; Wa Aung, D.; Dupont-Nivet, G.; Boura, A. (2023). "First fossil woods and palm stems from the mid Paleocene of Myanmar and their implications for biogeography and wood anatomy". American Journal of Botany. doi:10.1002/ajb2.16259. PMID 38031479. 
  121. Manchester, S. R.; Judd, W. S.; Kodrul, T. (2023). "First recognition of the extinct eudicot genus Palibinia in North America: Leaves and fruits of Palibinia comptonifolia (R.W.Br.) comb. nov. from the Eocene of Utah and Colorado, USA". Journal of Systematics and Evolution. doi:10.1111/jse.13011. 
  122. Čepičková, J.; Kvaček, J. (2023). "Papillaephyllum, a new genus of angiosperm foliage from the Cenomanian of the Czech Republic". Review of Palaeobotany and Palynology 319: 104990. doi:10.1016/j.revpalbo.2023.104990. 
  123. 123.0 123.1 Smith, M. A.; Greenwalt, D. E.; Manchester, S. R. (2023). "Diverse fruits and seeds of the mid-Eocene Kishenehn Formation, northwestern Montana, USA, and their implications for biogeography". Fossil Imprint 79 (1): 37–88. doi:10.37520/fi.2023.004. http://fi.nm.cz/wp-content/uploads/2023/11/04_Smith.pdf. 
  124. Friis, E. M.; Crane, P. R.; Pedersen, K. R. (2023). "Multipartite Flowers with a Distinct Floral Cup and Multiovulate Carpels: An Early Cretaceous Angiosperm of Probable Lauralean Relationship". International Journal of Plant Sciences 184 (2): 87–105. doi:10.1086/723682. 
  125. Wang, X.; Diez, J. B.; Pole, M.; García-Ávila, M. (2023). "An Anatomically Preserved Cone-like Flower from the Lower Cretaceous of China". Life 13 (1): 129. doi:10.3390/life13010129. PMID 36676078. Bibcode2023Life...13..129W. 
  126. Pessoa, E. M.; Ribeiro, A. C.; Christenhuz, M. J. M.; Coan, A. I.; Jud, N. A. (2023). "Is Santaniella a ranuculid? Re-assessment of this enigmatic fossil angiosperm from the Lower Cretaceous (Aptian, Crato Konservat-Lagerstätte, Brazil) provides a new interpretation.". American Journal of Botany 110 (5): e16163. doi:10.1002/ajb2.16163. PMID 37014186. 
  127. Pessoa, E. M.; Ribeiro, A. C.; Christenhusz, M. J. M. (2023). "New evidence on the previously unknown gynoecium of Araripia florifera (Araripiaceae, fam. nov.), a magnoliid angiosperm from the Lower Cretaceous (Aptian) of the Crato Konservat-Lagerstätte (Araripe Basin), northeastern Brazil". Cretaceous Research: 105715. doi:10.1016/j.cretres.2023.105715. 
  128. López-Martínez, A. M.; Schönenberger, J.; von Balthazar, M.; González-Martínez, C. A.; Ramírez-Barahona, S.; Sauquet, H.; Magallón, S. (2023). "Integrating Fossil Flowers into the Angiosperm Phylogeny Using Molecular and Morphological Evidence". Systematic Biology 72 (4): 837–855. doi:10.1093/sysbio/syad017. PMID 36995161. 
  129. Doyle, J.; Endress, P. K. (2023). "Integrating Cretaceous fossils into the phylogeny of living angiosperms: fossil Magnoliales and their evolutionary implications". International Journal of Plant Sciences 185 (1): 42–70. doi:10.1086/727523. 
  130. Thompson, J. B.; Ramírez-Barahona, S. (2023). "No phylogenetic evidence for angiosperm mass extinction at the Cretaceous–Palaeogene (K-Pg) boundary". Biology Letters 19 (9): 20230314. doi:10.1098/rsbl.2023.0314. PMID 37700701. 
  131. Liu, B.-C.; Zong, R.-W.; Wang, K.; Bai, J.; Wang, Y.; Xu, H.-H. (2023). "Evolution of Silurian phytogeography, with the first report of Aberlemnia (Rhyniopsida) from the Pridoli of West Junggar, Xinjiang, China". Palaeogeography, Palaeoclimatology, Palaeoecology: 111903. doi:10.1016/j.palaeo.2023.111903. 
  132. Libertín, M.; Kvaček, J.; Bek, J. (2023). "The genus Aberlemnia and its Silurian–Devonian fossil record". Review of Palaeobotany and Palynology: 105017. doi:10.1016/j.revpalbo.2023.105017. 
  133. Brea, M.; Gnaedinger, S.; Martínez, L. C. A. (2023). "Archangelskyoxylon carlquistii gen. et sp. nov. Taxonomy and phylogeny of an unequivocal gnetoid Jurassic fossil wood". Review of Palaeobotany and Palynology: 105035. doi:10.1016/j.revpalbo.2023.105035. 
  134. Ribeiro, A. M. N.; Yang, Y.; Saraiva, A. Á. F.; Bantim, R. A. M.; Calixto Junior, J. T.; Lima, F. J. (2023). "Arlenea delicata gen. et sp. nov., a new ephedroid plant from the Early Cretaceous Crato Formation, Araripe Basin, Northeast Brazil". Plant Diversity. doi:10.1016/j.pld.2023.06.008. 
  135. 135.0 135.1 135.2 135.3 135.4 135.5 Bomfleur, B.; Hedenäs, L.; Friis, E. M.; Crane, P. R.; Pedersen, K. R.; Mendes, M. M.; Kvaček, J. (2023). "Fossil mosses from the Early Cretaceous Catefica mesofossil flora, Portugal – a window into the Mesozoic history of Bryophytes". Fossil Imprint 79 (2): 103–125. doi:10.37520/fi.2023.006. 
  136. Uhlířová, M.; Pšenička, J.; Sakala, J. (2023). "New early land plant Capesporangites petrkraftii gen. et sp. nov. from the Silurian, Prague Basin, Czech Republic". Review of Palaeobotany and Palynology: 105048. doi:10.1016/j.revpalbo.2023.105048. 
  137. Luthardt, L.; Rößler, R.; Stevenson, D. W. (2023). "Cycadodendron galtieri gen. nov. et sp. nov. - A lower Permian gymnosperm stem with cycadalean affinity". International Journal of Plant Sciences 184 (9): 715–732. doi:10.1086/727458. 
  138. Yang, Y.; Yang, Z.; Lin, L.; Wang, Y.; Ferguson, D. K. (2023). "A New Gnetalean Macrofossil from the Mid-Jurassic Daohugou Formation". Plants 12 (9): 1749. doi:10.3390/plants12091749. PMID 37176807. 
  139. Barbacka, M.; Górecki, A.; Pott, C.; Ziaja, J.; Blodgett, R. B.; Metzler, C.; Caruthers, A. H.; Edirisooriya, G. et al. (2023). "Macroflora from Lower Jurassic (Pliensbachian) of Hicks Creek, southern Talkeetna Mountains, south-central Alaska". Papers in Palaeontology 9 (6): e1541. doi:10.1002/spp2.1541. 
  140. 140.0 140.1 140.2 140.3 140.4 140.5 140.6 140.7 Slodownik, M.; Hill, R. S.; McLoughlin, S. (2023). "Komlopteris: A persistent lineage of post-Triassic corystosperms in Gondwana". Review of Palaeobotany and Palynology 317: 104950. doi:10.1016/j.revpalbo.2023.104950. 
  141. Bickner, M. A.; Herrera, F.; Shi, G.; Ichinnorov, N.; Crane, P. R.; Herendeen, P. S. (2023). "Mongolitria: a new Early Cretaceous three-valved seed from northeast Asia". American Journal of Botany. doi:10.1002/ajb2.16268. PMID 38050806. 
  142. Lalica, M. A. K.; Tomescu, A. M. F. (2023). "Complex wound response mechanisms and phellogen evolution – insights from Early Devonian euphyllophytes". New Phytologist 239 (1): 388–398. doi:10.1111/nph.18926. PMID 37010090. 
  143. Vallois, B.; Nel, A. (2023). "Possible earliest evidence of insect pollination based on a new species of the Carboniferous medullosalean 'seed' genus Pachytesta". Review of Palaeobotany and Palynology 316: 104948. doi:10.1016/j.revpalbo.2023.104948. 
  144. Liu, W.-Z.; Shen, H.-X.; Wang, X. (2023). "A novel gymnosperm reproductive organ from the Jurassic of China". Palaeoworld. doi:10.1016/j.palwor.2023.03.002. 
  145. Trajano, A. D. E. S.; Marques-de-Souza, J.; Iannuzzi, R.; Holanda, E. C. (2023). "Ephedra-like Cones from Serra do Tucano formation (Lower Cretaceous), Takutu Basin, Roraima". Journal of South American Earth Sciences: 104659. doi:10.1016/j.jsames.2023.104659. 
  146. Pfeiler, K. C.; Tomescu, A. M. F. (2023). "Mosaic assembly of regulatory programs for vascular cambial growth: a view from the Early Devonian". New Phytologist 240 (2): 529–541. doi:10.1111/nph.19146. PMID 37491742. 
  147. Hoffman, G. L.; Crandall-Stotler, B. J. (2023). "Petalophyllites speirsiae gen. et sp. nov. (Marchantiophyta: Fossombroniales), a fossil liverwort gametophyte from the Paleocene of Alberta, Canada". Botany 101 (10): 462–470. doi:10.1139/cjb-2023-0057. https://cdnsciencepub.com/doi/full/10.1139/cjb-2023-0057. 
  148. Snigirevsky, S. M.; Lyubarova, A. P. (2023). "A new fossil plant from the Late Devonian strata of Northern Timan (Russia)". Paleontological Journal 57 (6): 681–691. doi:10.1134/S0031030123060096. https://elibrary.ru/item.asp?id=54620002. 
  149. 149.0 149.1 Li, A.; Du, B.; Peng, J.; Lin, S.; Zhang, J.; Ma, G.; Hui, J. (2023). "Leaves and megasporophylls of Cycadophytes from the Lower Cretaceous of Beishan area, Gansu Province, Northwest China, and its evolutionary significance". Cretaceous Research: 105636. doi:10.1016/j.cretres.2023.105636. 
  150. Colston, C. M.; Landaw, K.; Tomescu, A. M. (2023). "An early snapshot of plant–herbivore interactions: Psilophyton diakanthon sp. nov. from the Early Devonian of Gaspé (Quebec, Canada)". American Journal of Botany 110 (1): e16082. doi:10.1002/ajb2.16082. PMID 36219504. 
  151. Han, L.; Zhao, Y.; Zhao, M.; Sun, J.; Sun, B.; Wang, X. (2023). "New Fossil Evidence Suggests That Angiosperms Flourished in the Middle Jurassic". Life 13 (3): 819. doi:10.3390/life13030819. PMID 36983974. Bibcode2023Life...13..819H. 
  152. Yang, X.-J. (2023). "First record of Rhaphidopteris (Gymnospermae) from the Lower Jurassic of the Junggar Basin, Xinjiang, NW China". The Triassic and Jurassic of the Junggar Basin, China: Advances in Palaeontology and Environments. Geological Society, London, Special Publications. 538. The Geological Society of London. doi:10.1144/SP538-2021-191. 
  153. Elgorriaga, A.; Atkinson, B. A. (2023). "Cretaceous pollen cone with three-dimensional preservation sheds light on the morphological evolution of cycads in deep time". New Phytologist 238 (4): 1695–1710. doi:10.1111/nph.18852. PMID 36943236. 
  154. Forte, G.; Kustatscher, E. I. (2023). "Cordaites and pteridosperm-like foliage from the Kungurian (early Permian) flora of Tregiovo (Trento, NE Italy)". Review of Palaeobotany and Palynology 316: 104931. doi:10.1016/j.revpalbo.2023.104931. 
  155. Blanco-Moreno, C.; Valois, M.; Stockey, R. A.; Rothwell, G. W.; Tomescu, A. M. F. (2023). "A Second Species of Tricosta Expands the Diversity of the Intriguing Mesozoic Tricostate Mosses". International Journal of Plant Sciences 184 (7): 549–561. doi:10.1086/726016. 
  156. Xie, A.; Teng, X.; Wang, Y.; Tian, N.; Jiang, Z.; Uhl, D. (2023). "A quantitative analysis of leaf life span reveals the Mesozoic boreal gymnosperm Xenoxylon as evergreen: First evidence from the Lower Cretaceous in Liaoning, northeastern China". Cretaceous Research: 105770. doi:10.1016/j.cretres.2023.105770. 
  157. Xie, A.; Wang, Y.; Tian, N.; Xie, X.; Xi, S.; Uhl, D. (2023). "New occurrence of the Late Jurassic Xenoxylon wood in the Sichuan Basin, southern China: wood anatomy, and paleobiodiversity implications". PalZ. doi:10.1007/s12542-023-00671-9. 
  158. Elgorriaga, A.; Atkinson, B. A. (2023). "Zirabia cylindrica comb. nov. provides evidence of Doyleales in the Jurassic". American Journal of Botany 110 (7): e16182. doi:10.1002/ajb2.16182. PMID 37272508. 
  159. Flores, J. R.; Bippus, A. C.; Fernández de Ullivarri, C.; Suárez, G. M.; Hyvönen, J.; Tomescu, A. M. F. (2023). "Dating the evolution of the complex thalloid liverworts (Marchantiopsida): total-evidence dating analysis supports a Late Silurian-Early Devonian origin and post-Mesozoic morphological stasis". New Phytologist. doi:10.1111/nph.19254. PMID 37697646. 
  160. Decombeix, A.-L.; Harper, C. J.; Prestianni, C.; Durieux, T.; Ramel, M.; Krings, M. (2023). "Fossil evidence of tylosis formation in Late Devonian plants". Nature Plants 9 (5): 695–698. doi:10.1038/s41477-023-01394-0. PMID 37081291. https://www.nature.com/articles/s41477-023-01394-0. 
  161. Yang, Y.; Wang, S.-J.; Wang, J. (2023). "Stem Anatomy Confirms Tingia unita Is a Progymnosperm". Biology 12 (4): 494. doi:10.3390/biology12040494. PMID 37106695. 
  162. Coiro, M.; Allio, R.; Mazet, N.; Seyfullah, L. J.; Condamine, F. L. (2023). "Reconciling fossils with phylogenies reveals the origin and macroevolutionary processes explaining the global cycad biodiversity". New Phytologist 240 (4): 1616–1635. doi:10.1111/nph.19010. PMID 37302411. 
  163. Kipp, M. A.; Stüeken, E. E.; Strömberg, C. A. E.; Brightly, W. H.; Arbour, V. M.; Erdei, B.; Hill, R. S.; Johnson, K. R. et al. (2023). "Nitrogen isotopes reveal independent origins of N2-fixing symbiosis in extant cycad lineages". Nature Ecology & Evolution: 1–13. doi:10.1038/s41559-023-02251-1. PMID 37974002. 
  164. Fu, Q.; Hou, Y.; Yin, P.; Diez, J. B.; Pole, M.; García-Ávila, M.; Wang, X. (2023). "Micro-CT results exhibit ovules enclosed in the ovaries of Nanjinganthus". Scientific Reports 13 (1): 426. doi:10.1038/s41598-022-27334-0. PMID 36624144. Bibcode2023NatSR..13..426F. 
  165. 165.0 165.1 165.2 165.3 Parmar, S.; Morley, R. J.; Bansal, M.; Singh, B. P.; Morley, H.; Prasad, V. (2023). "Evolution of family Arecaceae on the Indian Plate modulated by the Early Palaeogene climate and tectonics". Review of Palaeobotany and Palynology 313: 104890. doi:10.1016/j.revpalbo.2023.104890. Bibcode2023RPaPa.31304890P. 
  166. 166.00 166.01 166.02 166.03 166.04 166.05 166.06 166.07 166.08 166.09 166.10 166.11 166.12 166.13 166.14 166.15 166.16 166.17 166.18 166.19 166.20 166.21 166.22 166.23 De Benedetti, F.; Zamaloa, M. C.; Gandolfo, M. A.; Cúneo, N. R. (2023). "Pollen from the K–Pg boundary of the La Colonia Formation, Patagonia, Argentina". Review of Palaeobotany and Palynology 316: 104933. doi:10.1016/j.revpalbo.2023.104933. 
  167. 167.00 167.01 167.02 167.03 167.04 167.05 167.06 167.07 167.08 167.09 167.10 167.11 167.12 167.13 167.14 Gutierrez, P. R.; Zavattieri, A. M. (2023). "Middle Triassic continental palynological assemblages of San Rafael depocenter, central-western Argentina". Ameghiniana 60 (5): 391–417. doi:10.5710/AMGH.31.03.2023.3549. https://www.ameghiniana.org.ar/index.php/ameghiniana/article/view/3549. 
  168. 168.00 168.01 168.02 168.03 168.04 168.05 168.06 168.07 168.08 168.09 168.10 168.11 168.12 168.13 168.14 168.15 168.16 168.17 168.18 Mander, L.; Jaramillo, C.; Oboh-Ikuenobe, F. (2023). "Descriptive systematics of Upper Paleocene–Lower Eocene pollen and spores from the northern Niger Delta, southeastern Nigeria". Palynology 47 (3): 2200525. doi:10.1080/01916122.2023.2200525. 
  169. Sui, Q.; Zhan, H.-X.; Zhou, D.-C.; Niu, Y.-N.; Chen, J.; McLoughlin, S.; Feng, Z. (2023). "Morphology and wall ultrastructure of a unique megaspore, Flabellisporites zhaotongensis Sui, McLoughlin et Feng sp. nov., from the upper Permian of Southwest China". Review of Palaeobotany and Palynology: 105036. doi:10.1016/j.revpalbo.2023.105036. 
  170. Huang, H.; Morley, R. J.; van der Ham, R.; Mao, L.; Licht, A.; Dupont-Nivet, G.; Win, Z.; Aung, D. et al. (2023). "Grimmipollis burmanica gen. et sp. nov.: New genus of the soapberry family (Sapindaceae) from the late Eocene of central Myanmar". Review of Palaeobotany and Palynology 309: 104818. doi:10.1016/j.revpalbo.2022.104818. Bibcode2023RPaPa.30904818H. 
  171. 171.0 171.1 Sui, Q.; Sheng, Z.-H.; Yang, J.-Y.; Guo, Y.; McLoughlin, S.; Feng, Z. (2023). "Two new isoetalean (Lycopsida) megaspore species representing the earliest occurrence of Henrisporites from upper Permian strata of Southwest China". Review of Palaeobotany and Palynology 314: 104894. doi:10.1016/j.revpalbo.2023.104894. 
  172. Quetglas, M. A.; Di Pasquo, M.; Macluf, C. C. (2023). "Taxonomy of Early Mississippian gulate megaspore assemblage from northern Bolivia". Review of Palaeobotany and Palynology 318: 104971. doi:10.1016/j.revpalbo.2023.104971. 
  173. Heřmanová, Z.; Kvaček, J.; Čepičková, J.; von Balthazar, M.; Luthardt, L.; Schönenberger, J. (2023). "Slavicekia gen. nov. - a new member of the Normapolles complex from Late Cretaceous sediments of the Czech Republic". International Journal of Plant Sciences 184 (3): 201–213. doi:10.1086/724155. 
  174. Vajda, V.; McLoughlin, S.; Slater, S. M.; Gustafsson, O.; Rasmusson, A. G. (2023). "The 'seed-fern' Lepidopteris mass-produced the abnormal pollen Ricciisporites during the end-Triassic biotic crisis". Palaeogeography, Palaeoclimatology, Palaeoecology 627: 111723. doi:10.1016/j.palaeo.2023.111723. 
  175. Zavialova, N. (2024). "Comment on "The 'seed-fern' Lepidopteris mass-produced the abnormal pollen Ricciisporites during the end-Triassic biotic crisis" by V. Vajda, S. McLoughlin, S. M. Slater, O. Gustafsson, and A. G. Rasmusson [Palaeogeography, Palaeoclimatology, Palaeoecology, 627 (2023), 111,723]". Review of Palaeobotany and Palynology 322: 105065. doi:10.1016/j.revpalbo.2024.105065. 
  176. Dou, L.; Zhang, X.; Xiao, K.; Xi, D.; Du, Y.; Wang, L.; Hu, J.; Hu, Y. et al. (2023). "Early Cretaceous (Aptian to Albian) vegetation and climate change in Central Africa: Novel palynological evidence from the Doseo Basin". Geological Journal. doi:10.1002/gj.4873. 
  177. Malaikanok, P.; Grímsson, F.; Denk, T.; Phuphumirat, W. (2023). "Community assembly of tropical Fagaceae-dominated forests in Thailand dates back at least to the Late Palaeogene". Botanical Journal of the Linnean Society 202: 1–22. doi:10.1093/botlinnean/boac075. 
  178. Shichi, K.; Goebel, T.; Izuho, M.; Kashiwaya, K. (2023). "Climate amelioration, abrupt vegetation recovery, and the dispersal of Homo sapiens in Baikal Siberia". Science Advances 9 (38): eadi0189. doi:10.1126/sciadv.adi0189. PMID 37738346. 
  179. Pearce, E. A.; Mazier, F.; Normand, S.; Fyfe, R.; Andrieu, V.; Bakels, C.; Balwierz, Z.; Bińka, K. et al. (2023). "Substantial light woodland and open vegetation characterized the temperate forest biome before Homo sapiens". Science Advances 9 (45): eadi9135. doi:10.1126/sciadv.adi9135. PMID 37948521. 
  180. Clark, J. W.; Hetherington, A. J.; Morris, J. L.; Pressel, S.; Duckett, J. G.; Puttick, M. N.; Schneider, H.; Kenrick, P. et al. (2023). "Evolution of phenotypic disparity in the plant kingdom". Nature Plants 9 (10): 1618–1626. doi:10.1038/s41477-023-01513-x. PMID 37666963. 
  181. Leslie, A. B.; Mander, L. (2023). "Quantifying the complexity of plant reproductive structures reveals a history of morphological and functional integration". Proceedings of the Royal Society B: Biological Sciences 290 (2010): 20231810. doi:10.1098/rspb.2023.1810. PMID 37909082. 
  182. Yuan, W.; Liu, M.; Chen, D.; Xing, Y.-W.; Spicer, R. A.; Chen, J.; Them, T. R.; Wang, X. et al. (2023). "Mercury isotopes show vascular plants had colonized land extensively by the early Silurian". Science Advances 9 (17): eade9510. doi:10.1126/sciadv.ade9510. PMID 37115923. 
  183. Capel, E.; Monnet, C.; Cleal, C. J.; Xue, J.; Servais, T.; Cascales-Miñana, B. (2023). "The effect of geological biases on our perception of early land plant radiation". Palaeontology 66 (2): e12644. doi:10.1111/pala.12644. Bibcode2023Palgy..6612644C. 
  184. Capel, E.; Cleal, C. J.; Servais, T.; Cascales-Miñana, B. (2023). "New insights into Silurian–Devonian palaeophytogeography". Palaeogeography, Palaeoclimatology, Palaeoecology 613: 111393. doi:10.1016/j.palaeo.2023.111393. Bibcode2023PPP...61311393C. 
  185. Dowding, E. M.; Akulov, N. I.; Mashchuk, I. M. (2023). "Survivorship dynamics of the flora of Devonian Angarida". Proceedings of the Royal Society B: Biological Sciences 290 (1990): 20221079. doi:10.1098/rspb.2022.1079. PMID 36629112. 
  186. Barrón, E.; Peyrot, D.; Bueno-Cebollada, C. A.; Kvaček, J.; Álvarez-Parra, S.; Altolaguirre, Y.; Meléndez, N. (2023). "Biodiversity of ecosystems in an arid setting: The late Albian plant communities and associated biota from eastern Iberia". PLOS ONE 18 (3): e0282178. doi:10.1371/journal.pone.0282178. PMID 36862709. Bibcode2023PLoSO..1882178B. 
  187. El Atfy, H.; Coiffard, C.; El Beialy, S. Y.; Uhl, D. (2023). "Vegetation and climate change at the southern margin of the Neo-Tethys during the Cenomanian (Late Cretaceous): Evidence from Egypt". PLOS ONE 18 (1): e0281008. doi:10.1371/journal.pone.0281008. PMID 36716334. Bibcode2023PLoSO..1881008E. 
  188. Moreau, J.-D.; Néraudeau, D. (2023). "Amber and plants from the Upper Cretaceous of La Gripperie-Saint-Symphorien (Charente-Maritime, Western France)". Comptes Rendus Palevol 22 (20): 455–466. doi:10.5852/cr-palevol2023v22a20. 
  189. Tapia, M. J.; Farrell, E. E.; Mautino, L. R.; del Papa, C.; Barreda, V. D.; Palazzesi, L. (2023). "A snapshot of mid Eocene landscapes in the southern Central Andes: Spore-pollen records from the Casa Grande Formation (Jujuy, Argentina)". PLOS ONE 18 (4): e0277389. doi:10.1371/journal.pone.0277389. PMID 37018180. Bibcode2023PLoSO..1877389T. 
  190. Jolly-Saad, M.-C.; Bonnefille, R. (2023). "Tropical forests and Combretaceae woodland at Usno in the Lower Omo Valley (Ethiopia), 3.3-3.2 Ma ago". Geobios 76: 1–17. doi:10.1016/j.geobios.2023.01.003. Bibcode2023Geobi..76....1J. 
  191. Adeleye, M. A.; Haberle, S. G.; Gallagher, R.; Andrew, S. C.; Herbert, A. (2023). "Changing plant functional diversity over the last 12,000 years provides perspectives for tracking future changes in vegetation communities". Nature Ecology & Evolution 7 (2): 224–235. doi:10.1038/s41559-022-01943-4. PMID 36624175. 
  192. Góis‐Marques, Carlos A.; de Nascimento, Lea; Fernández‐Palacios, José María; Madeira, José; de Sequeira, Miguel Menezes (2023-02-15). "Description and systematic affinity of flower and seed fossils of Erica sect. Chlorocodon (Ericaceae) from the early Pleistocene of Madeira Island, Portugal" (in en). Taxon 72 (2): 375–392. doi:10.1002/tax.12881. ISSN 0040-0262. https://onlinelibrary.wiley.com/doi/10.1002/tax.12881.