Biology:List of model organisms

From HandWiki
Short description: none
Escherichia coli is a gram-negative prokaryotic model organism
Drosophila melanogaster, one of the most famous subjects for experiments

This is a list of model organisms used in scientific research.

Viruses

Phages (infecting prokaryotes):

Animal viruses:

Plant viruses:

Prokaryotes

Sporulating Bacillus subtilis

Bacteria:

Archaea:

Eukaryotes

Protists

Fungi

Plants

Vascular plants

Arabidopsis thaliana
Lemna gibba
  • Lemna gibba, rapidly growing aquatic monocot, one of the smallest flowering plants. Lemna growth assays are used to evaluate the toxicity of chemicals to plants in ecotoxicology. Because it can be grown in pure culture, microbial action can be excluded. Lemna is being used as a recombinant expression system for economical production of complex biopharmaceuticals. It is also used in education to demonstrate population growth curves.
  • Zea mays L. (Maize/corn), cereal grain. It is a diploid monocot with 10 large chromosome pairs, easily studied with the microscope. Its genetic features, including many known and mapped phenotypic mutants and a large number of progeny per cross (typically 100–200) facilitated the discovery of transposons ("jumping genes"). Many DNA markers have been mapped and the genome has been sequenced. (Genetics, Molecular biology, Agronomy)
  • Medicago truncatula, model legume, closely related to the common alfalfa. Its rather small genome is currently being sequenced. It is used to study the symbiosis responsible for nitrogen fixation. (Agronomy, Molecular biology)
  • Mimulus guttatus, model organism used in evolutionary and functional genomes studies. The genus Mimulus contains c. 120 species and is in the family Phrymaceae. Several genetic resources have been designed for the study of this genus and some are free access (http://www.mimulusevolution.org)
  • Nicotiana benthamiana, model organism for plant-pathogen studies.[15]
  • Nicotiana tabacum cv. BY-2 (Tobacco BY-2 cells), suspension cell line from tobacco (Nicotiana tabacum) that is useful for general plant physiology studies at the cell level. The genome of this particular cultivar will not be sequenced in the near future, but sequencing of its wild species Nicotiana tabacum is presently in progress. (Cytology, Plant physiology, Biotechnology)
  • Oryza sativa (Rice) is used as a model for cereal biology. It has one of the smallest genomes of any cereal species, and sequencing of its genome is finished.[16] (Agronomy, Molecular biology)
Physcomitrella patens
  • Populus, genus used as a model in forest genetics and woody plant studies. It has a small genome size, grows very rapidly, and is easily transformed. The genome sequence of black cottonwood (Populus trichocarpa) is publicly available.[17]

Other Archaeplastida

Animals

Invertebrates

Caenorhabditis elegans

Vertebrates

Laboratory mice
  • Canis lupus familiaris (Dog), important respiratory and cardiovascular model, also contributed to the discovery of classical conditioning.
  • Felis sylvestris catus (Cat), used in neurophysiological research.
  • Mustela furo (Ferret), used as a model organism to study influenza A virus infection.
  • Ambystoma mexicanum (Axolotl), used to study regeneration and developmental processes
  • Bombina bombina and Bombina variegata, used to study sexual selection and sexual conflict
  • Anolis carolinensis (Carolina anole), used to study reptile genomics
  • Gallus gallus domesticus (Chicken), used for developmental studies, as it is an amniote and excellent for micromanipulation (e.g. tissue grafting) and over-expression of gene products.
  • Sigmodon hispidus (Cotton rat), formerly used in polio research.
  • Mesocricetus auratus (Golden hamster), first used to study kala-azar (leishmaniasis).
  • Cavia porcellus (Guinea pig), used by Robert Koch and other early bacteriologists as a host for bacterial infections, hence a byword for "laboratory animal" even though less commonly used today.
  • Myotis lucifugus (Little brown bat), used to prove echolocation exists in bats in 1930s and also used in experiments predicting microbat behavior as it is a reliable species that has typical features of a temperate bat species.
  • Oryzias latipes (Medaka, or Japanese ricefish), important model in developmental biology, and has the advantage of being much sturdier than the traditional zebrafish.
  • Mus musculus (Mouse), the classic model vertebrate. Many inbred strains exist, as well as lines selected for particular traits, often of ethological or medical interest, e.g. body size, obesity, muscularity, voluntary wheel-running behavior.[44] (Quantitative genetics, Molecular evolution, Genomics)
  • Heterocephalus glaber (Naked mole-rat), studied for their characteristic pain insensitivity, thermoregulation, cancer resistance, eusociality, and longevity.
  • Nothobranchius furzeri, is studied because of their extreme short-lifespan in research on aging, disease and evolution.
  • Astyanax mexicanus (Mexican tetra or blind cave fish), studied for their rapid convergent evolution of multiple traits across multiple populations, including troglomorphism, circadian rhythms, and sleep
  • Columba livia domestica (Pigeon), studied extensively for cognitive science and animal intelligence
  • Poecilia reticulata (Guppy), used to study sexual selection and sexual conflict
  • Rattus norvegicus (Rat), particularly useful as a toxicology model; also particularly useful as a neurological model and source of primary cell cultures, owing to the larger size of organs and suborganellar structures relative to the mouse. (Molecular evolution, Genomics)
  • Macaca mulatta (Rhesus macaque or rhesus monkey), used for studies on infectious disease and cognition.
  • Petromyzon marinus (Sea lamprey), spinal cord research
  • Takifugu rubripes (Takifugu, a pufferfish), has a small genome with little junk DNA.
  • Gasterosteus aculeatus (Three-spined stickleback), fish used to study ethology and behavioral ecology.
  • Xenopus tropicalis and Xenopus laevis (African clawed frog), the eggs and embryos from these frogs are used in developmental biology, cell biology, toxicology, and neuroscience[45][46]
  • Taeniopygia guttata (Zebra finch), used in the study of the song system of songbirds and the study of non-mammalian auditory systems.
  • Danio rerio (Zebrafish), freshwater fish with a transparent body during early development, which provides unique visual access to the animal's internal anatomy. Zebrafish are used to study development, toxicology and toxicopathology,[47] specific gene function and roles of signaling pathways.

References

  1. Daniel Ryan; Laura Jenniches; Sarah Reichardt; Lars Barquist; Alexander Westermann (16 July 2020). "A high-resolution transcriptome map identifies small RNA regulation of metabolism in the gut microbe Bacteroides thetaiotaomicron". Nature Communications 11 (1): 3557. doi:10.1038/s41467-020-17348-5. PMID 32678091. Bibcode2020NatCo..11.3557R. 
  2. "Streptomyces coelicolor". John Innes Center. http://www.jic.ac.uk/science/molmicro/Strept.html. 
  3. Zhou, Zhan; Li, Qi; Tudyk, Julie; Li, Yong-Quan; Wang, Yufeng (4–6 December 2011). "ECF sigma factor-associated regulatory networks in Streptomyces colicolor A3(2)". 2011 IEEE International Workshop on Genomic Signal Processing and Statistics. San Antonio, Texas, USA: IEEE. 
  4. 4.0 4.1 4.2 4.3 Leigh, John A.; Albers, Sonja-Verena; Atomi, Haruyuki; Allers, Thorsten (July 2011). "Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales". FEMS Microbiology Reviews 35 (4): 577–608. doi:10.1111/j.1574-6976.2011.00265.x. PMID 21265868. 
  5. The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell
  6. Kües U (June 2000). "Life history and developmental processes in the basidiomycete Coprinus cinereus". Microbiol. Mol. Biol. Rev. 64 (2): 316–53. doi:10.1128/MMBR.64.2.316-353.2000. PMID 10839819. 
  7. Davis, Rowland H. (2000). Neurospora: contributions of a model organism. Oxford [Oxfordshire]: Oxford University Press. ISBN 978-0-19-512236-7. 
  8. Cornell, Calvin; Kokkoris, Vasilis; Turcu, Bianca; Dettman, Jeremy; Stefani, Franck; Corradi, Nicolas (January 2022). "The arbuscular mycorrhizal fungus Rhizophagus irregularis harmonizes nuclear dynamics in the presence of distinct abiotic factors". Fungal Genetics and Biology 158: 103639. doi:10.1016/j.fgb.2021.103639. PMID 34800644. 
  9. "Home - Rhizophagus irregularis DAOM 181602 v1.0". https://mycocosm.jgi.doe.gov/Gloin1/Gloin1.home.html. 
  10. Ohm, R.; De Jong, J.; Lugones, L.; Aerts, A.; Kothe, E.; Stajich, J.; De Vries, R.; Record, E. et al. (2010). "Genome sequence of the model mushroom Schizophyllum commune". Nature Biotechnology 28 (9): 957–963. doi:10.1038/nbt.1643. PMID 20622885. 
  11. 11.0 11.1 11.2 11.3 About Arabidopsis on The Arabidopsis Information Resource page (TAIR)
  12. Rushworth, C (2011). "Boechera, a model system for ecological genomics". Molecular Ecology 20 (23): 4843–57. doi:10.1111/j.1365-294X.2011.05340.x. PMID 22059452. 
  13. Brutnell, T (2010). "Setaria viridis: a model for C4 photosynthesis". Plant Cell 22 (8): 2537–44. doi:10.1105/tpc.110.075309. PMID 20693355. 
  14. Jiang, Hui; Barbier, Hugues; Brutnell, Thomas (2013). "Methods for Performing Crosses in Setaria viridis, a New Model System for the Grasses". Journal of Visualized Experiments (80): 50527. doi:10.3791/50527. ISSN 1940-087X. PMID 24121645. 
  15. Goodin, Michael; David Zaitlin; Rayapati Naidu; Steven Lommel (August 2008). "Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions". Molecular Plant-Microbe Interactions 21 (8): 1015–1026. doi:10.1094/MPMI-21-8-1015. PMID 18616398. 
  16. Zhou, S.; Bechner, M. C.; Place, M.; Churas, C. P.; Pape, L.; Leong, S. A.; Runnheim, R.; Forrest, D. K. et al. (2007). "Validation of rice genome sequence by optical mapping". BMC Genomics 8: 278. doi:10.1186/1471-2164-8-278. PMID 17697381. 
  17. "Populus trichocarpa (Western poplar)". Phytozome. http://www.phytozome.net/poplar. 
  18. "Chlamydomonas reinhardtii resources at the Joint Genome Institute". http://genome.jgi-psf.org/chlamy. 
  19. Chlamydomonas genome sequenced published in Science, 12 October 2007
  20. 20.0 20.1 "The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants". Science 319 (5859): 64–9. January 2008. doi:10.1126/science.1150646. PMID 18079367. Bibcode2008Sci...319...64R. http://www.sciencemag.org/cgi/content/abstract/319/5859/64. 
  21. Reski, Ralf (1998). "Physcomitrella and Arabidopsis: the David and Goliath of reverse genetics". Trends in Plant Science 3 (6): 209–210. doi:10.1016/S1360-1385(98)01257-6. 
  22. Srivastava, M.; Simakov, O.; Chapman, J.; Fahey, B.; Gauthier, M. E. A.; Mitros, T.; Richards, G. S.; Conaco, C. et al. (2010). "The Amphimedon queenslandica genome and the evolution of animal complexity". Nature 466 (7307): 720–726. doi:10.1038/nature09201. PMID 20686567. Bibcode2010Natur.466..720S. 
  23. Holland, L. Z.; Albalat, R.; Azumi, K.; Benito-Gutiérrez, E.; Blow, M. J.; Bronner-Fraser, M.; Brunet, F.; Butts, T. et al. (2008). "The amphioxus genome illuminates vertebrate origins and cephalochordate biology". Genome Research 18 (7): 1100–1111. doi:10.1101/gr.073676.107. PMID 18562680. 
  24. Riddle, Donald L. (1997). C. elegans II. Plainview, N.Y: Cold Spring Harbor Laboratory Press. ISBN 978-0-87969-532-3. https://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=ce2.TOC. 
  25. Müller HG (1982). "Sensitivity of Daphnia magna straus against eight chemotherapeutic agents and two dyes". Bull. Environ. Contam. Toxicol. 28 (1): 1–2. doi:10.1007/BF01608403. PMID 7066538. 
  26. "Techniques: fruit flies as models for neuropharmacological research". Trends Pharmacol. Sci. 24 (1): 41–3. 2003. doi:10.1016/S0165-6147(02)00004-4. PMID 12498730. 
  27. Chapman, J. A.; Kirkness, E. F.; Simakov, O.; Hampson, S. E.; Mitros, T.; Weinmaier, T.; Rattei, T.; Balasubramanian, P. G. et al. (2010). "The dynamic genome of Hydra". Nature 464 (7288): 592–596. doi:10.1038/nature08830. PMID 20228792. Bibcode2010Natur.464..592C. 
  28. Fodor, István; Hussein, Ahmed AA; Benjamin, Paul R; Koene, Joris M; Pirger, Zsolt (16 June 2020). King, Stuart RF; Rodgers, Peter; Irisarri, Iker et al.. eds. "The unlimited potential of the great pond snail, Lymnaea stagnalis". eLife 9: e56962. doi:10.7554/eLife.56962. ISSN 2050-084X. PMID 32539932. 
  29. Ladurner, P; Schärer, L; Salvenmoser, W; Rieger, R (2005). "A new model organism among the lower Bilateria and the use of digital microscopy in taxonomy of meiobenthic Platyhelminthes: Macrostomum lignano, n. sp. (Rhabditophora, Macrostomorpha)". Journal of Zoological Systematics and Evolutionary Research 43 (2): 114–126. doi:10.1111/j.1439-0469.2005.00299.x. http://www3.interscience.wiley.com/journal/120712665/abstract. 
  30. Koshkina, Olga; Rheinberger, Timo; Flocke, Vera; Windfelder, Anton; Bouvain, Pascal; Hamelmann, Naomi M.; Paulusse, Jos M. J.; Gojzewski, Hubert et al. (2023-07-19). "Biodegradable polyphosphoester micelles act as both background-free 31P magnetic resonance imaging agents and drug nanocarriers" (in en). Nature Communications 14 (1): 4351. doi:10.1038/s41467-023-40089-0. ISSN 2041-1723. PMID 37468502. PMC 10356825. https://www.nature.com/articles/s41467-023-40089-0. 
  31. Windfelder, Anton G.; Müller, Frank H. H.; Mc Larney, Benedict; Hentschel, Michael; Böhringer, Anna Christina; von Bredow, Christoph-Rüdiger; Leinberger, Florian H.; Kampschulte, Marian et al. (2022-11-24). "High-throughput screening of caterpillars as a platform to study host–microbe interactions and enteric immunity" (in en). Nature Communications 13 (1): 7216. doi:10.1038/s41467-022-34865-7. ISSN 2041-1723. PMID 36433960. PMC 9700799. https://www.nature.com/articles/s41467-022-34865-7. 
  32. Windfelder, Anton G.; Steinbart, Jessica; Flögel, Ulrich; Scherberich, Jan; Kampschulte, Marian; Krombach, Gabriele A.; Vilcinskas, Andreas (June 2023). "A quantitative micro-tomographic gut atlas of the lepidopteran model insect Manduca sexta". iScience 26 (6): 106801. doi:10.1016/j.isci.2023.106801. ISSN 2589-0042. PMID 37378344. PMC 10291339. https://doi.org/10.1016/j.isci.2023.106801. 
  33. Pang, K.; Martindale, M. Q. (2008). "Ctenophores". Current Biology 18 (24): R1119–R1120. doi:10.1016/j.cub.2008.10.004. PMID 19108762. 
  34. Ryan, J. F.; Pang, K.; Comparative Sequencing Program; Mullikin, J. C.; Martindale, M. Q.; Baxevanis, A. D.; NISC Comparative Sequencing Program (2010). "The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to the ParaHoxozoa". EvoDevo 1 (1): 9. doi:10.1186/2041-9139-1-9. PMID 20920347. 
  35. Darling, J. A.; Reitzel, A. R.; Burton, P. M.; Mazza, M. E.; Ryan, J. F.; Sullivan, J. C.; Finnerty, J. R. (2005). "Rising starlet: the starlet sea anemone, Nematostella vectensis". BioEssays 27 (2): 211–221. doi:10.1002/bies.20181. PMID 15666346. 
  36. Putnam, N. H.; Srivastava, M.; Hellsten, U.; Dirks, B.; Chapman, J.; Salamov, A.; Terry, A.; Shapiro, H. et al. (2007). "Sea Anemone Genome Reveals Ancestral Eumetazoan Gene Repertoire and Genomic Organization". Science 317 (5834): 86–94. doi:10.1126/science.1139158. PMID 17615350. Bibcode2007Sci...317...86P. https://digital.library.unt.edu/ark:/67531/metadc884638/. 
  37. The Appendicularia Facility at the Sars International Centre for Marine Molecular Biology
  38. Cade, W. (26 December 1975). "Acoustically Orienting Parasitoids: Fly Phonotaxis to Cricket Song". Science 190 (4221): 1312–1313. doi:10.1126/science.190.4221.1312. ISSN 0036-8075. Bibcode1975Sci...190.1312C. 
  39. Wang, X.; Lavrov, D. V. (2006). "Mitochondrial Genome of the Homoscleromorph Oscarella carmela (Porifera, Demospongiae) Reveals Unexpected Complexity in the Common Ancestor of Sponges and Other Animals". Molecular Biology and Evolution 24 (2): 363–373. doi:10.1093/molbev/msl167. PMID 17090697. 
  40. Tessmar-Raible, K.; Arendt, D. (2003). "Emerging systems: Between vertebrates and arthropods, the Lophotrochozoa". Current Opinion in Genetics & Development 13 (4): 331–340. doi:10.1016/s0959-437x(03)00086-8. PMID 12888005. 
  41. Whiteman, Noah K.; Groen, Simon C.; Chevasco, Daniela; Bear, Ashley; Beckwith, Noor; Gregory, T. Ryan; Denoux, Carine; Mammarella, Nicole et al. (13 November 2010). "Mining the plant-herbivore interface with a leafmining Drosophila of Arabidopsis". Molecular Ecology 20 (5): 995–1014. doi:10.1111/j.1365-294x.2010.04901.x. PMID 21073583. 
  42. Srivastava, M.; Begovic, E.; Chapman, J.; Putnam, N. H.; Hellsten, U.; Kawashima, T.; Kuo, A.; Mitros, T. et al. (2008). "The Trichoplax genome and the nature of placozoans". Nature 454 (7207): 955–960. doi:10.1038/nature07191. PMID 18719581. Bibcode2008Natur.454..955S. https://cloudfront.escholarship.org/dist/prd/content/qt57r2q3hw/qt57r2q3hw.pdf. 
  43. "A sediment bioassay using the tubificid oligochaete worm Tubifex tubifex". Environ. Toxicol. Chem. 10 (8): 1061–72. 1991. doi:10.1002/etc.5620100811. 
  44. Kolb, E. M.; Rezende, E. L.; Holness, L.; Radtke, A.; Lee, S. K.; Obenaus, A.; Garland Jr, T (2013). "Mice selectively bred for high voluntary wheel running have larger midbrains: support for the mosaic model of brain evolution". Journal of Experimental Biology 216 (3): 515–523. doi:10.1242/jeb.076000. PMID 23325861. 
  45. Wallingford, J.; Liu, K.; Zheng, Y. (2010). "Xenopus". Current Biology 20 (6): R263–4. doi:10.1016/j.cub.2010.01.012. PMID 20334828. 
  46. Harland, R.M.; Grainger, R.M. (2011). "Xenopus research: metamorphosed by genetics and genomics". Trends in Genetics 27 (12): 507–15. doi:10.1016/j.tig.2011.08.003. PMID 21963197. 
  47. "The state of the art of the zebrafish model for toxicology and toxicologic pathology research—advantages and current limitations". Toxicol Pathol 31 (Suppl): 62–87. 2003. doi:10.1080/01926230390174959. PMID 12597434.