Biology:BCS1L
Generic protein structure example |
BCS1 N-terminal domain | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | BCS1_N | ||||||||
Pfam | PF08740 | ||||||||
InterPro | IPR014851 | ||||||||
|
Mitochondrial chaperone BCS1 (BCS1L), also known as BCS1 homolog, ubiquinol-cytochrome c reductase complex chaperone (h-BCS1), is a protein that in humans is encoded by the BCS1L gene. BCS1L is a chaperone protein involved in the assembly of Ubiquinol Cytochrome c Reductase (complex III), which is located in the inner mitochondrial membrane and is part of the electron transport chain. Mutations in this gene are associated with mitochondrial complex III deficiency (nuclear, 1), GRACILE syndrome, and Bjoernstad syndrome.[1][2][3]
Structure
BCS1L is located on the q arm of chromosome 2 in position 35 and has 10 exons.[1] The BCS1L gene produces a 47.5 kDa protein composed of 419 amino acids.[4][5] The protein encoded by BCS1L belongs to the AAA ATPase family, BCS1 subfamily. BCS1L is a phosphoprotein and chaperone for Ubiquinol Cytochrome c Reductase assembly. It contains a nucleotide binding site for ATP-binding.[2][3] BCS1L does not contain a mitochondrial targeting sequence but experimental studies confirm that it is imported into mitochondria. A conserved domain at the N-terminus of BCS1L is responsible for the import and intramitochondrial sorting.[6] Associating to the inner mitochondrial membrane, BCS1L has a transmembrane domain in between two topological domains, passing through the inner mitochondrial membrane once. The majority of the protein is in the mitochondrial matrix.[2][3] Several alternatively spliced transcripts encoding two different isoforms have been described.[7]
Function
BCS1L encodes a protein that is located in the inner mitochondrial membrane and involved in the assembly of Ubiquinol Cytochrome c Reductase (complex III). Complex III plays an important role in the mitochondrial respiratory chain by transferring electrons from the Rieske iron-sulfur protein to cytochrome c. BCS1L is essential for this process through its role in the maintenance of mitochondrial tubular networks, respiratory chain assembly, and formation of the LETM1 complex.[8][2][3]
Clinical Significance
Variants of BCS1L have been associated with mitochondrial complex III deficiency, nuclear 1, GRACILE syndrome, and Bjoernstad syndrome. Mitochondrial complex III deficiency, nuclear 1 is a disorder of the mitochondrial respiratory chain resulting in reduced complex III activity and highly variable clinical features usually resulting in multi-system organ failure. Clinical features may include mitochondrial encephalopathy, psychomotor retardation, ataxia, severe failure to thrive, liver dysfunction, renal tubulopathy, muscle weakness, exercise intolerance, lactic acidosis, hypotonia, seizures, and optic atrophy. Pathogenic mutations have included R45C, R56X,[9][10][11] T50A,[12] R73C,[13] P99L, R155P, V353M,[14] G129R,[15][16] R183C, F368I,[13] and S277N. These mutations tend to affect the ATP-binding residues of BCS1L.[17][3][2]
Growth retardation, aminoaciduria, cholestasis, iron overload, lactic acidosis, and early death (GRACILE) is a recessively inherited lethal disease that results in mutli-system organ failure. GRACILE is characterized by fetal growth retardation, lactic acidosis, aminoaciduria, cholestasis, and abnormalities in iron metabolism. Pathogenic mutations have included S78G, R144Q, and V327A.[18][3][2]
Bjoernstad syndrome is an autosomal recessive disease primarily affecting hearing. This disease is characterized by congenital hearing loss and twisted hairs, a condition known as pili torti, in which hair shafts are flattened at irregular intervals and twisted 180 degrees from the normal axis, making the hair extremely brittle. Pathogenic mutations have included Y301N,[19] R184C,[13] G35R, R114W, R183H, Q302E, and R306H. These mutations tend to affect the protein-protein interactions of BCS1L.[17][3][2]
Interactions
BCS1L has 11 protein-protein interactions with 8 of them being co-complex interactions. BCS1L has been found to interact with LETM1, DNAJA1, and DDX24.[20]
See also
References
- ↑ 1.0 1.1 "BCS1L BCS1 homolog, ubiquinol-cytochrome c reductase complex chaperone [Homo sapiens (human) - Gene - NCBI"]. https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=ShowDetailView&TermToSearch=617. This article incorporates text from this source, which is in the public domain.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 "BCS1L - Mitochondrial chaperone BCS1 - Homo sapiens (Human) - BCS1L gene & protein" (in en). https://www.uniprot.org/uniprot/Q9Y276. This article incorporates text available under the CC BY 4.0 license.
- ↑ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 "UniProt: the universal protein knowledgebase". Nucleic Acids Research 45 (D1): D158–D169. January 2017. doi:10.1093/nar/gkw1099. PMID 27899622.
- ↑ Yao, Daniel. "Cardiac Organellar Protein Atlas Knowledgebase (COPaKB) —— Protein Information". https://amino.heartproteome.org/web/protein/Q9Y276.
- ↑ "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research 113 (9): 1043–53. October 2013. doi:10.1161/CIRCRESAHA.113.301151. PMID 23965338.
- ↑ "Mitochondrial protein import: recognition of internal import signals of BCS1 by the TOM complex". Molecular and Cellular Biology 23 (7): 2239–50. April 2003. doi:10.1128/MCB.23.7.2239-2250.2003. PMID 12640110.
- ↑ "Entrez Gene: BCS1L BCS1-like (yeast)". https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=617.
- ↑ "Characterization of the mitochondrial protein LETM1, which maintains the mitochondrial tubular shapes and interacts with the AAA-ATPase BCS1L". Journal of Cell Science 121 (Pt 15): 2588–600. August 2008. doi:10.1242/jcs.026625. PMID 18628306.
- ↑ "Clinical and diagnostic characteristics of complex III deficiency due to mutations in the BCS1L gene". American Journal of Medical Genetics. Part A 121A (2): 126–31. August 2003. doi:10.1002/ajmg.a.20171. PMID 12910490.
- ↑ "Clinical and biochemical spectrum of mitochondrial complex III deficiency caused by mutations in the BCS1L gene". Clinical Genetics 75 (6): 585–7. June 2009. doi:10.1111/j.1399-0004.2009.01160.x. PMID 19508421.
- ↑ "Pathogenic mutations in the 5' untranslated region of BCS1L mRNA in mitochondrial complex III deficiency". Mitochondrion 9 (5): 299–305. September 2009. doi:10.1016/j.mito.2009.04.001. PMID 19389488.
- ↑ "Infantile mitochondrial encephalomyopathy with unusual phenotype caused by a novel BCS1L mutation in an isolated complex III-deficient patient". Neuromuscular Disorders 19 (2): 143–6. February 2009. doi:10.1016/j.nmd.2008.11.016. PMID 19162478.
- ↑ 13.0 13.1 13.2 "Impaired complex III assembly associated with BCS1L gene mutations in isolated mitochondrial encephalopathy". Human Molecular Genetics 16 (10): 1241–52. May 2007. doi:10.1093/hmg/ddm072. PMID 17403714.
- ↑ "A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure". Nature Genetics 29 (1): 57–60. September 2001. doi:10.1038/ng706. PMID 11528392.
- ↑ "Clinical and biochemical features associated with BCS1L mutation". Journal of Inherited Metabolic Disease 36 (5): 813–20. September 2013. doi:10.1007/s10545-012-9536-4. PMID 22991165.
- ↑ "Long-term survival of neonatal mitochondrial complex III deficiency associated with a novel BCS1L gene mutation". Molecular Genetics and Metabolism 100 (4): 345–8. August 2010. doi:10.1016/j.ymgme.2010.04.010. PMID 20472482.
- ↑ 17.0 17.1 "Missense mutations in the BCS1L gene as a cause of the Björnstad syndrome". The New England Journal of Medicine 356 (8): 809–19. February 2007. doi:10.1056/NEJMoa055262. PMID 17314340.
- ↑ "GRACILE syndrome, a lethal metabolic disorder with iron overload, is caused by a point mutation in BCS1L". American Journal of Human Genetics 71 (4): 863–76. October 2002. doi:10.1086/342773. PMID 12215968.
- ↑ "Novel mutation in AAA domain of BCS1L causing Bjornstad syndrome". Journal of Human Genetics 58 (12): 819–21. December 2013. doi:10.1038/jhg.2013.101. PMID 24172246.
- ↑ "14 binary interactions found for search term BCS1L". IntAct Molecular Interaction Database. EMBL-EBI. https://www.ebi.ac.uk/intact/interactions?conversationContext=3&query=BCS1L.
External links
- Human BCS1L genome location and BCS1L gene details page in the UCSC Genome Browser.
Further reading
- "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene 138 (1–2): 171–4. January 1994. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
- "Internal targeting signal of the BCS1 protein: a novel mechanism of import into mitochondria". The EMBO Journal 15 (3): 479–87. February 1996. doi:10.1002/j.1460-2075.1996.tb00380.x. PMID 8599931.
- "A "double adaptor" method for improved shotgun library construction". Analytical Biochemistry 236 (1): 107–13. April 1996. doi:10.1006/abio.1996.0138. PMID 8619474.
- "Large-scale concatenation cDNA sequencing". Genome Research 7 (4): 353–8. April 1997. doi:10.1101/gr.7.4.353. PMID 9110174.
- "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene 200 (1–2): 149–56. October 1997. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
- "The Bjornstad syndrome (sensorineural hearing loss and pili torti) disease gene maps to chromosome 2q34-36". American Journal of Human Genetics 62 (5): 1107–12. May 1998. doi:10.1086/301837. PMID 9545407.
- "Assignment of the locus for a new lethal neonatal metabolic syndrome to 2q33-37". American Journal of Human Genetics 63 (5): 1396–403. November 1998. doi:10.1086/302123. PMID 9792866.
- "Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes". Genome Research 16 (1): 55–65. January 2006. doi:10.1101/gr.4039406. PMID 16344560.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.
Original source: https://en.wikipedia.org/wiki/BCS1L.
Read more |