Physics:Isotopes of bromine
| ||||||||||||||||||||||||
Standard atomic weight Ar, standard(Br) |
| |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bromine (35Br) has two stable isotopes, 79Br and 81Br, and 32 known radioisotopes, the most stable of which is 77Br, with a half-life of 57.036 hours.
Like the radioactive isotopes of iodine, radioisotopes of bromine, collectively radiobromine, can be used to label biomolecules for nuclear medicine; for example, the positron emitters 75Br and 76Br can be used for positron emission tomography.[2][3] Radiobromine has the advantage that organobromides are more stable than analogous organoiodides, and that it is not uptaken by the thyroid like iodine.[4]
List of isotopes
Nuclide [n 1] |
Z | N | Isotopic mass (u) [n 2][n 3] |
Half-life |
Decay mode [n 4] |
Daughter isotope [n 5][n 6] |
Spin and parity [n 7][n 8] |
Physics:Natural abundance (mole fraction) | |
---|---|---|---|---|---|---|---|---|---|
Excitation energy | Normal proportion | Range of variation | |||||||
68Br[5] | 35 | 33 | 67.95836(28)# | ~35 ns | p? | 67Se | 3+# | ||
69Br | 35 | 34 | 68.950338(45) | <19 ns[5] | p | 68Se | (5/2−) | ||
70Br | 35 | 35 | 69.944792(16) | 78.8(3) ms | β+ | 70Se | 0+ | ||
β+, p? | 69As | ||||||||
70mBr | 2292.3(8) keV | 2.16(5) s | β+ | 70Se | 9+ | ||||
β+, p? | 69As | ||||||||
71Br | 35 | 36 | 70.9393422(58) | 21.4(6) s | β+ | 71Se | (5/2)− | ||
72Br | 35 | 37 | 71.9365946(11) | 78.6(24) s | β+ | 72Se | 1+ | ||
72mBr | 100.76(15) keV | 10.6(3) s | IT | 72Br | (3-) | ||||
β+? | 72Se | ||||||||
73Br | 35 | 38 | 72.9316734(72) | 3.4(2) min | β+ | 73Se | 1/2− | ||
74Br | 35 | 39 | 73.9299103(63) | 25.4(3) min | β+ | 74Se | (0−) | ||
74mBr | 13.58(21) keV | 46(2) min | β+ | 74Se | 4+ | ||||
75Br | 35 | 40 | 74.9258106(46) | 96.7(13) min | β+ (76%)[4] | 75Se | 3/2− | ||
EC (24%) | 76Se | ||||||||
76Br | 35 | 41 | 75.924542(10) | 16.2(2) h | β+ (57%)[4] | 76Se | 1− | ||
EC (43%) | 76Se | ||||||||
76mBr | 102.58(3) keV | 1.31(2) s | IT (>99.4%) | 76Br | (4)+ | ||||
β+ (<0.6%) | 76Se | ||||||||
77Br | 35 | 42 | 76.9213792(30) | 57.04(12) h | EC (99.3%)[6] | 77Se | 3/2− | ||
β+ (0.7%) | 77Se | ||||||||
77mBr | 105.86(8) keV | 4.28(10) min | IT | 77Br | 9/2+ | ||||
78Br | 35 | 43 | 77.9211459(38) | 6.45(4) min | β+ (>99.99%) | 78Se | 1+ | ||
β− (<0.01%) | 78Kr | ||||||||
78mBr | 180.89(13) keV | 119.4(10) μs | IT | 78Br | (4+) | ||||
79Br | 35 | 44 | 78.9183376(11) | Stable | 3/2− | 0.5065(9) | |||
79mBr | 207.61(9) keV | 4.85(4) s | IT | 79Br | 9/2+ | ||||
80Br | 35 | 45 | 79.9185298(11) | 17.68(2) min | β− (91.7%) | 80Kr | 1+ | ||
β+ (8.3%) | 80Se | ||||||||
80mBr | 85.843(4) keV | 4.4205(8) h | IT | 80Br | 5− | ||||
81Br | 35 | 46 | 80.9162882(10) | Stable | 3/2− | 0.4935(9) | |||
81mBr | 536.20(9) keV | 34.6(28) μs | IT | 81Br | 9/2+ | ||||
82Br | 35 | 47 | 81.9168018(10) | 35.282(7) h | β− | 82Kr | 5− | ||
82mBr | 45.9492(10) keV | 6.13(5) min | IT (97.6%) | 82Br | 2− | ||||
β− (2.4%) | 82Kr | ||||||||
83Br | 35 | 48 | 82.9151753(41) | 2.374(4) h | β− | 83Kr | 3/2− | ||
83mBr | 3069.2(4) keV | 729(77) ns | IT | 83Br | (19/2−) | ||||
84Br | 35 | 49 | 83.916496(28) | 31.76(8) min | β− | 84Kr | 2− | ||
84m1 | 310(100) keV | 6.0(2) min | β− | 84Kr | (6)− | ||||
84m2Br | 408.2(4) keV | <140 ns | IT | 84Br | 1+ | ||||
85Br | 35 | 50 | 84.9156458(33) | 2.90(6) min | β− | 85Kr | 3/2− | ||
86Br | 35 | 51 | 85.9188054(33) | 55.1(4) s | β− | 86Kr | (1−) | ||
87Br | 35 | 52 | 86.9206740(34) | 55.68(12) s | β− (97.40%) | 87Kr | 5/2− | ||
β−, n (2.60%) | 86Kr | ||||||||
88Br | 35 | 53 | 87.9240833(34) | 16.34(8) s | β− (93.42%) | 88Kr | (1−) | ||
β−, n (6.58%) | 87Kr | ||||||||
88mBr | 270.17(11) keV | 5.51(4) μs | IT | 88Br | (4−) | ||||
89Br | 35 | 54 | 88.9267046(35) | 4.357(22) s | β− (86.2%) | 89Kr | (3/2−, 5/2−) | ||
β−, n (13.8%) | 88Kr | ||||||||
90Br | 35 | 55 | 89.9312928(36) | 1.910(10) s | β− (74.7%) | 90Kr | |||
β−, n (25.3%) | 89Kr | ||||||||
91Br | 35 | 56 | 90.9343986(38) | 543(4) ms | β− (70.5%) | 91Kr | 5/2−# | ||
β−, n (29.5%) | 90Kr | ||||||||
92Br | 35 | 57 | 91.9396316(72) | 314(16) ms | β− (66.9%) | 92Kr | (2−) | ||
β−, n (33.1%) | 91Kr | ||||||||
β−, 2n? | 90Kr | ||||||||
92m1Br | 662(1) keV | 88(8) ns | IT | 92Br | |||||
92m2Br | 1138(1) keV | 85(10) ns | IT | 92Br | |||||
93Br | 35 | 58 | 92.94322(46) | 152(8) ms | β−, n (64%) | 92Kr | 5/2−# | ||
β− (36%) | 93Kr | ||||||||
β−, 2n? | 91Kr | ||||||||
94Br | 35 | 59 | 93.94885(22)# | 70(20) ms | β−, n (68%) | 93Kr | 2−# | ||
β− (32%) | 94Kr | ||||||||
β−, 2n? | 92Kr | ||||||||
94mBr | 294.6(5) keV | 530(15) ns | IT | 94Br | |||||
95Br | 35 | 60 | 94.95293(32)# | 80# ms [>300 ns] | β−? | 95Kr | 5/2−# | ||
β−, n? | 94Kr | ||||||||
β−, 2n? | 93Kr | ||||||||
95mBr | 537.9(5) keV | 6.8(10) μs | IT | 95Br | |||||
96Br | 35 | 61 | 95.95898(32)# | 20# ms [>300 ns] | β−? | 96Kr | |||
β−, n? | 95Kr | ||||||||
β−, 2n? | 94Kr | ||||||||
96mBr | 311.5(5) keV | 3.0(9) μs | IT | 95Br | |||||
97Br | 35 | 62 | 96.96350(43)# | 40# ms [>300 ns] | β−? | 97Kr | 5/2−# | ||
β−, n? | 96Kr | ||||||||
β−, 2n? | 95Kr | ||||||||
98Br | 35 | 63 | 97.96989(43)# | 15# ms [>400 ns] | β−? | 98Kr | |||
β−, n? | 97Kr | ||||||||
β−, 2n? | 96Kr | ||||||||
101Br[7] | 35 | 66 |
- ↑ mBr – Excited nuclear isomer.
- ↑ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- ↑ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- ↑
Modes of decay:
IT: Isomeric transition n: Neutron emission p: Proton emission - ↑ Bold italics symbol as daughter – Daughter product is nearly stable.
- ↑ Bold symbol as daughter – Daughter product is stable.
- ↑ ( ) spin value – Indicates spin with weak assignment arguments.
- ↑ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
Bromine-75
Bromine-75 has a half-life of 97 minutes.[8] This isotope undergoes β+ decay rather than electron capture about 76% of the time,[4] so it was used for diagnosis and positron emission tomography (PET) in the 1980s.[2] However, its decay product, selenium-75, produces secondary radioactivity with a longer half-life of 120.4 days.[4][2]
Bromine-76
Bromine-76 has a half-life of 16.2 hours.[8] While its decay is more energetic than 75Br and has lower yield of positrons (about 57% of decays),[4] bromine-76 has been preferred in PET applications since the 1980s because of its longer half-life and easier synthesis, and because its decay product, 76Se, is not radioactive.[3]
Bromine-77
Bromine-77 is the most stable radioisotope of bromine, with a half-life of 57 hours.[8] Although β+ decay is possible for this isotope, about 99.3% of decays are by electron capture.[6] Despite its complex emission spectrum, featuring strong gamma-ray emissions at 239, 297, 521, and 579 keV,[9] 77Br was used in SPECT imaging in the 1970s,[10] but except for longer-term tracing,[4] this is no longer considered practical due to the difficult collimator requirements and the proximity of the 521 keV line to the 511 keV annihilation radiation related to the β+ decay.[10] However, the auger electrons emitted during decay are well-suited for radiotherapy, and it can possibly be paired with the imaging-suited 76Br (produced as an impurity in common synthesis routes) for this application.[2][10]
References
- ↑ Meija, Juris; Coplen, Tyler B.; Berglund, Michael; Brand, Willi A.; De Bièvre, Paul; Gröning, Manfred; Holden, Norman E.; Irrgeher, Johanna et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry 88 (3): 265–91. doi:10.1515/pac-2015-0305.
- ↑ 2.0 2.1 2.2 2.3 Coenen, Heinz H.; Ermert, Johannes (January 2021). "Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18". Nuclear Medicine and Biology 92: 241–269. doi:10.1016/j.nucmedbio.2020.07.003.
- ↑ 3.0 3.1 Welch, Michael J.; Mcelvany, Karen D. (1 October 1983). "Radionuclides of Bromine for Use in Biomedical Studies". ract 34 (1-2): 41–46. doi:10.1524/ract.1983.34.12.41.
- ↑ 4.0 4.1 4.2 4.3 4.4 4.5 4.6 Lambert, F.; Slegers, G.; Hermanne, α.; Mertens, J. (1 June 1994). "Production and Purification of 77 Br Suitable for Labeling Monoclonal Antibodies Used in Tumor Imaging". ract 65 (4): 223–226. doi:10.1524/ract.1994.65.4.223.
- ↑ 5.0 5.1 Wimmer, K. (2019). "Discovery of 68Br in secondary reactions of radioactive beams". Physics Letters B 795: 266–270. doi:10.1016/j.physletb.2019.06.014. Bibcode: 2019PhLB..795..266W. https://www.researchgate.net/publication/333741107.
- ↑ 6.0 6.1 Kassis, A. I.; Adelstein, S. J.; Haydock, C.; Sastry, K. S. R.; McElvany, K. D.; Welch, M. J. (May 1982). "Lethality of Auger Electrons from the Decay of Bromine-77 in the DNA of Mammalian Cells". Radiation Research 90 (2): 362. doi:10.2307/3575714. ISSN 0033-7587. https://www.jstor.org/stable/pdf/3575714.pdf.
- ↑ Sumikama, T. et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of Zr110". Physical Review C 103 (1): 014614. doi:10.1103/PhysRevC.103.014614. Bibcode: 2021PhRvC.103a4614S. https://journals.aps.org/prc/abstract/10.1103/PhysRevC.103.014614.
- ↑ 8.0 8.1 8.2 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties". Chinese Physics C 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf.
- ↑ Singh, Balraj; Nica, Ninel (May 2012). "Nuclear Data Sheets for A = 77". Nuclear Data Sheets 113 (5): 1115–1314. doi:10.1016/j.nds.2012.05.001.
- ↑ 10.0 10.1 10.2 Amjed, N.; Kaleem, N.; Wajid, A.M.; Naz, A.; Ahmad, I. (January 2024). "Evaluation of the cross section data for the low and medium energy cyclotron production of 77Br radionuclide". Radiation Physics and Chemistry 214: 111286. doi:10.1016/j.radphyschem.2023.111286.
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A 729: 3–128, doi:10.1016/j.nuclphysa.2003.11.001, Bibcode: 2003NuPhA.729....3A, https://hal.archives-ouvertes.fr/in2p3-00020241/document
- Isotopic compositions and standard atomic masses from:
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A 729: 3–128, doi:10.1016/j.nuclphysa.2003.11.001, Bibcode: 2003NuPhA.729....3A, https://hal.archives-ouvertes.fr/in2p3-00020241/document
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory. http://www.nndc.bnl.gov/nudat2/.
- Lide, David R., ed (2004). "11. Table of the Isotopes". CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.
Original source: https://en.wikipedia.org/wiki/Isotopes of bromine.
Read more |