Astronomy:TZ Arietis
Coordinates: 02h 00m 12.959s, +13° 03′ 07.01″
Location of TZ Arietis in the constellation Aries | |
Observation data Equinox J2000.0]] (ICRS) | |
---|---|
Constellation | Aries |
Right ascension | 02h 00m 12.95632s[1] |
Declination | +13° 03′ 07.0006″[1] |
Apparent magnitude (V) | 12.298[2] |
Characteristics | |
Spectral type | M4.5 V[3] |
U−B color index | +1.37[4] |
B−V color index | +1.80[4] |
R−I color index | 1.39[3] |
Variable type | Flare star |
Astrometry | |
Radial velocity (Rv) | −28.29±0.25[1] km/s |
Proper motion (μ) | RA: 1096.458[1] mas/yr Dec.: -1771.526[1] mas/yr |
Parallax (π) | 223.7321 ± 0.0699[1] mas |
Distance | 14.578 ± 0.005 ly (4.470 ± 0.001 pc) |
Absolute magnitude (MV) | 14.03[5] |
Details | |
Mass | 0.14[6] M☉ |
Radius | 0.161[7] R☉ |
Luminosity | 0.00135[8] L☉ |
Surface gravity (log g) | 5.05[6] cgs |
Temperature | 3,158[7] K |
Metallicity [Fe/H] | −0.14[7] dex |
Rotational velocity (v sin i) | 3.8[8] km/s |
Age | 4.8[6] Gyr |
Other designations | |
Database references | |
SIMBAD | data |
TZ Arietis (also known as Gliese 83.1, GJ 9066, or L 1159-16) is a red dwarf in the northern constellation of Aries. With a normal apparent visual magnitude of 12.3, it is too faint to be seen by the naked eye, although it lies relatively close to the Sun at a distance of 14.6 light-years (4.47 parsecs). It is a flare star, which means it can suddenly increase in brightness for short periods of time.
Variability
TZ Arietis is a variable star. It is a flare star, showing brief increases in brightness due to eruptions from its surface. In the ultraviolet, flares of over a magnitude have been observed. In addition it shows longterm variations in brightness which may be due to starspots and rotation, possibly classifying it as a BY Draconis variable.[10] It was given the variable star designation TZ Arietis in 1970.[11]
Planetary system
In a preprint submitted to arXiv in June 2019, three candidate planets were reported in orbit around this star (GJ 83.1) with orbital periods of 2, 240, and 770 days.[12] A paper published in August 2020 reported a confirmation of the 240-day and 770-day planets, designating them "b" and "c", respectively.[13]
In March 2022, astronomers using the Calar Alto Observatory in Spain, as part of the CARMENES survey project, reported an independent confirmation of the 770-day planet, which they designated "b". However, they found no evidence for the 240-day planet, and confidently defined the 2-day candidate as nothing more than a spurious chromatic effect of the star, linked to its rotation.[14] The NASA Exoplanet Archive still refers to the confirmed, 770-day planet as "c".[15]
Companion (in order from star) |
Mass | Semimajor axis (AU) |
Orbital period (days) |
Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
b[note 1] | ≥0.21±0.02 MJ | 0.88±0.02 | 771.36+1.34 −1.23 |
0.46±0.04 | — | — |
See also
References
- ↑ 1.0 1.1 1.2 1.3 1.4 Vallenari, A. et al. (2022). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy & Astrophysics. doi:10.1051/0004-6361/202243940 Gaia DR3 record for this source at VizieR.
- ↑ Landolt, Arlo U. (July 1992), "UBVRI photometric standard stars in the magnitude range 11.5-16.0 around the celestial equator", Astronomical Journal 104 (1): 340–371, 436–491, doi:10.1086/116242, Bibcode: 1992AJ....104..340L.
- ↑ 3.0 3.1 Riaz, Basmah; Gizis, John E.; Harvin, James (August 2006), "Identification of New M Dwarfs in the Solar Neighborhood", The Astronomical Journal 132 (2): 866–872, doi:10.1086/505632, Bibcode: 2006AJ....132..866R.
- ↑ 4.0 4.1 Nicolet, B. (1978), "Photoelectric photometric Catalogue of homogeneous measurements in the UBV System", Astronomy and Astrophysics Supplement Series 34: 1–49, Bibcode: 1978A&AS...34....1N.
- ↑ Boro Saikia, S. et al. (2018), "Chromospheric activity catalogue of 4454 cool stars. Questioning the active branch of stellar activity cycles", Astronomy and Astrophysics 616: A108, doi:10.1051/0004-6361/201629518, Bibcode: 2018A&A...616A.108B.
- ↑ 6.0 6.1 6.2 Yee, Samuel W.; Petigura, Erik A.; von Braun, Kaspar (2017), "Precision Stellar Characterization of FGKM Stars using an Empirical Spectral Library", The Astrophysical Journal 836 (1): 77, doi:10.3847/1538-4357/836/1/77, Bibcode: 2017ApJ...836...77Y.
- ↑ 7.0 7.1 7.2 Houdebine, Éric R.; Mullan, D. J.; Doyle, J. G.; de la Vieuville, Geoffroy; Butler, C. J.; Paletou, F. (2019), "The Mass–Activity Relationships in M and K Dwarfs. I. Stellar Parameters of Our Sample of M and K Dwarfs", The Astronomical Journal 158 (2): 56, doi:10.3847/1538-3881/ab23fe, Bibcode: 2019AJ....158...56H.
- ↑ 8.0 8.1 McLean, M.; Berger, E.; Reiners, Ansgar (February 2012), "The Radio Activity-Rotation Relation of Ultracool Dwarfs", The Astrophysical Journal 746 (1): 23, doi:10.1088/0004-637X/746/1/23, Bibcode: 2012ApJ...746...23M.
- ↑ "TZ Ari -- Flare Star", SIMBAD Astronomical Database (Centre de Données astronomiques de Strasbourg), http://simbad.u-strasbg.fr/simbad/sim-id?Ident=TZ+Arietis, retrieved 2012-08-18.
- ↑ Gershberg, R. E.; Katsova, M. M.; Lovkaya, M. N.; Terebizh, A. V.; Shakhovskaya, N. I. (1999), "Catalogue and bibliography of the UV Cet-type flare stars and related objects in the solar vicinity", Astronomy and Astrophysics Supplement Series 139 (3): 555–558, doi:10.1051/aas:1999407, Bibcode: 1999A&AS..139..555G.
- ↑ Kukarkin, B. V.; Kholopov, P. N.; Perova, N. B. (October 1970), "57th Name-List of Variable Stars", Information Bulletin on Variable Stars 480 (1): 1, Bibcode: 1970IBVS..480....1K.
- ↑ Barnes, J. R. et al. (2019-06-11) (in en), Frequency of planets orbiting M dwarfs in the Solar neighbourhood.
- ↑ Feng, Fabo; Shectman, Stephen A.; Clement, Matthew S.; Vogt, Steven S.; Tuomi, Mikko; Teske, Johanna K.; Burt, Jennifer; Crane, Jeffrey D. et al. (2020), "Search for Nearby Earth Analogs .III. Detection of 10 New Planets, 3 Planet Candidates, and Confirmation of 3 Planets around 11 Nearby M Dwarfs", The Astrophysical Journal Supplement Series 250 (2): 29, doi:10.3847/1538-4365/abb139, Bibcode: 2020ApJS..250...29F.
- ↑ 14.0 14.1 Quirrenbach, A. et al. (2022), "The CARMENES search for exoplanets around M dwarfs", Astronomy & Astrophysics 663: A48, doi:10.1051/0004-6361/202142915, Bibcode: 2022A&A...663A..48Q.
- ↑ "GJ 9066". https://exoplanetarchive.ipac.caltech.edu/overview/GJ%209066. Retrieved 27 September 2022.
Notes
- ↑ Referred to as c by some sources.
Further reading
- Harrington, R. S.; Dahn, C. C. (April 1980), "Summary of U.S. Naval Observatory parallaxes", Astronomical Journal 85: 454–465, doi:10.1086/112696, Bibcode: 1980AJ.....85..454H.
- Riaz, Basmah; Gizis, John E.; Harvin, James (2006), "Identification of New M Dwarfs in the Solar Neighborhood", The Astronomical Journal 132 (2): 866–872, doi:10.1086/505632, Bibcode: 2006AJ....132..866R Table 1.
- Dittmann, Jason A.; Irwin, Jonathan M.; Charbonneau, David; Berta-Thompson, Zachory K. (2014), "Trigonometric Parallaxes for 1507 Nearby Mid-to-late M Dwarfs", The Astrophysical Journal 784 (2): 156, doi:10.1088/0004-637X/784/2/156, Bibcode: 2014ApJ...784..156D Table with parallaxes.
External links
Original source: https://en.wikipedia.org/wiki/TZ Arietis.
Read more |