Chemistry:Lithium hydroxide

From HandWiki
Lithium hydroxide
Lithiumhydroxide t.png
Lithium hydroxide
Kristallstruktur Lithiumhydroxid.png
     Li+
          O2−          H+
Lithium-hydroxide.jpg
Names
IUPAC name
Lithium hydroxide
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
68415
RTECS number
  • OJ6307070
UNII
UN number 2680
Properties
LiOH
Molar mass
  • 23.95 g/mol (anhydrous)
  • 41.96 g/mol (monohydrate)
Appearance Hygroscopic white solid
Odor none
Density
  • 1.46 g/cm3 (anhydrous)
  • 1.51 g/cm3 (monohydrate)
Melting point 462 °C (864 °F; 735 K)
Boiling point 924 °C (1,695 °F; 1,197 K) (decomposes)
  • anhydrous:
  • 12.7 g/(100 mL) (0 °C)
  • 12.8 g/(100 mL) (20 °C)
  • 17.5 g/(100 mL) (100 °C)

  • monohydrate:
  • 22.3 g/(100 mL) (10 °C)
  • 26.8 g/(100 mL) (80 °C)[1]
Solubility in methanol
  • 9.76 g/(100 g) (anhydrous; 20 °C, 48 hours mixing)
  • 13.69 g/(100 g) (monohydrate; 20 °C, 48 hours mixing)[2]
Solubility in ethanol
  • 2.36 g/(100 g) (anhydrous; 20 °C, 48 hours mixing)
  • 2.18 g/(100 g) (monohydrate; 20 °C, 48 hours mixing)[2]
Solubility in isopropanol
  • 0 g/(100 g) (anhydrous; 20 °C, 48 hours mixing)
  • 0.11 g/(100 g) (monohydrate; 20 °C, 48 hours mixing)[2]
Acidity (pKa) 14.4[3]
Conjugate base Lithium monoxide anion
−12.3·10−6 cm3/mol
  • 1.464 (anhydrous)
  • 1.460 (monohydrate)
4.754 D[4]
Thermochemistry[5]
49.6 J/(mol·K)
42.8 J/(mol·K)
−487.5 kJ/mol
−441.5 kJ/mol
Enthalpy of fusion fHfus)
20.9 kJ/mol (at melting point)
Hazards
Main hazards Corrosive
Safety data sheet "ICSC 0913". http://www.inchem.org/documents/icsc/icsc/eics0913.htm. 
"ICSC 0914". http://www.inchem.org/documents/icsc/icsc/eics0914.htm.  (monohydrate)
NFPA 704 (fire diamond)
Flammability code 0: Will not burn. E.g. waterHealth code 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasReactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no codeNFPA 704 four-colored diamond
0
3
0
Flash point Non-flammable
Lethal dose or concentration (LD, LC):
210 mg/kg (oral, rat)[6]
Related compounds
Other anions
Lithium amide
Other cations
Related compounds
Lithium oxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references
Tracking categories (test):

Lithium hydroxide is an inorganic compound with the formula LiOH. It can exist as anhydrous or hydrated, and both forms are white hygroscopic solids. They are soluble in water and slightly soluble in ethanol. Both are available commercially. While classified as a strong base, lithium hydroxide is the weakest known alkali metal hydroxide.

Production

The preferred feedstock is hard-rock spodumene, where the lithium content is expressed as % lithium oxide.

Lithium carbonate route

Lithium hydroxide is often produced industrially from lithium carbonate in a metathesis reaction with calcium hydroxide:[7]

Li
2
CO
3
+ Ca(OH)
2
→ 2 LiOH + CaCO
3

The initially produced hydrate is dehydrated by heating under vacuum up to 180 °C.

Lithium sulfate route

An alternative route involves the intermediacy of lithium sulfate:[8][9]

α-spodumene → β-spodumene
β-spodumene + CaO → Li
2
O
+ ...
Li
2
O + H
2
SO
4
→ Li
2
SO
4
+ H
2
O
Li
2
SO
4
+ 2 NaOH → Na
2
SO
4
+ 2 LiOH

The main by-products are gypsum and sodium sulphate, which have some market value.

Commercial setting

According to Bloomberg, Ganfeng Lithium Co. Ltd.[10] (GFL or Ganfeng)[11] and Albemarle were the largest producers in 2020 with around 25kt/y, followed by Livent Corporation (FMC) and SQM.[10] Significant new capacity is planned, to keep pace with demand driven by vehicle electrification. Ganfeng are to expand lithium chemical capacity to 85,000 tons, adding the capacity leased from Jiangte, Ganfeng will become the largest lithium hydroxide producer globally in 2021.[10]

Albemarle's Kemerton WA plant, originally planned to deliver 100kt/y has been scaled back to 50kt/y.[12]

In 2020 Tianqi Lithium's, plant in Kwinana, Western Australia is the largest producer, with a capacity of 48kt/y.[13]

Applications

Lithium ion batteries

Lithium hydroxide is mainly consumed in the production of cathode materials for lithium ion batteries such as lithium cobalt oxide (LiCoO
2
) and lithium iron phosphate. It is preferred over lithium carbonate as a precursor for lithium nickel manganese cobalt oxides.[14]

Grease

A popular lithium grease thickener is lithium 12-hydroxystearate, which produces a general-purpose lubricating grease due to its high resistance to water and usefulness at a range of temperatures.

Carbon dioxide scrubbing

Main page: Physics:Carbon dioxide scrubber

Lithium hydroxide is used in breathing gas purification systems for spacecraft, submarines, and rebreathers to remove carbon dioxide from exhaled gas by producing lithium carbonate and water:[15]

2 LiOH · H2O + CO
2
→ Li
2
CO
3
+ 3 H
2
O

or

2 LiOH + CO
2
→ Li
2
CO
3
+ H
2
O

The latter, anhydrous hydroxide, is preferred for its lower mass and lesser water production for respirator systems in spacecraft. One gram of anhydrous lithium hydroxide can remove 450 cm3 of carbon dioxide gas. The monohydrate loses its water at 100–110 °C.

Precursor

Lithium hydroxide, together with lithium carbonate, is a key intermediates used for the production of other lithium compounds, illustrated by its use in the production of lithium fluoride:[7]

LiOH + HF → LiF + H
2
O

Other uses

It is also used in ceramics and some Portland cement formulations, where it is also used to suppress ASR (concrete cancer).[16]

Lithium hydroxide (isotopically enriched in lithium-7) is used to alkalize the reactor coolant in pressurized water reactors for corrosion control.[17] It is good radiation protection against free neutrons.

Price

In 2012, the price of lithium hydroxide was about $5-6/kg.[18]

In December 2020 it had risen to $9/kg[19]

On 18 March 2021 the price had risen to US$11.50/kg[20]

See also

References

  1. Lide, David R., ed (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, FL: CRC Press. ISBN 0-8493-0487-3. 
  2. 2.0 2.1 2.2 Khosravi, Javad (2007). Production of Lithium Peroxide and Lithium Oxide in an Alcohol Medium. Chapter 9: Results. ISBN 978-0-494-38597-5. 
  3. "7Li, 23Na, 39K and 133Cs NMR comparative equilibrium study of alkali metal cation hydroxide complexes in aqueous solutions. First numerical value for CsOH formation". Inorganic Chemistry Communications 5 (3): 223–225. 2002. doi:10.1016/S1387-7003(02)00335-0. https://www.infona.pl/resource/bwmeta1.element.elsevier-40fb73c1-ba37-32e0-914e-b264c7c0539b. Retrieved 2017-01-21. 
  4. CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data.. William M. Haynes, David R. Lide, Thomas J. Bruno (2016-2017, 97th ed.). Boca Raton, Florida. 2016. ISBN 978-1-4987-5428-6. OCLC 930681942. https://www.worldcat.org/oclc/930681942. 
  5. CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data.. William M. Haynes, David R. Lide, Thomas J. Bruno (2016-2017, 97th ed.). Boca Raton, Florida. 2016. ISBN 978-1-4987-5428-6. OCLC 930681942. https://www.worldcat.org/oclc/930681942. 
  6. Chambers, Michael. "ChemIDplus – 1310-65-2 – WMFOQBRAJBCJND-UHFFFAOYSA-M – Lithium hydroxide anhydrous – Similar structures search, synonyms, formulas, resource links, and other chemical information". https://chem.nlm.nih.gov/chemidplus/rn/1310-65-2. 
  7. 7.0 7.1 "Ullmann's Encyclopedia of Industrial Chemistry". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. 2000. doi:10.1002/14356007.a15_393. 
  8. "Proposed Albemarle Plant Site". https://www.albemarle.com/storage/wysiwyg/alb_kemerton_literature_051618_a4_fnl.pdf. 
  9. "Corporate presentation". May 2018. https://www.nemaskalithium.com/assets/documents/docs/NMX_CorporatePresentation_May.pdf. 
  10. 10.0 10.1 10.2 "China's Ganfeng to Be Largest Lithium Hydroxide Producer". 10 September 2020. https://about.bnef.com/blog/chinas-ganfeng-to-be-largest-lithium-hydroxide-producer/. 
  11. "Ganfeng Lithium Group". http://www.ganfenglithium.com/about1_en.html. 
  12. Stephens, Kate; Lynch, Jacqueline (27 August 2020). "Slowing demand for lithium sees WA's largest refinery scaled back" (in en-AU). www.abc.net.au. https://www.abc.net.au/news/2020-08-27/wa-lithium-refinery-hiring-fewer-workers-than-expected/12599184. 
  13. "Largest of its kind lithium hydroxide plant launched in Kwinana". 10 September 2019. https://www.mediastatements.wa.gov.au/Pages/McGowan/2019/09/Largest-of-its-kind-lithium-hydroxide-plant-launched-in-Kwinana.aspx. 
  14. Barrera, Priscilla (27 June 2019). "Will Lithium Hydroxide Really Overtake Lithium Carbonate? | INN". https://investingnews.com/daily/resource-investing/battery-metals-investing/lithium-investing/will-lithium-hydroxide-overtake-lithium-carbonate/. 
  15. "The Behavior and Capabilities of Lithium Hydroxide Carbon Dioxide Scrubbers in a Deep Sea Environment". US Naval Academy Technical Report. 1989. USNA-TSPR-157. http://archive.rubicon-foundation.org/4998. Retrieved 2008-06-17. 
  16. "Effects of lithium salts on ASR gel composition and expansion of mortars". Cement and Concrete Research 33 (6): 913–919. 2003. doi:10.1016/S0008-8846(02)01092-X. https://www.osti.gov/biblio/20658311. Retrieved 2022-10-17. 
  17. Managing Critical Isotopes: Stewardship of Lithium-7 Is Needed to Ensure a Stable Supply, GAO-13-716 // U.S. Government Accountability Office, 19 September 2013; pdf
  18. "Lithium Prices 2012". Investing News Network. 14 June 2012. http://investingnews.com/daily/resource-investing/energy-investing/lithium-investing/lithium-prices-2012/. 
  19. "London Metal Exchange: Lithium prices". https://www.lme.com/Metals/Minor-metals/Lithium-prices#tabIndex=0. 
  20. "LITHIUM AT THE LME". 18 March 2021. https://www.lme.com/Metals/Minor-metals/Lithium-prices#tabIndex=0. 

External links