Physics:Isotopes of bromine

From HandWiki
(Redirected from Physics:Bromine-95)
Short description: Nuclides with atomic number of 35 but with different mass numbers
Main isotopes of Chemistry:bromine (35Br)
Iso­tope Decay
abun­dance half-life (t1/2) mode pro­duct
79Br 51% stable
81Br 49% stable
Standard atomic weight Ar, standard(Br)
  • [79.901, 79.907][1]
  • Conventional: 79.904
view · talk · edit

Bromine (35Br) has two stable isotopes, 79Br and 81Br, and 32 known radioisotopes, the most stable of which is 77Br, with a half-life of 57.036 hours.

Like the radioactive isotopes of iodine, radioisotopes of bromine, collectively radiobromine, can be used to label biomolecules for nuclear medicine; for example, the positron emitters 75Br and 76Br can be used for positron emission tomography.[2][3] Radiobromine has the advantage that organobromides are more stable than analogous organoiodides, and that it is not uptaken by the thyroid like iodine.[4]

List of isotopes

Nuclide
[n 1]
Z N Isotopic mass (u)
[n 2][n 3]
Half-life
Decay
mode

[n 4]
Daughter
isotope

[n 5][n 6]
Spin and
parity
[n 7][n 8]
Physics:Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
68Br[5] 35 33 67.95836(28)# ~35 ns p? 67Se 3+#
69Br 35 34 68.950338(45) <19 ns[5] p 68Se (5/2−)
70Br 35 35 69.944792(16) 78.8(3) ms β+ 70Se 0+
β+, p? 69As
70mBr 2292.3(8) keV 2.16(5) s β+ 70Se 9+
β+, p? 69As
71Br 35 36 70.9393422(58) 21.4(6) s β+ 71Se (5/2)−
72Br 35 37 71.9365946(11) 78.6(24) s β+ 72Se 1+
72mBr 100.76(15) keV 10.6(3) s IT 72Br (3-)
β+? 72Se
73Br 35 38 72.9316734(72) 3.4(2) min β+ 73Se 1/2−
74Br 35 39 73.9299103(63) 25.4(3) min β+ 74Se (0−)
74mBr 13.58(21) keV 46(2) min β+ 74Se 4+
75Br 35 40 74.9258106(46) 96.7(13) min β+ (76%)[4] 75Se 3/2−
EC (24%) 76Se
76Br 35 41 75.924542(10) 16.2(2) h β+ (57%)[4] 76Se 1−
EC (43%) 76Se
76mBr 102.58(3) keV 1.31(2) s IT (>99.4%) 76Br (4)+
β+ (<0.6%) 76Se
77Br 35 42 76.9213792(30) 57.04(12) h EC (99.3%)[6] 77Se 3/2−
β+ (0.7%) 77Se
77mBr 105.86(8) keV 4.28(10) min IT 77Br 9/2+
78Br 35 43 77.9211459(38) 6.45(4) min β+ (>99.99%) 78Se 1+
β (<0.01%) 78Kr
78mBr 180.89(13) keV 119.4(10) μs IT 78Br (4+)
79Br 35 44 78.9183376(11) Stable 3/2− 0.5065(9)
79mBr 207.61(9) keV 4.85(4) s IT 79Br 9/2+
80Br 35 45 79.9185298(11) 17.68(2) min β (91.7%) 80Kr 1+
β+ (8.3%) 80Se
80mBr 85.843(4) keV 4.4205(8) h IT 80Br 5−
81Br 35 46 80.9162882(10) Stable 3/2− 0.4935(9)
81mBr 536.20(9) keV 34.6(28) μs IT 81Br 9/2+
82Br 35 47 81.9168018(10) 35.282(7) h β 82Kr 5−
82mBr 45.9492(10) keV 6.13(5) min IT (97.6%) 82Br 2−
β (2.4%) 82Kr
83Br 35 48 82.9151753(41) 2.374(4) h β 83Kr 3/2−
83mBr 3069.2(4) keV 729(77) ns IT 83Br (19/2−)
84Br 35 49 83.916496(28) 31.76(8) min β 84Kr 2−
84m1 310(100) keV 6.0(2) min β 84Kr (6)−
84m2Br 408.2(4) keV <140 ns IT 84Br 1+
85Br 35 50 84.9156458(33) 2.90(6) min β 85Kr 3/2−
86Br 35 51 85.9188054(33) 55.1(4) s β 86Kr (1−)
87Br 35 52 86.9206740(34) 55.68(12) s β (97.40%) 87Kr 5/2−
β, n (2.60%) 86Kr
88Br 35 53 87.9240833(34) 16.34(8) s β (93.42%) 88Kr (1−)
β, n (6.58%) 87Kr
88mBr 270.17(11) keV 5.51(4) μs IT 88Br (4−)
89Br 35 54 88.9267046(35) 4.357(22) s β (86.2%) 89Kr (3/2−, 5/2−)
β, n (13.8%) 88Kr
90Br 35 55 89.9312928(36) 1.910(10) s β (74.7%) 90Kr
β, n (25.3%) 89Kr
91Br 35 56 90.9343986(38) 543(4) ms β (70.5%) 91Kr 5/2−#
β, n (29.5%) 90Kr
92Br 35 57 91.9396316(72) 314(16) ms β (66.9%) 92Kr (2−)
β, n (33.1%) 91Kr
β, 2n? 90Kr
92m1Br 662(1) keV 88(8) ns IT 92Br
92m2Br 1138(1) keV 85(10) ns IT 92Br
93Br 35 58 92.94322(46) 152(8) ms β, n (64%) 92Kr 5/2−#
β (36%) 93Kr
β, 2n? 91Kr
94Br 35 59 93.94885(22)# 70(20) ms β, n (68%) 93Kr 2−#
β (32%) 94Kr
β, 2n? 92Kr
94mBr 294.6(5) keV 530(15) ns IT 94Br
95Br 35 60 94.95293(32)# 80# ms [>300 ns] β? 95Kr 5/2−#
β, n? 94Kr
β, 2n? 93Kr
95mBr 537.9(5) keV 6.8(10) μs IT 95Br
96Br 35 61 95.95898(32)# 20# ms [>300 ns] β? 96Kr
β, n? 95Kr
β, 2n? 94Kr
96mBr 311.5(5) keV 3.0(9) μs IT 95Br
97Br 35 62 96.96350(43)# 40# ms [>300 ns] β? 97Kr 5/2−#
β, n? 96Kr
β, 2n? 95Kr
98Br 35 63 97.96989(43)# 15# ms [>400 ns] β? 98Kr
β, n? 97Kr
β, 2n? 96Kr
101Br[7] 35 66
  1. mBr – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Modes of decay:
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  5. Bold italics symbol as daughter – Daughter product is nearly stable.
  6. Bold symbol as daughter – Daughter product is stable.
  7. ( ) spin value – Indicates spin with weak assignment arguments.
  8. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

Bromine-75

Bromine-75 has a half-life of 97 minutes.[8] This isotope undergoes β+ decay rather than electron capture about 76% of the time,[4] so it was used for diagnosis and positron emission tomography (PET) in the 1980s.[2] However, its decay product, selenium-75, produces secondary radioactivity with a longer half-life of 120.4 days.[4][2]

Bromine-76

Bromine-76 has a half-life of 16.2 hours.[8] While its decay is more energetic than 75Br and has lower yield of positrons (about 57% of decays),[4] bromine-76 has been preferred in PET applications since the 1980s because of its longer half-life and easier synthesis, and because its decay product, 76Se, is not radioactive.[3]

Bromine-77

Bromine-77 is the most stable radioisotope of bromine, with a half-life of 57 hours.[8] Although β+ decay is possible for this isotope, about 99.3% of decays are by electron capture.[6] Despite its complex emission spectrum, featuring strong gamma-ray emissions at 239, 297, 521, and 579 keV,[9] 77Br was used in SPECT imaging in the 1970s,[10] but except for longer-term tracing,[4] this is no longer considered practical due to the difficult collimator requirements and the proximity of the 521 keV line to the 511 keV annihilation radiation related to the β+ decay.[10] However, the auger electrons emitted during decay are well-suited for radiotherapy, and it can possibly be paired with the imaging-suited 76Br (produced as an impurity in common synthesis routes) for this application.[2][10]

References

  1. Meija, Juris; Coplen, Tyler B.; Berglund, Michael; Brand, Willi A.; De Bièvre, Paul; Gröning, Manfred; Holden, Norman E.; Irrgeher, Johanna et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry 88 (3): 265–91. doi:10.1515/pac-2015-0305. 
  2. 2.0 2.1 2.2 2.3 Coenen, Heinz H.; Ermert, Johannes (January 2021). "Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18". Nuclear Medicine and Biology 92: 241–269. doi:10.1016/j.nucmedbio.2020.07.003. 
  3. 3.0 3.1 Welch, Michael J.; Mcelvany, Karen D. (1 October 1983). "Radionuclides of Bromine for Use in Biomedical Studies". ract 34 (1-2): 41–46. doi:10.1524/ract.1983.34.12.41. 
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 Lambert, F.; Slegers, G.; Hermanne, α.; Mertens, J. (1 June 1994). "Production and Purification of 77 Br Suitable for Labeling Monoclonal Antibodies Used in Tumor Imaging". ract 65 (4): 223–226. doi:10.1524/ract.1994.65.4.223. 
  5. 5.0 5.1 Wimmer, K. (2019). "Discovery of 68Br in secondary reactions of radioactive beams". Physics Letters B 795: 266–270. doi:10.1016/j.physletb.2019.06.014. Bibcode2019PhLB..795..266W. https://www.researchgate.net/publication/333741107. 
  6. 6.0 6.1 Kassis, A. I.; Adelstein, S. J.; Haydock, C.; Sastry, K. S. R.; McElvany, K. D.; Welch, M. J. (May 1982). "Lethality of Auger Electrons from the Decay of Bromine-77 in the DNA of Mammalian Cells". Radiation Research 90 (2): 362. doi:10.2307/3575714. ISSN 0033-7587. https://www.jstor.org/stable/pdf/3575714.pdf. 
  7. Sumikama, T. et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of Zr110". Physical Review C 103 (1): 014614. doi:10.1103/PhysRevC.103.014614. Bibcode2021PhRvC.103a4614S. https://journals.aps.org/prc/abstract/10.1103/PhysRevC.103.014614. 
  8. 8.0 8.1 8.2 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties". Chinese Physics C 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf. 
  9. Singh, Balraj; Nica, Ninel (May 2012). "Nuclear Data Sheets for A = 77". Nuclear Data Sheets 113 (5): 1115–1314. doi:10.1016/j.nds.2012.05.001. 
  10. 10.0 10.1 10.2 Amjed, N.; Kaleem, N.; Wajid, A.M.; Naz, A.; Ahmad, I. (January 2024). "Evaluation of the cross section data for the low and medium energy cyclotron production of 77Br radionuclide". Radiation Physics and Chemistry 214: 111286. doi:10.1016/j.radphyschem.2023.111286.