Astronomy:List of nearest stars and brown dwarfs

From HandWiki
Short description: Wikipedia list article
Rotating 3D image of the nearest stars
Animated 3D map of the nearest stars, centered on the Sun. 3d glasses red green.svg 3D red green glasses are recommended to view this image correctly.
Distance and angle conformal map of the celestial neighbourhood of Sol.

This list covers all known stars and brown dwarfs (incl. sub-brown dwarfs) within 5.0 parsecs (16.3 light-years) of the Solar System. So far 76 such objects have been found, of which only nine are bright enough in visible light to reach or exceed the dimmest brightness to be visible to the naked eye from Earth, 6.5 apparent magnitude.[1] The stars and (sub-) brown dwarfs are currently moving through or with interstellar clouds like the Local Interstellar Cloud and the G-Cloud, all of which are, along with the nearest and unaided-visible moving group of Ursa Major or the closest visible star cluster the Hyades, within the Local Bubble. In the galactic context the Local Bubble is a small part, unlike the wider Gould Belt, of the Orion Arm, which contains most unaided visible stars.

The currently known 76 objects are bound in 54 stellar systems. The closest system is Alpha Centauri, with Proxima Centauri as the closest system star at 4.25 light-years from Earth. The brightest among these systems, as well as the brightest in Earth's night sky, is Sirius. Of the population of currently known objects 61 are main sequence stars, with 50 being red dwarfs and the remaining 13 having greater mass. Additionally astronomers have found four white dwarfs (extremely dense collapsed cores that remain after stars such as our Sun have exhausted all fusable hydrogen in their core and have shed slowly their outer layers), as well as 10 brown dwarfs and the closest and only sub-brown dwarf WISE 0855−0714 (an object of planetary-mass, not quite massive enough to fuse hydrogen, therefore also the nearest known rogue planet).

Based on results from the Gaia telescope's second data release from April 2018, an estimated 694 stars will possibly approach the Solar System to less than 5 parsecs in the next 15 million years. Of these, 26 have a good probability to come within 1.0 parsec (3.3 light-years) and another 7 within 0.5 parsecs (1.6 light-years).[2] This number is likely much higher, due to the sheer number of stars needed to be surveyed; a star approaching the Solar System 10 million years ago, moving at a typical Sun-relative 20–200 kilometers per second, would be 600–6,000 light-years from the Sun at present day, with millions of stars closer to the Sun. The closest encounter to the Sun so far predicted is the low-mass orange dwarf star Gliese 710 / HIP 89825 with roughly 60% the mass of the Sun.[3] It is currently predicted to pass 19,300 ± 3,200 astronomical units (0.305 ± 0.051 light-years) from the Sun in 1.280+0.041
−0.039
million years from the present, close enough to significantly disturb the Solar System's Oort cloud.[2][3]

The easiest way to determine stellar distance to the Sun for objects at these distances is parallax, which measures how much stars appear to move against background objects over the course of Earth's orbit around the Sun. As a parsec (parallax-second) is defined by the distance of an object that would appear to move exactly one second of arc against background objects, stars less than 5 parsecs away will have measured parallaxes of over 0.2 arcseconds, or 200 milliarcseconds. Determining past and future positions relies on accurate astrometric measurements of their parallax and total proper motions (how far they move across the sky due to their actual velocity relative to the Sun), along with spectroscopically determined radial velocities (their speed directly towards or away from us, which combined with proper motion defines their true movement through the sky relative to the Sun). Both of these measurements are subject to increasing and significant errors over very long time spans, especially over the several thousand-year time spans it takes for stars to noticeably move relative to each other.[4]

List

Key
# Visible to the unaided eye
brown dwarf Brown dwarf or Sub-brown dwarf
white dwarf White dwarf

The classes of the stars and brown dwarfs are shown in the color of their spectral types (these colors are derived from conventional names for the spectral types and do not represent the star's observed color). Many brown dwarfs are not listed by visual magnitude but are listed by near-infrared J band apparent magnitude due to how dim (and often invisible) they are in visible color bands (U, B or V). Absolute magnitude (with electromagnetic wave, 'light' band denoted in subscript) is a measurement at a 10-parsec distance across imaginary empty space devoid of all its sparse dust and gas. Some of the parallaxes and resultant distances are rough measurements.[5]

Known star systems within 5.0 parsecs (16.3 light-years)
Designation Distance[6]
(light-years (±err))
Stellar
class
Mass Magnitude (mV[5] or mJ) Epoch J2000.0 Parallax
(mas (±err))

[5][note 1]
Notes and additional
references
System Star or (sub-) brown dwarf M Apparent Absolute Right ascension[5] Declination[5]
Solar System Sun (Sol) 0.0000158 G2V[5] 1 −26.74# 4.85 eight known planets
Alpha Centauri Proxima Centauri (V645 Centauri) 4.2441±0.0011 M5.5Ve 0.122 11.09 15.53  14h 29m 43.0s −62° 40′ 46″ 768.50±0.20[7] flare star, two confirmed planets (b, 2016, and c, 2019)[8] and unconfirmed evidence for a third, sub-Earth sized, planet (d, 2020).[9]
α Centauri A (Rigil Kentaurus) 4.3650±0.0068 G2V[5] 1.100 0.01# 4.38  14h 39m 36.5s −60° 50′ 02″ 747.23±1.17
[10][11][12]
one directly-imaged habitable-zone planet candidate (Candidate 1) (2021)
α Centauri B (Toliman) K1V[5] 0.907 1.34# 5.71  14h 39m 35.1s −60° 50′ 14″ one suspected planet (c) (2013)
(planet b refuted in 2015)
Barnard's Star (BD+04°3561a) 5.9577±0.0032 M4.0Ve 0.144 9.53 13.22  17h 57m 48.5s +04° 41′ 36″ 547.45±0.29[7] flare star, largest-known proper motion,[13] one disputed planet (b)[14][15]
Luhman 16
(WISE 1049−5319)brown dwarf
Luhman 16Abrown dwarf 6.5029±0.0011 L8±1[16] 0.032 10.7 J 14.2 J  10h 49m 15.57s −53° 19′ 06″ 501.557±0.082[17] one refuted planet (Ab[18] in 2017[19])
Luhman 16Bbrown dwarf T1±2[16] 0.027
WISE 0855−0714brown dwarf 7.43±0.04[20] Y4 0.003-0.010 25.0 J  08h 55m 10.83s −07° 14′ 42.5″ 439.0±2.4[21] sub-brown dwarf
Wolf 359 (CN Leonis) 7.856±0.031 M6.0V[5] 0.090 13.44 16.55  10h 56m 29.2s +07° 00′ 53″ 415.16±1.62[22] flare star, has 2 known planets[14]
Lalande 21185 (BD+36°2147) 8.307±0.014 M2.0V[5] 0.390 7.47 10.44  11h 03m 20.2s +35° 58′ 12″ 392.64±0.67[23] two known planets (2019)(2021)[14]
Sirius
(α Canis Majoris)
Sirius A 8.659±0.010 A1V[5] 2.063 −1.46# 1.42  06h 45m 08.9s −16° 42′ 58″ 376.68±0.45[7] brightest star in the night sky
Sirius Bwhite dwarf DA2[5] 1.018 8.44 11.34
Luyten 726-8 Luyten 726-8 A (BL Ceti) 8.791±0.012 M5.5Ve 0.102 12.54 15.40  01h 39m 01.3s −17° 57′ 01″ 371.0±0.5[7] flare star (Archetypal member)
Luyten 726-8 B (UV Ceti) M6.0Ve 0.100 12.99 15.85
Ross 154 (V1216 Sagittarii) 9.7035±0.0019 M3.5Ve 0.17 10.43 13.07  18h 49m 49.4s −23° 50′ 10″ 336.123±0.064[7] flare star
Ross 248 (HH Andromedae) 10.2903±0.0041 M5.5Ve 0.136 12.29 14.79  23h 41m 54.7s +44° 10′ 30″ 316.96±0.13[7] flare star
Epsilon Eridani (Ran) 10.446±0.016 K2V[5] 0.820 3.73# 6.19  03h 32m 55.8s −09° 27′ 30″ 312.22±0.47[7] three circumstellar disks,
two suspected planets (AEgir (debated) and c) (2000 & 2002)[24]
Lacaille 9352 (Gliese 887) 10.7211±0.0016 M0.5V 0.486 7.34 9.75  23h 05m 52.0s −35° 51′ 11″ 304.219±0.045[7] two planets, b and c, with equivocal evidence for a third in the habitable zone (2020)[25]
Ross 128 (FI Virginis) 11.0074±0.0026 M4.0Vn 0.168 11.13 13.51  11h 47m 44.4s +00° 48′ 16″ 296.307±0.070[7] flare star, one planet (b) (2017)[26]
EZ Aquarii
(Gliese 866, Luyten 789-6)
EZ Aquarii A 11.109±0.034 M5.0Ve 0.11 13.33 15.64  22h 38m 33.4s −15° 17′ 57″ 293.60±0.9[27] A & B flare stars
EZ Aquarii B M? 0.11 13.27 15.58
EZ Aquarii C M? 0.10 14.03 16.34
61 Cygni 61 Cygni A (BD+38°4343) 11.4008±0.0012 K5.0V[5] 0.70 5.21# 7.49  21h 06m 53.9s +38° 44′ 58″ 286.08±0.03[7] B flare star and brightest red dwarf in night sky, first star (besides Sun) to have measured distance[28]
possible circumstellar disk.
61 Cygni B (BD+38°4344) K7.0V[5] 0.63 6.03# 8.31  21h 06m 55.3s +38° 44′ 31″
Procyon
(α Canis Minoris)
Procyon A 11.402±0.032 F5IV–V[5] 1.499 0.38# 2.66  07h 39m 18.1s +05° 13′ 30″ 286.05±0.81
[10][11]
Procyon Bwhite dwarf DQZ[5] 0.602 10.70 12.98
Struve 2398
(Gliese 725, BD+59°1915)
Struve 2398 A (HD 173739) 11.4880±0.0012 M3.0V[5] 0.334 8.90 11.16  18h 42m 46.7s +59° 37′ 49″ 283.91±0.03[7] flare stars, star B has 2 known planets[14]
Struve 2398 B (HD 173740) M3.5V[5] 0.248 9.69 11.95  18h 42m 46.9s +59° 37′ 37″
Groombridge 34
(Gliese 15)
Groombridge 34 A (GX Andromedae) 11.6182±0.0008 M1.5V[5] 0.38 8.08 10.32  00h 18m 22.9s +44° 01′ 23″ 280.73±0.02[7] flare star, two suspected planets (Ac, 2017) and Ab, 2014)[29]
Groombridge 34 B (GQ Andromedae) M3.5V[5] 0.15 11.06 13.30 flare star
DX Cancri (G 51-15) 11.6780±0.0056 M6.5Ve 0.09 14.78 16.98  08h 29m 49.5s +26° 46′ 37″ 279.29±0.13[7] flare star
Tau Ceti (BD−16°295) 11.753±0.022 G8.5Vp[5] 0.783 3.49# 5.68  01h 44m 04.1s −15° 56′ 15″ 277.52±0.52[7] one debris disk
four confirmed planets (e, f, g, and h) (2012, 2017),
four candidate planets (b, c, d, and "i") (2012, 2019), and 1 predicted planet (2020).
Epsilon Indi
(CPD−57°10015)
Epsilon Indi A 11.869±0.011 K5Ve[5] 0.754 4.69# 6.89  22h 03m 21.7s −56° 47′ 10″ 274.80±0.25[7] one planet (Ab) (2018)[30]
Epsilon Indi Babrown dwarf T1.0V 0.065 12.3 J[31]  22h 04m 10.5s −56° 46′ 58″
Epsilon Indi Bbbrown dwarf T6.0V 0.050 13.2 J[31]
Gliese 1061 (LHS 1565) 11.9803±0.0029 M5.5V[5] 0.113 13.09 15.26  03h 35m 59.7s −44° 30′ 45″ 272.245±0.066[7] has 3 known planets (2019)[32][33][34]
YZ Ceti (LHS 138) 12.1084±0.0035 M4.5V[5] 0.130 12.02 14.17  01h 12m 30.6s −16° 59′ 56″ 269.363±0.078[7] flare star, three planets (b, c, and d) (2017),[35]
one suspected planet (e)
Luyten's Star (BD+05°1668) 12.199±0.036 M3.5Vn 0.26 9.86 11.97  07h 27m 24.5s +05° 13′ 33″ 267.36±0.79[36] two planets (b, c) (2017)[37] and two suspected planets (d, e) (2019)[38]
Teegarden's Star (SO025300.5+165258) 12.496±0.013 M6.5V 0.08 15.14 17.22  02h 53m 00.9s +16° 52′ 53″ 261.01±0.27[7] tentative radial velocity variation (2010)[34][39] has 2 known planets (2019)[40][41]
Kapteyn's Star (CD−45°1841) 12.8294±0.0013 M1.5VI[5] 0.281 8.84 10.87  05h 11m 40.6s −45° 01′ 06″ 254.226±0.026[7] two disputed planets (b and c) (2014)[42][43]
Lacaille 8760 (AX Microscopii) 12.9515±0.0029 M0.0V[5] 0.60 6.67 8.69  21h 17m 15.3s −38° 52′ 03″ 251.829±0.056[7] brightest M dwarf star in night sky, flare star
SCR 1845-6357 SCR 1845-6357 A 13.050±0.008 M8.5V[5] 0.07 17.39 19.41  18h 45m 05.3s −63° 57′ 48″ 249.91±0.16[7] [34]
SCR 1845-6357 Bbrown dwarf T6[44] 0.03[5] 13.3 J[31]  18h 45m 02.6s −63° 57′ 52″
Kruger 60
(BD+56°2783)
Kruger 60 A 13.0724±0.0052 M3.0V[5] 0.271 9.79 11.76  22h 27m 59.5s +57° 41′ 45″ 249.5±0.1[7] B flare star
Kruger 60 B (DO Cephei) M4.0V[5] 0.176 11.41 13.38
DEN 1048-3956brown dwarf 13.1932±0.0066 M8.5V[5] 0.08 17.39 19.37  10h 48m 14.7s −39° 56′ 06″ 247.22±0.12[7] [45][46]
Ross 614
(V577 Monocerotis, Gliese 234)
Ross 614A (LHS 1849) 13.424±0.049 M4.5V[5] 0.223 11.15 13.09  06h 29m 23.4s −02° 48′ 50″ 242.97±0.88[7] A flare star
Ross 614B (LHS 1850) M5.5V 0.111 14.23 16.17
UGPS J0722-0540brown dwarf 13.43±0.13 T9[5] 0.010-0.025 16.52 J[47]  07h 22m 27.3s –05° 40′ 30″ 242.8±2.4[48] [49]
Wolf 1061 (Gliese 628, BD−12°4523) 14.0458±0.0038 M3.0V[5] 0.294 10.07 11.93  16h 30m 18.1s −12° 39′ 45″ 232.210±0.063[7] three planets (b, c, and d) (2015)[50]
Wolf 424
(FL Virginis, LHS 333, Gliese 473)
Wolf 424 A 14.05±0.26 M5.5Ve 0.143 13.18 14.97  12h 33m 17.2s +09° 01′ 15″ 232.2±4.3[51] flare stars
Wolf 424 B M7Ve 0.131 13.17 14.96
Van Maanen's star (Gliese 35, LHS 7)white dwarf 14.0744±0.0023 DZ7[5] 0.67 12.38 14.21  00h 49m 09.9s +05° 23′ 19″ 231.737±0.038[7] closest-known free-floating white dwarf,
third-known white dwarf
possible debris disk (1917),
possible planet (b) (2004) (debated)
Gliese 1 (CD−37°15492) 14.1725±0.0037 M1.5 V[5] 0.45-0.48 8.55 10.35  00h 05m 24.4s −37° 21′ 27″ 230.133±0.060[7]
L 1159-16 (TZ Arietis, Gliese 83.1) 14.5843±0.0070 M4.5V[5] 0.14 12.27 14.03  02h 00m 13.2s +13° 03′ 08″ 223.63±0.11[7] flare star, has two known planets (b and c) and one candidate (d)[14]
Gliese 674 (LHS 449) 14.8387±0.0033 M3.0V[5] 0.35 9.38 11.09  17h 28m 39.9s −46° 53′ 43″ 219.801±0.049[7] one planet (b) (2007)[52]
Gliese 687 (LHS 450, BD+68°946) 14.8401±0.0022 M3.0V[5] 0.401 9.17 10.89  17h 36m 25.9s +68° 20′ 21″ 219.781±0.032[7] possible flare star, two planets (b) (2014)[53] and (c) (2020)[54]
LHS 292 (LP 731-58) 14.885±0.011 M6.5V[5] 0.08 15.60 17.32  10h 48m 12.6s −11° 20′ 14″ 219.12±0.16[7] flare star
LP 145-141 (WD 1142-645, Gliese 440)white dwarf 15.1182±0.0023 DQ6[5] 0.75 11.50 13.18  11h 45m 42.9s −64° 50′ 29″ 215.737±0.032[7]
Gliese 1245 G 208-44 A

(Gliese 1245 A)

15.2090±0.0050 M5.5V[5] 0.11 13.46 15.17  19h 53m 54.2s +44° 24′ 55″ 214.45±0.07[7] flare stars
G 208-45

(Gliese 1245 B)

M6.0V[5] 0.10 14.01 15.72  19h 53m 55.2s +44° 24′ 56″
G 208-44 B

(Gliese 1245 C)

M5.5 0.07 16.75 18.46  19h 53m 54.2s +44° 24′ 55″
WISE 1741+2553brown dwarf 15.2±0.2 T9 16.53 J 18.18 J  17h 41m 24.2s +25° 53′ 19″ 214±2.8[21]
Gliese 876 (Ross 780) 15.2504±0.0054 M3.5V[5] 0.37 10.17 11.81  22h 53m 16.7s −14° 15′ 49″ 213.867±0.076[7] four planets (d (2005), c (2001), b (1998), and e (2010))[55]
two possible planets (f and g) (2014) (debated)
WISE 1639-6847brown dwarf 15.45±0.04 Y0.5 20.57 J 22.10 J  16h 39m 40.9s −68° 47′ 46″ 211.11±0.56[56]
LHS 288 (Luyten 143-23) 15.7703±0.0056 M5.5V[5] 0.11[5] 13.90 15.51  10h 44m 21.2s −61° 12′ 36″ 206.817±0.074[7] one tentative planet (b) (2007)[34]
Gliese 1002 15.8164±0.0098 M5.5V[5] 0.11 13.76 15.40  00h 06m 43.8s −07° 32′ 22″ 206.21±0.13[7]
Groombridge 1618 (Gliese 380) 15.8797±0.0026 K7.0V[5] 0.67 6.59 8.16  10h 11m 22.1s +49° 27′ 15″ 205.392±0.034[7] brightest single red dwarf in night sky, flare star, one suspected debris disk,
one suspected planet (b) (1989) (tentative)
DEN 0255-4700brown dwarf 15.885±0.020 L7.5V[5] 0.025-0.065 22.92 24.44  02h 55m 03.7s −47° 00′ 52″ 205.33±0.25[7] [46]
Gliese 412 Gliese 412 A 15.983±0.013 M1.0V[5] 0.48 8.77 10.34  11h 05m 28.6s +43° 31′ 36″ 204.06±0.17[7]
Gliese 412 B (WX Ursae Majoris) M5.5V[5] 0.10 14.48 16.05  11h 05m 30.4s +43° 31′ 18″ flare star
Gliese 832 16.1939±0.0034 M1.5 V[5] 0.45 8.66 10.20  21h 33m 34.0s −49° 00′ 32″ 201.407±0.043[7] possible flare star, two planets (b (2008) and c (2014))[57][58]
AD Leonis 16.1970±0.0055 M3.0V[5] 0.39-0.42 9.32 10.87  10h 19m 36.4s +19° 52′ 10″ 201.368±0.068[7] flare star, 1 refuted planet (b[14] in 2020)[59]
40 Eridani Keid

(40 Eridani A)

16.26±0.02 K0.5V 0.84 4.43# 5.93  04h 15m 16.3s −07° 39′ 10″ 200.62±0.23
Gliese 1005 Gliese 1005 A 16.26±0.76[note 2] M4V[60] 0.179 11.48[60] 12.70  00h 15m 28.11s −16° 08′ 01.6″ 200.5±9.4[60]
Gliese 1005 B M7V 0.112 ? 15.12
System Star or (sub-) brown dwarf Distance[6]
(Light-years (±err))
Stellar
class
Apparent Absolute Right ascension[5] Declination[5] Parallax
(mas (±err))

[5][note 1]
Notes and Additional
references
Designation Magnitude (mV[5] or mJ) Epoch J2000.0

Distant future and past encounters

Graph of the distances of various stars from the Sun during the past 20,000 to future 80,000 years.
Distances of the nearest stars from 20,000 years ago until 80,000 years in the future

Over long periods of time, the slow independent motion of stars change in both relative position and in their distance from the observer. This can cause other currently distant stars to fall within a stated range, which may be readily calculated and predicted using accurate astrometric measurements of parallax and total proper motions, along with spectroscopically determined radial velocities. Although predictions can be extrapolated back into the past or forward into the future, they are subject to increasing significant cumulative errors over very long periods.[4] Inaccuracies of these measured parameters make determining the true minimum distances of any encountering stars or brown dwarfs fairly difficult.[61]

One of the first stars known to approach the Sun particularly close is Gliese 710. The star, whose mass is roughly half that of the Sun, is currently 62 light-years from the Solar System. It was first noticed in 1999 using data from the Hipparcos satellite, and was estimated to pass less than 1.3 light-years (0.40 pc) from the Sun in 1.4 million years.[62] With the release of Gaia's observations of the star, it has since been refined to a much closer 0.178 light-years (0.055 pc), close enough to significantly disturb objects in the Oort cloud, which extends out to 1.2 light-years (0.37 pc) from the Sun.[63]

The second-closest object known to approach the Sun was only discovered in 2018 after Gaia's second data release, known as 2MASS J0610-4246. Its approach has not been fully described due to it being a distant binary star with a red dwarf, but almost certainly passed less than 1 light-year from the Solar System roughly 1.16 million years ago.


See also


Notes

  1. 1.0 1.1 Parallaxes given by RECONS are a weighted mean of values in the sources given, as well as measurements by the RECONS program.
  2. Might not be within 5 parsecs of the Sun.

References

  1. Weaver, Harold F. (1947). "The Visibility of Stars Without Optical Aid". Publications of the Astronomical Society of the Pacific 59 (350): 232–243. doi:10.1086/125956. Bibcode1947PASP...59..232W. 
  2. 2.0 2.1 Bailer-Jones, C. A. L.; Rybizki, J.; Andrae, R.; Fouesnea, M. (2018). "New stellar encounters discovered in the second Gaia data release". Astronomy & Astrophysics 616 (37): A37. doi:10.1051/0004-6361/201833456. Bibcode2018A&A...616A..37B. 
  3. 3.0 3.1 Hall, Shannon (28 May 2018). "Known Close Stellar Encounters Surge in Number". Sky and Telescope. http://www.skyandtelescope.com/astronomy-news/close-stellar-encounters-surge/. 
  4. 4.0 4.1 Matthews, R. A. (1994). "The Close Approach of Stars in the Solar Neighborhood". Quarterly Journal of the Royal Astronomical Society 35: 1. Bibcode1994QJRAS..35....1M. 
  5. 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19 5.20 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.30 5.31 5.32 5.33 5.34 5.35 5.36 5.37 5.38 5.39 5.40 5.41 5.42 5.43 5.44 5.45 5.46 5.47 5.48 5.49 5.50 5.51 5.52 5.53 5.54 5.55 5.56 5.57 "The One Hundred Nearest Star Systems". Research Consortium on Nearby Stars (RECONS). September 17, 2007. http://www.astro.gsu.edu/RECONS/TOP100.posted.htm. Retrieved 2007-11-06. 
  6. 6.0 6.1 From parallax.
  7. 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 7.12 7.13 7.14 7.15 7.16 7.17 7.18 7.19 7.20 7.21 7.22 7.23 7.24 7.25 7.26 7.27 7.28 7.29 7.30 7.31 7.32 7.33 7.34 7.35 7.36 7.37 7.38 7.39 7.40 Gaia Collaboration. "Gaia DR2". https://gea.esac.esa.int/archive/. 
  8. Drake, Nadia (12 April 2019). "A new super-Earth may orbit the star next door". https://www.nationalgeographic.com/science/2019/04/proxima-c-new-super-earth-may-orbit-star-next-door-proxima-centauri/.  Video of discovery being discussed (accidentally announced?)
  9. Suárez Mascareño, A.; Faria, J. P. et al. (2020). "Revisiting Proxima with ESPRESSO". Astronomy & Astrophysics 639: A77. doi:10.1051/0004-6361/202037745. ISSN 0004-6361. Bibcode2020A&A...639A..77S. 
  10. 10.0 10.1 General Catalogue of Trigonometric Parallaxes.
  11. 11.0 11.1 Hipparcos Catalogue.
  12. Söderhjelm, Staffan (1999). "Visual binary orbits and masses POST HIPPARCOS". Astronomy & Astrophysics 341: 121. Bibcode1999A&A...341..121S. 
  13. Barnard, E. E.. "A small star with large proper motion". Astronomical Journal 29 (695): 181. doi:10.1086/104156. Bibcode1916AJ.....29..181B. 
  14. 14.0 14.1 14.2 14.3 14.4 14.5 Tuomi, M.; el, al. (2019-06-11). "Frequency of planets orbiting M dwarfs in the Solar neighbourhood". arXiv:1906.04644 [astro-ph.EP].
  15. Lubin, Jack; Robertson, Paul; Stefansson, Gudmundur; Ninan, Joe; Mahadevan, Suvrath; Endl, Michael; Ford, Eric; Wright, Jason T. et al. (2021), Stellar Activity Manifesting at a One Year Alias Explains Barnard b as a False Positive 
  16. 16.0 16.1 Luhman, K. L. (2013). "Discovery of a Binary Brown Dwarf at 2 Parsecs from the Sun". The Astrophysical Journal Letters 767 (1): L1. doi:10.1088/2041-8205/767/1/L1. Bibcode2013ApJ...767L...1L. 
  17. Lazorenko, P. F.; Sahlmann, J. (23 August 2018). "Updated astrometry and masses of the LUH 16 brown dwarf binary". Astronomy & Astrophysics 618: A111. doi:10.1051/0004-6361/201833626. Bibcode2018A&A...618A.111L. 
  18. Boffin, H. M. J. (2013). "Possible astrometric discovery of a substellar companion to the closest binary brown dwarf system WISE J104915.57-531906.1". Astronomy & Astrophysics 561: L4. doi:10.1051/0004-6361/201322975. Bibcode2014A&A...561L...4B. 
  19. Bedin L. R. (27 June 2017). "Hubble Space Telescope astrometry of the closest brown dwarf binary system - I. Overview and improved orbit". Monthly Notices of the Royal Astronomical Society 470 (1): 1140–1155. doi:10.1093/mnras/stx1177. Bibcode2017MNRAS.470.1140B. https://academic.oup.com/mnras/article/470/1/1140/3896221. Retrieved 27 June 2017. 
  20. Luhman, K. L. (April 21, 2014). "Discovery of a ~250 K Brown Dwarf at 2 pc from the Sun". The Astrophysical Journal Letters 786 (2): L18. doi:10.1088/2041-8205/786/2/L18. Bibcode2014ApJ...786L..18L. 
  21. 21.0 21.1 Kirkpatrick, J. Davy; Gelino, Christopher R.; Faherty, Jacqueline K.; Meisner, Aaron M.; Caselden, Dan; Schneider, Adam C.; Marocco, Federico; Cayago, Alfred J. et al. (2021). "The Field Substellar Mass Function Based on the Full-sky 20 pc Census of 525 L, T, and y Dwarfs". The Astrophysical Journal Supplement Series 253 (1): 7. doi:10.3847/1538-4365/abd107. Bibcode2021ApJS..253....7K. 
  22. Davison, Cassy L. (19 February 2015). "A 3D Search for Companions to 12 Nearby M-Dwarfs". The Astronomical Journal 149 (3): 106. doi:10.1088/0004-6256/149/3/106. ISSN 1538-3881. Bibcode2015AJ....149..106D. 
  23. van Leeuwen, F. (13 August 2007). "Validation of the new Hipparcos reduction". Astronomy & Astrophysics 474 (2): 653–664. doi:10.1051/0004-6361:20078357. ISSN 0004-6361. Bibcode2007A&A...474..653V. 
  24. Janson, M. et al. (September 2008), "A comprehensive examination of the ε Eridani system. Verification of a 4 micron narrow-band high-contrast imaging approach for planet searches", Astronomy & Astrophysics 488 (2): 771–780, doi:10.1051/0004-6361:200809984, Bibcode2008A&A...488..771J 
  25. Jeffers, S. V.; Dreizler, S.; Barnes, J. R.; Haswell, C. A.; Nelson, R. P.; Rodríguez, E.; López-González, M. J.; Morales, N. et al. (2020), "A multiple planet system of super-Earths orbiting the brightest red dwarf star GJ887", Science 368 (6498): 1477–1481, doi:10.1126/science.aaz0795, PMID 32587019, Bibcode2020Sci...368.1477J 
  26. ESO. "A temperate exo-Earth around a quiet M dwarf at 3.4 parsecs". https://www.eso.org/public/archives/releases/sciencepapers/eso1736/eso1736a.pdf. 
  27. Torres, G.; Andersen, J.; Giménez, A. (2010). "Accurate masses and radii of normal stars: modern results and applications". The Astronomy & Astrophysics Review 18 (1–2): 67–126. doi:10.1007/s00159-009-0025-1. Bibcode2010A&ARv..18...67T. 
  28. Bessel, F. W. (1839). "Bestimmung der Entfernung des 61sten Sterns des Schwans. Von Herrn Geheimen - Rath und Ritter Bessel" (in de). Astronomische Nachrichten 16 (5–6): 65–96. doi:10.1002/asna.18390160502. Bibcode1838AN.....16...65B. https://zenodo.org/record/1424605. "(page 92) Ich bin daher der Meinung, daß nur die jährliche Parallaxe = 0"3136 als das Resultat der bisherigen Beobachtungen zu betrachten ist".  A parallax of 313.6 mas yields a distance of 10.4 light years
  29. Bailer-Jones, C. A. L. (2014). "The NASA-UC-UH Eta-Earth Program: IV. A Low-mass Planet Orbiting an M Dwarf 3.6 PC from Earth". The Astrophysical Journal 794 (1): 51. doi:10.1088/0004-637X/794/1/51. Bibcode2014ApJ...794...51H. 
  30. Bailer-Jones, C. A. L.; Rybizki, J.; Andrae, R.; Fouesneau, M. (2018). "Detection of the closest Jovian exoplanet in the Epsilon Indi triple system". arXiv:1803.08163 [astro-ph.EP].
  31. 31.0 31.1 31.2 Chris Gelino, Davy Kirkpatrick, Adam Burgasser. "DwarfArchives.org: Photometry, spectroscopy, and astrometry of M, L, and T dwarfs". caltech.edu. http://ldwarf.ipac.caltech.edu/archive/version5/viewlist.php?table=ltdwarf&format=text.  (main page)
  32. Dreizler, S.; Jeffers, S. V.; Rodríguez, E.; Zechmeister, M.; Barnes, J.R.; Haswell, C.A.; Coleman, G. A. L.; Lalitha, S. et al. (2019-08-13). "Red Dots: A temperate 1.5 Earth-mass planet in a compact multi-terrestrial planet system around GJ1061" (in en). Monthly Notices of the Royal Astronomical Society. doi:10.1093/mnras/staa248. 
  33. Henry, Todd J.; Ianna, Philip A.; Kirkpatrick, J. Davy; Jahreiss, Hartmut (July 1997). "The solar neighborhood IV: discovery of the twentieth nearest star". The Astronomical Journal 114 (1): 388–395. doi:10.1086/118482. Bibcode1997AJ....114..388H. 
  34. 34.0 34.1 34.2 34.3 Henry, Todd J.; Jao, Wei-Chun; Subasavage, John P.; Beaulieu, Thomas D.; Ianna, Philip A.; Costa, Edgardo; Méndez, René A. (December 2006). "The Solar Neighborhood. XVII. Parallax Results from the CTIOPI 0.9 m Program: 20 New Members of the RECONS 10 Parsec Sample". The Astronomical Journal 132 (6): 2360–2371. doi:10.1086/508233. Bibcode2006AJ....132.2360H. 
  35. Astudillo-Defru, Nicola; Díaz, Rodrigo F.; Bonfils, Xavier; Almenara, José M.; Delisle, Jean-Baptiste; Bouchy, François; Delfosse, Xavier; Forveille, Thierry et al. (2017). "The HARPS search for southern extra-solar planets. XLII. A system of Earth-mass planets around the nearby M dwarf YZ Ceti". Astronomy & Astrophysics 605: L11. doi:10.1051/0004-6361/201731581. Bibcode2017A&A...605L..11A. 
  36. Gatewood, George (1 July 2008). "Astrometric Studies of Aldebaran, Arcturus, Vega, the Hyades, and Other Regions". The Astronomical Journal 136 (1): 452–460. doi:10.1088/0004-6256/136/1/452. Bibcode2008AJ....136..452G. 
  37. Astudillo-Defru, Nicola; Forveille, Thierry; Bonfils, Xavier; Ségransan, Damien; Bouchy, François; Delfosse, Xavier et al. (2017). "The HARPS search for southern extra-solar planets. XLI. A dozen planets around the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628, and GJ 3293". Astronomy and Astrophysics 602: A88. doi:10.1051/0004-6361/201630153. Bibcode2017A&A...602A..88A. https://www.aanda.org/articles/aa/full_html/2017/06/aa30153-16/aa30153-16.html. 
  38. Pozuelos, Francisco J. et al. (2020). "GJ 273: on the formation, dynamical evolution, and habitability of a planetary system hosted by an M dwarf at 3.75 parsec". Astronomy & Astrophysics 641: A23. doi:10.1051/0004-6361/202038047. Bibcode2020A&A...641A..23P. 
  39. Barnes, J. R. (2012). "ROPS: A New Search for Habitable Earths in the Southern Sky". Monthly Notices of the Royal Astronomical Society 424 (1): 591–604. doi:10.1111/j.1365-2966.2012.21236.x. Bibcode2012MNRAS.424..591B. 
  40. "The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden's Star". https://www.aanda.org/articles/aa/pdf/forth/aa35460-19.pdf. 
  41. Caballero, J. A. et al. (12 June 2019). "The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden's Star" (in en). Astronomy & Astrophysics 627: A49. doi:10.1051/0004-6361/201935460. ISSN 0004-6361. Bibcode2019A&A...627A..49Z. https://www.aanda.org/articles/aa/pdf/forth/aa35460-19.pdf. 
  42. Anglada-Escude, G. (2014). "Two planets around Kapteyn's star : a cold and a temperate super-Earth orbiting the nearest halo red-dwarf". Monthly Notices of the Royal Astronomical Society: Letters 443: L89–L93. doi:10.1093/mnrasl/slu076. Bibcode2014MNRAS.443L..89A. 
  43. Bortle, Anna et al. (2021). "A Gaussian Process Regression Reveals No Evidence for Planets Orbiting Kapteyn's Star". The Astronomical Journal 161 (5): 230. doi:10.3847/1538-3881/abec89. Bibcode2021AJ....161..230B. 
  44. Kasper, M.; Biller, B. A.; Burrows, A.; Brandner, W.; Budaj, J.; Close, L. M. (2007). "The very nearby M/T dwarf binary SCR 1845-6357". Astronomy & Astrophysics 471 (2): 655. doi:10.1051/0004-6361:20077881. Bibcode2007A&A...471..655K. 
  45. Jao, Wei-Chun; Henry, Todd J.; Subasavage, John P.; Brown, Misty A.; Ianna, Philip A.; Bartlett, Jennifer L.; Costa, Edgardo; Méndez, René A. (2005). "The Solar Neighborhood. XIII. Parallax Results from the CTIOPI 0.9 Meter Program: Stars with μ >= 1.0" yr−1 (MOTION Sample)". The Astronomical Journal 129 (4): 1954. doi:10.1086/428489. Bibcode2005AJ....129.1954J. 
  46. 46.0 46.1 Costa, Edgardo; Méndez, René A.; Jao, W. -C.; Henry, Todd J.; Subasavage, John P.; Brown, Misty A.; Ianna, Philip A.; Bartlett, Jennifer (2005). "The Solar Neighborhood. XIV. Parallaxes from the Cerro Tololo Inter-American Observatory Parallax Investigation-First Results from the 1.5 m Telescope Program". The Astronomical Journal 130 (1): 337. doi:10.1086/430473. Bibcode2005AJ....130..337C. 
  47. Bailer-Jones, C. A. L.; Rybizki, J.; Andrae, R.; Fouesneau, M. (2010). "The discovery of a very cool, very nearby brown dwarf in the Galactic plane". Monthly Notices of the Royal Astronomical Society 408 (1): L56. doi:10.1111/j.1745-3933.2010.00927.x. Bibcode2010MNRAS.408L..56L. 
  48. Leggett, Sandy K.; Saumon, Didier; Marley, Mark S.; Lodders, Katharina; Canty, J.; Lucas, Philip W.; Smart, Richard L.; Tinney, Chris G. et al. (2012). "The Properties of the 500 K Dwarf UGPS J072227.51-054031.2 and a Study of the Far-red Flux of Cold Brown Dwarfs". The Astrophysical Journal 748 (2): 74. doi:10.1088/0004-637X/748/2/74. Bibcode2012ApJ...748...74L. 
  49. Bailer-Jones, C. A. L.; Rybizki, J.; Andrae, R.; Fouesneau, M. (2010). "Discovery of a very cool brown dwarf amongst the ten nearest stars to the Solar System". arXiv:1004.0317v1 [astro-ph.SR].
  50. "Nearby star hosts closest alien planet in the 'habitable zone'". December 16, 2015. http://phys.org/news/2015-12-nearby-star-hosts-closest-alien.html. "The planet, more than four times the mass of the Earth, is one of three that the team detected around a red dwarf star called Wolf 1061." 
  51. Gliese, W. and Jahreiß, H. (1991). "Gl 473". http://webviz.u-strasbg.fr/viz-bin/VizieR-5?-source=V/70A&Name=Gl%20473. 
  52. "The Extrasolar Planet Encyclopaedia — Catalog Listing". http://exoplanet.eu/star.php?st=GJ+674. 
  53. The Lick–Carnegie exoplanet survey: Gliese 687 b: A Neptune-mass planet orbiting a nearby red dwarf
  54. Feng, Fabo; Shectman, Stephen A.; Clement, Matthew S.; Vogt, Steven S.; Tuomi, Mikko; Teske, Johanna K.; Burt, Jennifer; Crane, Jeffrey D. et al. (2020), Search for Nearby Earth Analogs. III. Detection of ten new planets, three planet candidates, and confirmation of three planets around eleven nearby M dwarfs, doi:10.3847/1538-4365/abb139  Accepted for publication by ApJS
  55. Rivera, Eugenio J. et al. (July 2010). "The Lick-Carnegie Exoplanet Survey: A Uranus-mass Fourth Planet for GJ 876 in an Extrasolar Laplace Configuration". The Astrophysical Journal 719 (1): 890–899. doi:10.1088/0004-637X/719/1/890. Bibcode2010ApJ...719..890R. 
  56. Fontanive, C.; Bedin, L. R.; Bardalez Gagliuffi, D. C. (2021-02-01). "The Y dwarf population with HST: unlocking the secrets of our coolest neighbours - I. Overview and first astrometric results". Monthly Notices of the Royal Astronomical Society 501 (1): 911–915. doi:10.1093/mnras/staa3732. ISSN 0035-8711. Bibcode2021MNRAS.501..911F. 
  57. Bailey, Jeremy (2009). "A Jupiter-like Planet Orbiting the Nearby M Dwarf GJ832". The Astrophysical Journal 690 (1): 743–747. doi:10.1088/0004-637X/690/1/743. Bibcode2009ApJ...690..743B. 
  58. Wittenmyer, R. A. et al. (2014). "GJ 832c: A super-earth in the habitable zone". The Astrophysical Journal 791 (2): 114. doi:10.1088/0004-637X/791/2/114. Bibcode2014ApJ...791..114W. 
  59. Carleo, I. et al. (2020). "The GAPS Programme at TNG XXI – A GIARPS case-study of known young planetary candidates: Confirmation of HD 285507 b and refutation of AD Leo b". Astronomy & Astrophysics A5: 638. doi:10.1051/0004-6361/201937369. Bibcode2020A&A...638A...5C. 
  60. 60.0 60.1 60.2 "G 158-50 - SIMBAD". http://simbad.u-strasbg.fr/simbad/sim-id?Ident=G+158-50. 
  61. See also: Stellar kinematics.
  62. García-Sánchez, Joan; Preston, Robert A.; Jones, Dayton L.; Weissman, Paul R.; Lestrade, Jean-François; Latham, David W.; Stefanik, Robert P. (February 1999). "Stellar Encounters with the Oort Cloud Based on [ITAL]Hipparcos[/ITAL] Data". The Astronomical Journal 117 (2): 1042–1055. doi:10.1086/300723. Bibcode1999AJ....117.1042G. 
  63. Bailer-Jones, C. A. L.; Rybizki, J.; Andrae, R.; Fouesneau, M. (13 August 2018). "New stellar encounters discovered in the second data release". Astronomy & Astrophysics 616: A37. doi:10.1051/0004-6361/201833456. Bibcode2018A&A...616A..37B. 

External links