Chemistry:Lithium diphenylphosphide

From HandWiki
Lithium diphenylphosphide
LiPPh2.png
Names
Preferred IUPAC name
Lithium diphenylphosphanide
Identifiers
3D model (JSmol)
ChemSpider
Properties
C12H10LiP
Molar mass 192.13 g·mol−1
Appearance pale yellow solid
Reacts with water
Solubility Ethers, hydrocarbons
Hazards
GHS pictograms GHS05: CorrosiveGHS07: HarmfulGHS09: Environmental hazard
GHS Signal word Danger
H302, H312, H314, H332, H410
P260, P261, P264, P270, P271, P273, P280, P301+312, P301+330+331, P302+352, P303+361+353, P304+312, P304+340, P305+351+338, P310, P312, P321, P322, P330, P363, P391, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references
Tracking categories (test):

Lithium diphenylphosphide contains lithium and the organophosphorus anion with the formula (C
6
H
5
)
2
PLi
. It is an air-sensitive solid that is used in the preparation of diphenylphosphino compounds. As an ether complex, the lithium salt is dark red.

Synthesis and reactions

The lithium, sodium, and potassium salts are prepared by reduction of chlorodiphenylphosphine,[1] triphenylphosphine,[2][3] or tetraphenyldiphosphine with alkali metals (M):

(C
6
H
5
)
2
PCl + 2 M → (C
6
H
5
)
2
PM + MCl
(C
6
H
5
)
3
P + 2 M → (C
6
H
5
)
2
PM + MC
6
H
5
(C
6
H
5
)
4
P
2
+ 2 M → 2 (C
6
H
5
)
2
PM

They can also be obtained by deprotonation of diphenylphosphine.

With water, the salts convert to diphenylphosphine:[3]

(C
6
H
5
)
2
PLi + H
2
O → (C
6
H
5
)
2
PH + LiOH

With halocarbons, the salts react to give tertiary phosphines:[4]

(C
6
H
5
)
2
PM + RX → (C
6
H
5
)
2
PR + MX

When treated with metal halides, lithium diphenylphosphide gives transition metal phosphido complexes.

Structure

Although treated as salts, alkali diphenylphosphides are highly aggregated in solution. They adopt polymeric structures as solids.

Related compounds

  • Sodium diphenylphosphide (CAS RN 4376-01-6)
  • Potassium diphenylphosphide (CAS RN 15475-27-1)

References

  1. Goldsberry, R.; Cohn, Kim; Hawthorne, M. F.; Dunks, G. B.; Wilson, R. J. (1972). "Inorganic Syntheses". in Cotton, F. A.. Inorganic Syntheses. 13. pp. 26–32. doi:10.1002/9780470132449.ch7. ISBN 9780470132449. 
  2. Luther, George W. III; Beyerle, Gordon; Cox, Daniel; Cohn, Kim (1977). "Inorganic Syntheses". in MacDiarmid, Alan G.. Inorganic Syntheses. 17. pp. 186–188. doi:10.1002/9780470132487.ch51. ISBN 9780470132487. 
  3. 3.0 3.1 Bianco, V. D.; Doronzo, S.; Chan, J.; Bennett, M. A. (1976). "Inorganic Syntheses". in Basolo, Fred. Inorganic Syntheses. 16. pp. 161–188. doi:10.1002/9780470132470.ch43. ISBN 9780470132470. 
  4. Levason, W.; Mcauliffe, C. A.; Barth, R. C.; Grim, S. O. (1976). "Inorganic Syntheses". in Basolo, Fred. Inorganic Syntheses. 16. pp. 188–192. doi:10.1002/9780470132470.ch50. ISBN 9780470132470.