Spectral abscissa

From HandWiki

In mathematics, the spectral abscissa of a matrix or a bounded linear operator is the greatest real part of the matrix's spectrum (its set of eigenvalues).[1] It is sometimes denoted α(A). As a transformation α:Mn, the spectral abscissa maps a square matrix onto its largest real eigenvalue.[2]

Matrices

Let λ1, ..., λs be the (real or complex) eigenvalues of a matrix ACn × n. Then its spectral abscissa is defined as:

α(A)=maxi{Re(λi)}

In stability theory, a continuous system represented by matrix A is said to be stable if all real parts of its eigenvalues are negative, i.e. α(A)<0.[3] Analogously, in control theory, the solution to the differential equation x˙=Ax is stable under the same condition α(A)<0.[2]

See also

References

  1. Deutsch, Emeric (1975). "The Spectral Abscissa of Partitioned Matrices". Journal of Mathematical Analysis and Applications 50: 66–73. doi:10.1016/0022-247X(75)90038-4. https://core.ac.uk/download/pdf/82047336.pdf. 
  2. 2.0 2.1 Burke, J. V.; Lewis, A. S.; Overton, M. L. (2000). "Optimizing matrix stability". Proceedings of the American Mathematical Society 129 (3): 1635–1642. doi:10.1090/S0002-9939-00-05985-2. https://www.ams.org/journals/proc/2001-129-06/S0002-9939-00-05985-2/S0002-9939-00-05985-2.pdf. 
  3. Burke, James V.; Overton, Micheal L. (1994). "Differential properties of the spectral abscissa and the spectral radius for analytic matrix-valued mappings". Nonlinear Analysis, Theory, Methods & Applications 23 (4): 467–488. doi:10.1016/0362-546X(94)90090-6. https://sites.math.washington.edu/~burke/papers/reprints/22-diff-spec-abs-rad1994.pdf.