Chemistry:Dicobalt octacarbonyl

From HandWiki
Short description: Chemical compound
Dicobalt octacarbonyl
Dicobalt octacarbonyl, bridged C2v isomer
Dicobalt octacarbonyl.png
Co2(CO)8 soaked in hexanes
Names
IUPAC name
Octacarbonyldicobalt(Co—Co)
Other names
Cobalt carbonyl (2:8), di-mu-Carbonylhexacarbonyldicobalt, Cobalt octacarbonyl, Cobalt tetracarbonyl dimer, Dicobalt carbonyl, Octacarbonyldicobalt
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 233-514-0
RTECS number
  • GG0300000
UNII
UN number 3281
Properties
Co
2
(CO)
8
Molar mass 341.95 g/mol
Appearance red-orange crystals
Density 1.87 g/cm3
Melting point 51 to 52 °C (124 to 126 °F; 324 to 325 K)
Boiling point 52 °C (126 °F; 325 K) decomposes
insoluble
Vapor pressure 0.7 mmHg (20 °C)[1]
Structure
1.33 D (C2v isomer)
0 D (D3d isomer)
Hazards
Main hazards Potential carcinogen
Safety data sheet External SDS
GHS pictograms GHS02: FlammableGHS06: ToxicGHS07: HarmfulGHS08: Health hazard
GHS Signal word Danger
H251, H302, H304, H315, H317, H330, H351, H361, H412
P201, P260, P273, P280, P304+340+310, P403+233
NFPA 704 (fire diamond)
Flammability code 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineHealth code 4: Very short exposure could cause death or major residual injury. E.g. VX gasReactivity code 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no codeNFPA 704 four-colored diamond
3
4
1
Flash point -23 °C (-9.4 °F) [1]
Lethal dose or concentration (LD, LC):
15 mg/kg (oral, rat)
NIOSH (US health exposure limits):
PEL (Permissible)
none[1]
REL (Recommended)
TWA 0.1 mg/m3[1]
IDLH (Immediate danger)
N.D.[1]
Related compounds
Related metal carbonyls
Iron pentacarbonyl
Diiron nonacarbonyl
Nickel tetracarbonyl
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references

Dicobalt octacarbonyl is an organocobalt compound with composition Co
2
(CO)
8
. This metal carbonyl is used as a reagent and catalyst in organometallic chemistry and organic synthesis, and is central to much known organocobalt chemistry.[2][3] It is the parent member of a family of hydroformylation catalysts.[4] Each molecule consists of two cobalt atoms bound to eight carbon monoxide ligands, although multiple structural isomers are known.[5] Some of the carbonyl ligands are labile.

Synthesis, structure, properties

Dicobalt octacarbonyl an orange-colored, pyrophoric solid.[6] It is synthesised by the high pressure carbonylation of cobalt(II) salts:[6]

2 (CH
3
COO)
2
Co + 8 CO + 2 H
2
→ Co
2
(CO)
8
+ 4 CH
3
COOH

The preparation is often carried out in the presence of cyanide, converting the cobalt(II) salt into a pentacyanocobaltate(II) complex that reacts with carbon monoxide to yield K[Co(CO)
4
]
. Acidification produces cobalt tetracarbonyl hydride, HCo(CO)
4
, which degrades near room temperature to dicobalt octacarbonyl and hydrogen.[3][7] It can also be prepared by heating cobalt metal to above 250 °C in a stream of carbon monoxide gas at about 200 to 300 atm:[3]

2 Co + 8 CO → Co
2
(CO)
8

It exist as a mixture of rapidly interconverting isomers.[2][3] In solution, there are two isomers known that rapidly interconvert:[5]

Co2(CO)8NoCo-Co.png

The major isomer (on the left in the above equilibrium process) contains two bridging carbonyl ligands linking the cobalt centres and six terminal carbonyl ligands, three on each metal.[5] It can be summarised by the formula (CO)
3
Co(μ-CO)
2
Co(CO)
3
and has C2v symmetry. This structure resembles diiron nonacarbonyl (Fe
2
(CO)
9
) but with one fewer bridging carbonyl. The Co–Co distance is 2.52 Å, and the Co–COterminal and Co–CObridge distances are 1.80 and 1.90 Å, respectively.[8] Analysis of the bonding suggests the absence of a direct cobalt–cobalt bond.[9]

The minor isomer has no bridging carbonyl ligands, but instead has a direct bond between the cobalt centres and eight terminal carbonyl ligands, four on each metal atom.[5] It can be summarised by the formula (CO)
4
Co-Co(CO)
4
and has D4d symmetry. It features an unbridged cobalt–cobalt bond that is 2.70 Å in length in the solid structure when crystallized together with C60.[10]

Reactions

Reduction

Dicobalt octacarbonyl is reductively cleaved by alkali metals and related reagents, such as sodium amalgam. The resulting salts protonate to give tetracarbonyl cobalt hydride:[3]

Co
2
(CO)
8
+ 2 Na → 2 Na[Co(CO)
4
]
Na[Co(CO)
4
] + H+
→ H[Co(CO)
4
] + Na+

Salts of this form are also intermediates in the cyanide synthesis pathway for dicobalt octacarbonyl.[7]

Reactions with electrophiles

Halogens and related reagents cleave the Co–Co bond to give pentacoordinated halotetracarbonyls:

Co
2
(CO)
8
+ Br
2
→ 2 Br[Co(CO)
4
]

Cobalt tricarbonyl nitrosyl is produced by treatment of dicobalt octacarbonyl with nitric oxide:

Co
2
(CO)
8
+ 2 NO → 2 Co(CO)
3
NO + 2 CO

Reactions with alkynes

The Nicholas reaction is a substitution reaction whereby an alkoxy group located on the α-carbon of an alkyne is replaced by another nucleophile. The alkyne reacts first with dicobalt octacarbonyl, from which is generated a stabilized propargylic cation that reacts with the incoming nucleophile and the product then forms by oxidative demetallation.[11][12]

The Nicholas reaction

The Pauson–Khand reaction,[13] in which an alkyne, an alkene, and carbon monoxide cyclize to give a cyclopentenone, can be catalyzed by Co
2
(CO)
8
,[3][14] though newer methods that are more efficient have since been developed:[15][16]

Pauson Khand reaction original.svg

Co
2
(CO)
8
reacts with alkynes to form a stable covalent complex, which is useful as a protective group for the alkyne. This complex itself can also be used in the Pauson–Khand reaction.[13]

Intramolecular Pauson–Khand reactions, where the starting material contains both the alkene and alkyne moieties, are possible. In the asymmetric synthesis of the Lycopodium alkaloid huperzine-Q, Takayama and co-workers used an intramolecular Pauson–Khand reaction to cyclise an enyne containing a tert-butyldiphenylsilyl (TBDPS) protected primary alcohol.[17] The preparation of the cyclic siloxane moiety immediately prior to the introduction of the dicobalt octacarbonyl ensures that the product is formed with the desired conformation.[18]

Pauson-Khand reaction in synthesis of huperzine-Q.jpg
Catalytic cycle for the hydroformylation of a terminal alkene (RCH=CH
2
) to an aldehyde (RCH
2
CH
2
CHO
):[4]
Step 1: Dissociation of carbon monoxide from cobalt tetracarbonyl hydride to form HCo(CO)
3
, the active catalytic species
Step 2: The cobalt centre forms a π bond to the alkene
Step 3: Alkene ligand inserts into the cobalt–hydride bond
Step 4: Coordination of an additional carbonyl ligand
Step 5: Migratory insertion of a carbonyl ligand into the cobalt–alkyl bond, converting the alkyl tetracarbonyl intermediate into an acyl tricarbonyl species[19]
Step 6: Oxidative addition of dihydrogen leads to a dihydrido complex
Step 7: Aldehyde product released by reductive elimination,[20] regenerating the active catalytic species
Step 8: An unproductive and reversible side reaction

Dicobalt octacarbonyl can catalyze alkyne trimerisation of diphenylacetylene and its derivatives to hexaphenylbenzenes.[21] Symmetrical diphenylacetylenes form 6-substituted hexaphenylbenzenes, while asymmetrical diphenylacetylenes form a mixture of two isomers.[22] Symmetric diphenylacetylene cyclotrimerization using dicobalt octacarbonyl
Asymmetric diphenylacetylene cyclotrimerization using dicobalt octacarbonyl

Hydroformylation

Hydrogenation of Co
2
(CO)
8
produces cobalt tetracarbonyl hydride H[Co(CO)
4
]
:[23]

Co
2
(CO)
8
+ H
2
→ 2 H[Co(CO)
4
]

This hydride is a catalyst for hydroformylation – the conversion of alkenes to aldehydes.[4][23] The catalytic cycle for this hydroformylation is shown in the diagram.[4][19][20]

Substitution reactions

The CO ligands can be replaced with tertiary phosphine ligands to give Co
2
(CO)
8

x
(PR
3
)
x
. These bulky derivatives are more selective catalysts for hydroformylation reactions.[3] "Hard" Lewis bases, e.g. pyridine, cause disproportionation:

12 C
5
H
5
N + 3 Co
2
(CO)
8
→ 2 [Co(C
5
H
5
N)
6
][Co(CO)
4
]
2
+ 8 CO
Methylidynetricobaltnonacarbonyl, HCCo
3
(CO)
9
, an organocobalt cluster compound structurally related to tetracobalt dodecacarbonyl

Conversion to higher carbonyls

Heating causes decarbonylation and formation of tetracobalt dodecacarbonyl:[3][24]

2 Co
2
(CO)
8
→ Co
4
(CO)
12
+ 4 CO

Like many metal carbonyls, dicobalt octacarbonyl abstracts halides from alkyl halides. Upon reaction with bromoform, it converts to methylidynetricobaltnonacarbonyl, HCCo
3
(CO)
9
, by a reaction that can be idealised as:[25]

9 Co
2
(CO)
8
+ 4 CHBr
3
→ 4 HCCo
3
(CO)
9
+ 36 CO + 6 CoBr
2

Safety

Co
2
(CO)
8
a volatile source of cobalt(0), is pyrophoric and releases carbon monoxide upon decomposition.[26] The National Institute for Occupational Safety and Health has recommended that workers should not be exposed to concentrations greater than 0.1 mg/m3 over an eight-hour time-weighted average, without the proper respiratory gear.[27]

References

  1. 1.0 1.1 1.2 1.3 1.4 NIOSH Pocket Guide to Chemical Hazards. "#0147". National Institute for Occupational Safety and Health (NIOSH). https://www.cdc.gov/niosh/npg/npgd0147.html. 
  2. 2.0 2.1 Pauson, Peter L.; Stambuli, James P.; Chou, Teh-Chang; Hong, Bor-Cherng (2014). "Octacarbonyldicobalt". Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons. pp. 1–26. doi:10.1002/047084289X.ro001.pub3. ISBN 9780470842898. 
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Donaldson, John Dallas; Beyersmann, Detmar (2005). "Cobalt and Cobalt Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. doi:10.1002/14356007.a07_281.pub2. ISBN 3527306730. 
  4. 4.0 4.1 4.2 4.3 Elschenbroich, C.; Salzer, A. (1992). Organometallics: A Concise Introduction (2nd ed.). Weinheim: Wiley-VCH. ISBN 3-527-28165-7. 
  5. 5.0 5.1 5.2 5.3 Sweany, Ray L.; Brown, Theodore L. (1977). "Infrared spectra of matrix-isolated dicobalt octacarbonyl. Evidence for the third isomer". Inorganic Chemistry 16 (2): 415–421. doi:10.1021/ic50168a037. 
  6. 6.0 6.1 Gilmont, Paul; Blanchard, Arthur A. (1946). Dicobalt Octacarbonyl, Cobalt Nitrosyl Tricarbonyl, and Cobalt Tetracarbonyl Hydride. Inorganic Syntheses. 2. pp. 238–243. doi:10.1002/9780470132333.ch76. ISBN 9780470132333. 
  7. 7.0 7.1 Orchin, Milton (1953). "Hydrogenation of Organic Compounds with Synthesis Gas". Advances in Catalysis. 5. Academic Press. pp. 385–415. ISBN 9780080565095. https://books.google.com/books?id=f_Oiij4V98cC&pg=PA409. 
  8. Sumner, G. Gardner; Klug, Harold P.; Alexander, Leroy E. (1964). "The crystal structure of dicobalt octacarbonyl". Acta Crystallographica 17 (6): 732–742. doi:10.1107/S0365110X64001803. 
  9. Green, Jennifer C.; Green, Malcolm L. H.; Parkin, Gerard (2012). "The occurrence and representation of three-centre two-electron bonds in covalent inorganic compounds". Chemical Communications 2012 (94): 11481–11503. doi:10.1039/c2cc35304k. PMID 23047247. 
  10. Garcia, Thelma Y.; Fettinger, James C.; Olmstead, Marilyn M.; Balch, Alan L. (2009). "Splendid symmetry: Crystallization of an unbridged isomer of Co2(CO)8 in Co2(CO)8·C60". Chemical Communications 2009 (46): 7143–7145. doi:10.1039/b915083h. PMID 19921010. 
  11. Nicholas, Kenneth M. (1987). "Chemistry and synthetic utility of cobalt-complexed propargyl cations". Acc. Chem. Res. 20 (6): 207–214. doi:10.1021/ar00138a001. 
  12. Teobald, Barry J. (2002). "The Nicholas reaction: The use of dicobalt hexacarbonyl-stabilised propargylic cations in synthesis". Tetrahedron 58 (21): 4133–4170. doi:10.1016/S0040-4020(02)00315-0. 
  13. 13.0 13.1 Pauson, P. L.; Khand, I. U. (1977). "Uses of Cobalt-Carbonyl Acetylene Complexes in Organic Synthesis". Ann. N. Y. Acad. Sci. 295 (1): 2–14. doi:10.1111/j.1749-6632.1977.tb41819.x. Bibcode1977NYASA.295....2P. 
  14. Blanco-Urgoiti, Jaime; Añorbe, Loreto; Pérez-Serrano, Leticia; Domínguez, Gema; Pérez-Castells, Javier (2004). "The Pauson–Khand reaction, a powerful synthetic tool for the synthesis of complex molecules". Chem. Soc. Rev. 33 (1): 32–42. doi:10.1039/b300976a. PMID 14737507. 
  15. Schore, Neil E. (1991). "The Pauson–Khand Cycloaddition Reaction for Synthesis of Cyclopentenones". Org. React. 40: 1–90. doi:10.1002/0471264180.or040.01. ISBN 0471264180. 
  16. Gibson, Susan E.; Stevenazzi, Andrea (2003). "The Pauson–Khand Reaction: The Catalytic Age Is Here!". Angew. Chem. Int. Ed. 42 (16): 1800–1810. doi:10.1002/anie.200200547. PMID 12722067. 
  17. Nakayama, Atsushi; Kogure, Noriyuki; Kitajima, Mariko; Takayama, Hiromitsu (2011). "Asymmetric Total Synthesis of a Pentacyclic Lycopodium Alkaloid: Huperzine-Q". Angew. Chem. Int. Ed. 50 (35): 8025–8028. doi:10.1002/anie.201103550. PMID 21751323. 
  18. Ho, Tse-Lok (2016). "Dicobalt Octacarbonyl". Fiesers' Reagents for Organic Synthesis. 28. John Wiley & Sons. pp. 251–252. ISBN 9781118942819. https://books.google.com/books?id=AO3bCwAAQBAJ&pg=PA251. 
  19. 19.0 19.1 Heck, Richard F.; Breslow, David S. (1961). "The Reaction of Cobalt Hydrotetracarbonyl with Olefins". Journal of the American Chemical Society 83 (19): 4023–4027. doi:10.1021/ja01480a017. 
  20. 20.0 20.1 Halpern, Jack (2001). "Organometallic chemistry at the threshold of a new millennium. Retrospect and prospect.". Pure and Applied Chemistry 73 (2): 209–220. doi:10.1351/pac200173020209. 
  21. Vij, V.; Bhalla, V.; Kumar, M. (8 August 2016). "Hexaarylbenzene: Evolution of Properties and Applications of Multitalented Scaffold". Chemical Reviews 116 (16): 9565–9627. doi:10.1021/acs.chemrev.6b00144. 
  22. Xiao, W.; Feng, X.; Ruffieux, P.; Gröning, O.; Müllen, K.; Fasel, R. (18 June 2008). "Self-Assembly of Chiral Molecular Honeycomb Networks on Au(111)". Journal of the American Chemical Society 130 (28): 8910–8912. doi:10.1021/ja7106542. 
  23. 23.0 23.1 Pfeffer, M.; Grellier, M. (2007). "Cobalt Organometallics". Comprehensive Organometallic Chemistry III. 7. Elsevier. pp. 1–119. doi:10.1016/B0-08-045047-4/00096-0. ISBN 9780080450476. 
  24. Chini, P. (1968). "The closed metal carbonyl clusters". Inorganica Chimica Acta Reviews 2: 31–51. doi:10.1016/0073-8085(68)80013-0. 
  25. Nestle, Mara O.; Hallgren, John E.; Seyferth, Dietmar; Dawson, Peter; Robinson, Brian H. (2007). "μ3-Methylidyne and μ3-Benzylidyne-Tris(Tricarbonylcobalt)". Inorganic Syntheses. 20. 226–229. doi:10.1002/9780470132517.ch53. ISBN 9780470132517. 
  26. Cole Parmer MSDS
  27. CDC - NIOSH Pocket Guide to Chemical Hazards