Amenable Banach algebra

From HandWiki
Revision as of 17:29, 6 March 2023 by S.Timg (talk | contribs) (update)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, specifically in functional analysis, a Banach algebra, A, is amenable if all bounded derivations from A into dual Banach A-bimodules are inner (that is of the form [math]\displaystyle{ a\mapsto a.x-x.a }[/math] for some [math]\displaystyle{ x }[/math] in the dual module). An equivalent characterization is that A is amenable if and only if it has a virtual diagonal.

Examples

References

  • F.F. Bonsall, J. Duncan, "Complete normed algebras", Springer-Verlag (1973).
  • H.G. Dales, "Banach algebras and automatic continuity", Oxford University Press (2001).
  • B.E. Johnson, "Cohomology in Banach algebras", Memoirs of the AMS 127 (1972).
  • J.-P. Pier, "Amenable Banach algebras", Longman Scientific and Technical (1988).
  • Volker Runde, "Amenable Banach Algebras. A Panorama", Springer Verlag (2020).