Biology:2020 in paleobotany

From HandWiki

This article records new taxa of fossil plants that are scheduled to be described during the year 2020, as well as other significant discoveries and events related to paleobotany that are scheduled to occur in the year 2020.

Flowering plants

Alismatales

Name Novelty Status Authors Age Type locality Location Notes Images

Limnobiophyllum pedunculatum[1]

Sp. nov

Valid

Low, Su & Xing in Low et al.

Late Oligocene

 China

A member of the family Araceae.

Apiales

Name Novelty Status Authors Age Type locality Location Notes Images

Paleopanax puryearensis[2]

Sp. nov

Valid

Na, Blanchard & Wang

Middle Eocene

Cockfield Formation

 United States
( Tennessee)

A member of the family Araliaceae.

Arecales

Name Novelty Status Authors Age Type locality Location Notes Images

Echimonocolpites chicxulubensis[3]

Sp. nov

Valid

Smith et al.

Eocene (Ypresian)

 Mexico

Pollen of a flowering plant, probably a member of the family Arecaceae.

Palmoxylon ceroxyloides[4]

Sp. nov

In press

Khan, Hazra & Bera in Khan et al.

Late Cretaceous (Maastrichtian)-Paleocene (Danian)

Deccan Intertrappean Beds

 India

A petrified palm stem of a member of the subfamily Ceroxyloideae.

Palmoxylon dindoriensis[5]

Sp. nov

Valid

Khan, Roy & Bera in Khan et al.

Late Cretaceous (Maastrichtian)-Paleocene (Danian)

Deccan Intertrappean Beds

 India

A petrified palm stem.

Sabalites dawsonii[6]

Sp. nov

Valid

Greenwood & Conran

Eocene

 Canada
( British Columbia)

Sabalites karondiensis[7]

Sp. nov

In press

Roy, Hazra & Khan in Roy et al.

Late Cretaceous-Paleocene (latest Maastrichtian-earliest Danian)

Deccan Intertrappean Beds

 India

A palm frond .

Spinizonocolpites riochiquensis[8]

Sp. nov

Valid

Vallati & De Sosa Tomas in Vallati, De Sosa Tomas & Casal

Late Cretaceous (Maastrichtian)

Lago Colhué Huapí Formation

 Argentina

A member of Arecaceae described on the basis of fossil pollen grains. Announced in 2019; the final version of the article naming it was published in 2020.

Buxales

Name Novelty Status Authors Age Type locality Location Notes Images

Pachysandra europaea[9]

Sp. nov

Valid

Kvaček, Teodoridis & Denk

Pliocene

 Germany

A species of Pachysandra. Announced in 2019; the final version of the article naming it was published in 2020.

Caryophyllales

Name Novelty Status Authors Age Type locality Location Notes Images

Gomphrenipollis garciae[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen of a flowering plant, possibly produced by members of the family Amaranthaceae. Announced in 2020; the final version of the article naming it was published in 2021.

Chloranthales

Name Novelty Status Authors Age Type locality Location Notes Images

Sarcandraxylon[11]

Gen. et sp. nov

Valid

Pipo, Iglesias & Bodnar

Late Cretaceous (early–middle Campanian)

Santa Marta Formation

Antarctica

A member of the family Chloranthaceae. Genus includes new species S. sanjosense.

Cornales

Name Novelty Status Authors Age Type locality Location Notes Images

Amersinia littletonensis[12]

Sp. nov

Valid

Huegele & Manchester

Early Paleocene

Denver Formation

 United States
( Colorado)

Langtonia parva[12]

Sp. nov

Valid

Huegele & Manchester

Early Paleocene

Denver Formation

 United States
( Colorado)

A member of the family Mastixiaceae.

Mastixicarpum hoodii[12]

Sp. nov

Valid

Huegele & Manchester

Early Paleocene

Denver Formation

 United States
( Colorado)

A member of the family Mastixiaceae.

Nyssa gergoei[13]

Sp. nov

Valid

Hably

Miocene

 Hungary

A tupelo.

Nyssa gyoergyi[13]

Sp. nov

Valid

Hably

Miocene

 Hungary

A tupelo.

Platycrater iljinskajae[14]

Sp. nov

In press

Denk et al.

Late Oligocene

 Russia

Portnallia alexanderi[12]

Sp. nov

Valid

Huegele & Manchester

Early Paleocene

Denver Formation

 United States
( Colorado)

A member of the family Mastixiaceae.

Crossosomatales

Name Novelty Status Authors Age Type locality Location Notes Images
Staphylea woodworthensis[15] Sp. nov In press Zhu & Manchester Oligocene Renova Formation  United States
( Montana)
A species of Staphylea.

Cucurbitales

Name Novelty Status Authors Age Type locality Location Notes Images

Coriaripites goodii[16]

Sp. nov

Valid

Barreda, Palazzesi & Tellería in Renner et al.

Late Cretaceous (Campanian–early Maastrichtian)

Lopez de Bertodano Formation
Santa Marta Formation
Snow Hill Island Formation

Antarctica

Pollen grains similar to those of extant members of the genus Coriaria.

Echitriporites jolyi[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen produced by members of the genus Cayaponia. Announced in 2020; the final version of the article naming it was published in 2021.

Ericales

Name Novelty Status Authors Age Type locality Location Notes Images

Andrewsiocarpon puryearensis[2]

Sp. nov

Valid

Na, Blanchard & Wang

Middle Eocene

Cockfield Formation

 United States
( Tennessee)

A member of the family Theaceae.

Anubiscarpon[17]

Gen. et sp. nov

Valid

Smith & Manchester

Middle Eocene

Clarno Formation

 United States
( Oregon)

A member of the family Theaceae. Genus includes new species A. andersonae.

Fabales

Name Novelty Status Authors Age Type locality Location Notes Images

Cercis zekuensis[18]

Sp. nov

Valid

Li et al.

Early Miocene

 China

A species of Cercis. Announced in 2020; the final version of the article naming it was published in 2021.

Gleditsia pliocaenica[9]

Sp. nov

Valid

Kvaček, Teodoridis & Denk

Pliocene

 Germany

A species of Gleditsia. Announced in 2019; the final version of the article naming it was published in 2020.

Menendoxylon lutzi[19] Sp. nov In press Baez & Crisafulli Miocene Chiquimil  Argentina Fossil wood of a member of the family Fabaceae.

Parkiidites marileae[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen produced by members of the genus Parkia. Announced in 2020; the final version of the article naming it was published in 2021.

Prioria martineziorum[20]

Sp. nov

Valid

Rodríguez-Reyes & Estrada-Ruiz

Oligocene-Miocene

Santiago Formation

 Panama

A species of Prioria.

Psilastephanocolporites deoliverae[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen produced by members of the family Polygalaceae. Announced in 2020; the final version of the article naming it was published in 2021.

Psilastephanocolporites endoporatus[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Announced in 2020; the final version of the article naming it was published in 2021.

Striatopollis grahamii[3]

Sp. nov

Valid

Smith et al.

Eocene (Ypresian)

 Mexico

Pollen of an eudicot, probably a member of the family Fabaceae.

Fagales

Name Novelty Status Authors Age Type locality Location Notes Images

Alnus chaybulakensis[21]

Sp. nov

Valid

Averyanova & Xing

Paleogene

 Kazakhstan

An alder.

Berryophyllum hainanensis[22]

Sp. nov

Valid

Liu & Jin in Liu, Song & Jin

Eocene

Changchang Formation

 China

A member of the family Fagaceae.

Carpinus asymmetrica[23]

Sp. nov

In press

Xue & Jia in Xue et al.

Early Miocene

Maguan

 China

A species of Carpinus.

Carpinus symmetrica[23]

Sp. nov

In press

Xue & Jia in Xue et al.

Early Miocene

Maguan Basin

 China

A species of Carpinus

Carya pipecreekensis[24]

Sp. nov

In press

Swinehart & Farlow

Late Neogene

Pipe Creek Sinkhole

 United States
( Indiana)

A hickory.

Castaneophyllum hainanensis[22]

Sp. nov

Valid

Liu & Jin in Liu, Song & Jin

Eocene

Changchang Formation

 China

A member of the family Fagaceae.

Castaneophyllum lanceolata[22]

Sp. nov

Valid

Liu & Jin in Liu, Song & Jin

Eocene

Changchang Formation

 China

A member of the family Fagaceae.

Castanopsis bulgarica[25] Sp. nov Valid Mantzouka, Ivanov & Bozukov Late Miocene–early Pliocene (late Messinian–early Zanclean) Pokrovnik  Bulgaria A species of Castanopsis. Announced in 2020; the final version of the article naming it was published in 2021.

Lithocarpus changchangensis[22]

Sp. nov

Valid

Liu & Jin in Liu, Song & Jin

Eocene

Changchang Formation

 China

A species of Lithocarpus.

Quercus borissovii[21]

Sp. nov

Valid

Averyanova & Xing

Paleogene

 Kazakhstan

An oak.

Quercus changchangensis[22]

Sp. nov

Valid

Liu & Jin in Liu, Song & Jin

Eocene

Changchang Formation

 China

An oak.

Quercus paleoargyrotricha[22]

Sp. nov

Valid

Liu & Jin in Liu, Song & Jin

Eocene

Changchang Formation

 China

An oak.

Quercus paleohypargyrea[22]

Sp. nov

Valid

Liu & Jin in Liu, Song & Jin

Eocene

Changchang Formation

 China

An oak.

Quercus paleolamellosa[22]

Sp. nov

Valid

Liu & Jin in Liu, Song & Jin

Eocene

Changchang Formation

 China

An oak.

Garryales

Name Novelty Status Authors Age Type locality Location Notes Images

Eucommia szaferi[9]

Sp. nov

Valid

Kvaček, Teodoridis & Denk

Pliocene

 Germany

A species of Eucommia. Announced in 2019; the final version of the article naming it was published in 2020.

Gentianales

Name Novelty Status Authors Age Type locality Location Notes Images

Asclepiadospermum[26]

Gen. et 2 sp. nov

Valid

Del Rio et al.

Early Eocene

Niubao Formation

 China

An asclepiadoid Apocynaceae genus.
Included species A. marginatum and A. ellipticum.

Margocolporites carinae[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen produced by members of the genus Rauvolfia. Announced in 2020; the final version of the article naming it was published in 2021.

Icacinales

Name Novelty Status Authors Age Type locality Location Notes Images

Iodes elliptica[27]

Sp. nov

In press

Del Rio et al.

Early Oligocene

Wenshan Basin

 China

A member of the family Icacinaceae.

Iodes passiciensis[28]

Sp. nov

Valid

Del Rio & De Franceschi

Early Eocene

 France

A member of the family Icacinaceae.

Manchesteria[29]

Gen. et sp. nov

In press

Stull & Rozefelds in Rozefelds et al.

Cenozoic (mid-Miocene or, more likely, middle Eocene)

 Australia

A member of the family Icacinaceae. Genus includes new species M. australis.

Pyrenacantha simonsii[30]

Sp. nov

Valid

Stull et al.

Early Oligocene

 Egypt

A species of Pyrenacantha.

Lamiales

Name Novelty Status Authors Age Type locality Location Notes Images

Echitricolpites cruziae[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen produced by members of the genus Aegiphila. Announced in 2020; the final version of the article naming it was published in 2021.

Multiareolites? reticulatus[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen produced by members of the family Acanthaceae. Announced in 2020; the final version of the article naming it was published in 2021.

Retistephanocolpites curvimuratus[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Announced in 2020; the final version of the article naming it was published in 2021.

Retistephanocolpites pardoi[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen of a flowering plant, possibly produced by members of the genus Amphilophium. Announced in 2020; the final version of the article naming it was published in 2021.

Laurales

Name Novelty Status Authors Age Type locality Location Notes Images

Actinodaphnoxylon[31]

Gen. et sp. nov

In press

Akkemik et al.

Eocene (Lutetian)

 Turkey

A member of the family Lauraceae. Genus includes new species A. zileensis.

Mezilaurinoxylon oleiferum[32]

Sp. nov

Valid

Ruiz, Brea & Pujana in Ruiz et al.

Paleocene (Danian)

Salamanca Formation

 Argentina

A member of the family Lauraceae. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020.

Patagonoxylon[32]

Gen. et sp. nov

Valid

Ruiz, Brea & Pujana in Ruiz et al.

Paleocene (Danian)

Salamanca Formation

 Argentina

A member of Laurales of uncertain phylogenetic placement. Genus includes new species P. scalariforme. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020.

Thymolepis[33]

Gen. et sp. nov

Valid

Chambers & Poinar

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

Possibly an early representative of Monimiaceae. Genus includes new species T. toxandra.

Valviloculus[34]

Gen. et sp. nov

Valid

Poinar et al.

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

Possibly a member of Laurales related to the families Monimiaceae and Atherospermataceae. Genus includes new species V. pleristaminis.

Liliales

Name Novelty Status Authors Age Type locality Location Notes Images

Smilax fujianensis[35]

Sp. nov

Valid

Dong et al.

Middle Miocene

 China

A species of Smilax. Announced in 2020; the final version of the article naming it was published in 2021.

Smilax zhangpuensis[35]

Sp. nov

Valid

Dong et al.

Middle Miocene

 China

A species of Smilax. Announced in 2020; the final version of the article naming it was published in 2021.

Magnoliales

Name Novelty Status Authors Age Type locality Location Notes Images

Magnolia nanningensis[36]

Sp. nov

Valid

Huang et al.

Late Oligocene

Nanning Basin

 China

A species of Magnolia.

Magnolia waltheri[9]

Sp. nov

Valid

Kvaček, Teodoridis & Denk

Pliocene

 Germany

A species of Magnolia. Announced in 2019; the final version of the article naming it was published in 2020.

Melloniflora[37]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous

Potomac Group

 United States
( Virginia)

A relative of extant early-diverging members of the Magnoliales. Genus includes new species M. virginiensis.

Malpighiales

Name Novelty Status Authors Age Type locality Location Notes Images

Salix palaeofutura[38]

Sp. nov

Valid

Narita et al.

Miocene

Bifuka Formation

 Japan

A willow.

Malvales

Name Novelty Status Authors Age Type locality Location Notes Images
Bastardioxylon[19] Gen. et sp. nov In press Baez & Crisafulli Miocene Chiquimil  Argentina Fossil wood of a member of the family Malvaceae. Genus includes new species B. antiqua.
Dipterocarpus dindoriensis[39] Sp. nov Valid Khan, Spicer & Bera in Khan et al. Late Cretaceous (Maastrichtian) Deccan Intertrappean Beds  India A species of Dipterocarpus.

Echiperiporites germeraadii[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Announced in 2020; the final version of the article naming it was published in 2021.

Echiperiporites jaramilloi[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen produced by members of the genus Hibiscus. Announced in 2020; the final version of the article naming it was published in 2021.

Echiperiporites titanicus[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen produced by members of the genus Malachra. Announced in 2020; the final version of the article naming it was published in 2021.

Retistephanocolporites elizabeteae[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen produced by members of the genus Ceiba. Announced in 2020; the final version of the article naming it was published in 2021.

Veraguasoxylon[20]

Gen. et sp. nov

Valid

Rodríguez-Reyes & Estrada-Ruiz

Oligocene-Miocene

Santiago Formation

 Panama

A member of the family Malvaceae. Genus includes new species V. panamense.

Myrtales

Name Novelty Status Authors Age Type locality Location Notes Images

Eucalyptus xoshemium[40]

Sp. nov

Valid

Gandolfo & Zamaloa in Zamaloa, Gandolfo & Nixon

Eocene (Ypresian)

Huitrera Formation

 Argentina

A species of Eucalyptus.

Mangroveoxylon[41]

Gen. et comb. nov

In press

Moya & Brea

Late Miocene?

Ituzaingó Formation

 Argentina

A member of the family Combretaceae; a new genus for "Menendoxylon" areniensis Lutz (1979).

Myrceugenellites grandiporosum[32]

Sp. nov

Valid

Ruiz, Brea & Pujana in Ruiz et al.

Paleocene (Danian)

Salamanca Formation

 Argentina

A member of the family Myrtaceae. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020.

Primotrapa[42]

Gen. et sp. nov

Valid

Li & Li in Li et al.

Late Eocene to early Miocene

Hannuoba

 China
 Czech Republic
 France
 Germany

A member of Trapoideae. Genus includes new species P. weichangensis, as well as "Carpolithus" pomelii Saporta (1878) and "Hemitrapa" alpina Su & Zhou in Su et al. (2018).

Nymphaeales

Name Novelty Status Authors Age Type locality Location Notes Images

Praenymphaeapollenites[43]

Gen. et sp. nov

Valid

Barrón, Peris & Labandeira in Peris et al.

Cenomanian

Burmese amber

 Myanmar

Pollen of a member of Nymphaeaceae.
Genus includes new species P. cenomaniensis.

Oxalidales

Name Novelty Status Authors Age Type locality Location Notes Images

Cunoniantha[44]

Gen. et sp. nov

Valid

Jud & Gandolfo

Paleocene (early Danian)

Salamanca Formation

 Argentina

A member of the family Cunoniaceae. Genus includes new species C. bicarpellata. Announced in 2020; the final version of the article naming it was published in 2021.

Elaeocarpus nanningensis[45]

Sp. nov

In press

Liu et al.

Late Oligocene

Yongning Formation

 China

A species of Elaeocarpus.

Elaeocarpus prelacunosus[45]

Sp. nov

In press

Liu et al.

Late Miocene

Foluo Formation

 China

A species of Elaeocarpus.

Elaeocarpus preprunifolioides[45]

Sp. nov

In press

Liu et al.

Late Miocene

Foluo Formation

 China

A species of Elaeocarpus.

Elaeocarpus prerugosus[45]

Sp. nov

In press

Liu et al.

Late Miocene

Foluo Formation

 China

A species of Elaeocarpus.

Elaeocarpus preserratus[45]

Sp. nov

In press

Liu et al.

Late Miocene

Foluo Formation

 China

A species of Elaeocarpus.

Elaeocarpus presikkimensis[45]

Sp. nov

In press

Liu et al.

Miocene

Erzitang Formation

 China

A species of Elaeocarpus.

Poales

Name Novelty Status Authors Age Type locality Location Notes Images

Monoporopollenites scabratus[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen produced by members of the family Poaceae. Announced in 2020; the final version of the article naming it was published in 2021.

Rhizomatites[46]

Gen. et sp. nov

In press

Robledo & Anzótegui in Robledo et al.

Miocene-Pliocene

 Argentina

A member of Cyperaceae. Genus includes new species R. cyperoides.

Proteales

Name Novelty Status Authors Age Type locality Location Notes Images

Banksia microphylla[47]

Sp. nov

Valid

Carpenter in Carpenter & Milne

Late Eocene

 Australia

A species of Banksia.

Banksieaeidites zanthus[47]

Sp. nov

Valid

Milne in Carpenter & Milne

Late Eocene

 Australia

A Banksia-like pollen.

Platanus emryi[48]

Sp. nov

Valid

Huegele, Spielbauer & Manchester

Miocene

 United States

A species of Platanus.

Ranunculales

Name Novelty Status Authors Age Type locality Location Notes Images

Cissampelos defranceschii[49]

Sp. nov

Valid

Del Rio & Su in Del Rio et al.

Middle Eocene

Niubao Formation

 China

A species of Cissampelos. Announced in 2020; the final version of the article naming it was published in 2021.

Clematis csabae[13]

Sp. nov

Valid

Hably

Miocene

 Hungary

A species of Clematis.

Diploclisia praeaffinis[50]

Sp. nov

Valid

Jia et al.

Late Miocene

 China

A member of the family Menispermaceae. Announced in 2020; the final version of the article naming it was published in 2021.

Menispermites bangorensis[49]

Sp. nov

Valid

Huang in Del Rio et al.

Middle Eocene

Niubao Formation

 China

A member of the family Menispermaceae. Announced in 2020; the final version of the article naming it was published in 2021.

Menispermites haominae[49]

Sp. nov

Valid

Huang in Del Rio et al.

Middle Eocene

Niubao Formation

 China

A member of the family Menispermaceae. Announced in 2020; the final version of the article naming it was published in 2021.

Menispermites tibetica[49]

Sp. nov

Valid

Huang in Del Rio et al.

Middle Eocene

Niubao Formation

 China

A member of the family Menispermaceae. Announced in 2020; the final version of the article naming it was published in 2021.

Paleoorbicarpum[51]

Gen. et sp. nov

Valid

Han et al.

Paleocene

Sanshui Basin

 China

A member of the family Menispermaceae. Genus includes new species P. parvum.

Stephania bangorensis[49]

Sp. nov

Valid

Del Rio & Su in Del Rio et al.

Middle Eocene

Niubao Formation

 China

A species of Stephania. Announced in 2020; the final version of the article naming it was published in 2021.

Stephania geniculata[51]

Sp. nov

Valid

Han et al.

Paleocene

Sanshui Basin

 China

A species of Stephania

Stephania ornamenta[51]

Sp. nov

Valid

Han et al.

Paleocene

Sanshui Basin

 China

A species of Stephania

Stephania shuangxingii[49]

Sp. nov

Valid

Del Rio & Su in Del Rio et al.

Middle Eocene

Niubao Formation

 China

A species of Stephania. Announced in 2020; the final version of the article naming it was published in 2021.

Rosales

Name Novelty Status Authors Age Type locality Location Notes Images

Berhamniphyllum junrongii[52]

Sp. nov

Valid

Zhou, Wang & Huang in Zhou et al.

Late Eocene

Markam Basin

 China

A member of the family Rhamnaceae

Crataegus pentagynoides[9]

Sp. nov

Valid

Kvaček, Teodoridis & Denk

Pliocene

 Germany

A species of Crataegus. Announced in 2019; the final version of the article naming it was published in 2020.

Hemiptelea kryshtofovichii[21]

Sp. nov

Valid

Averyanova & Xing

Paleogene

 Kazakhstan

A member of the family Ulmaceae.

Scabrastephanoporites[3]

Gen. et sp. nov

Valid

Smith et al.

Eocene (Ypresian)

 Mexico

Pollen of an eudicot, probably a member of the family Ulmaceae or Cannabaceae. Genus includes new species S. variabilis.

Sapindales

Name Novelty Status Authors Age Type locality Location Notes Images

Acer dombeyopsis[9]

Sp. nov

Valid

Kvaček, Teodoridis & Denk

Pliocene

 Germany

A maple. Announced in 2019; the final version of the article naming it was published in 2020.

Acer viburnoides[9]

Sp. nov

Valid

Kvaček, Teodoridis & Denk

Pliocene

 Germany

A maple. Announced in 2019; the final version of the article naming it was published in 2020.

Acer vitiforme[9]

Sp. nov

Valid

Kvaček, Teodoridis & Denk

Pliocene

 Germany

A maple. Announced in 2019; the final version of the article naming it was published in 2020.

Brosipollis reticulatus[3]

Sp. nov

Valid

Smith et al.

Eocene (Ypresian)

 Mexico

Pollen of a flowering plant, probably a member of the family Burseraceae.

Choerospondias fujianensis[53]

Sp. nov

In press

Wang et al.

Miocene

 China

A species of Choerospondias.

Llanodelacruzoxylon[54] Gen. et sp. nov Rodríguez-Reyes, Estrada-Ruiz & Gasson Oligocene–Miocene Santiago Formation  Panama A member of the family Anacardiaceae. Genus includes new species L. sandovalii.

Manchestercarpa[55]

Gen. et sp. nov

Valid

Atkinson

Late Cretaceous (Campanian)

 Canada
( British Columbia)

A member of the family Meliaceae described on the basis of a fossil fruit. Genus includes new species M. vancouverensis.

Parametopioxylon[56]

Gen. et sp. nov

Valid

Franco et al.

Miocene

Ituzaingó Formation

 Argentina

A member of the family Anacardiaceae described on the basis of fossil wood. Genus includes new species P. crystalliferum.

Psilastephanocolporites hammenii[3]

Sp. nov

Valid

Smith et al.

Eocene (Ypresian)

 Mexico

Pollen of a flowering plant, probably a member of the family Meliaceae

Quinquala[57]

Gen. et sp. nov

Valid

Manchester & Disney in Manchester, Disney & Pham

Eocene

Clarno Formation
Tepee Trail Formation

 United States
( Oregon
 Wyoming)

A fossil fruit with affinities with the Rutaceae. Genus includes new species Q. obovata.

Rousea cavitata[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Announced in 2020; the final version of the article naming it was published in 2021.

Saxifragales

Name Novelty Status Authors Age Type locality Location Notes Images

Corylopsis grisea[58]

Sp. nov

Valid

Quirk & Hermsen

Early Pliocene

Gray Fossil Site

 United States
( Tennessee)

A species of Corylopsis. Announced in 2020; the final version of the article naming it was published in 2021.

Itea polyneura[59]

Sp. nov

In press

Huang & Tian in Tian et al.

Oligocene

Huazhige Formation

 China

A species of Itea.

Protoaltingia[60]

Gen. et sp. nov

Valid

Scharfstein, Stockey & Rothwell

Late Cretaceous (Coniacian)

 Canada
( British Columbia)

A member of the family Altingiaceae. Genus includes new species P. comoxense.

Solanales

Name Novelty Status Authors Age Type locality Location Notes Images

Physalis hunickenii[61]

Sp. nov

Valid

Deanna, Wilf & Gandolfo

Early Eocene

Laguna del Hunco Formation

 Argentina

A species of Physalis.

Trochodendrales

Name Novelty Status Authors Age Type locality Location Notes Images

Eotrochion[62]

Gen. et sp. nov

Valid

Manchester, Kvaček & Judd

Paleocene

 United States
( Wyoming)

A member of the family Trochodendraceae. Genus includes new species E. polystylum. Announced in 2020; the final version of the article naming it was published in 2021.

Paraconcavistylon[62]

Gen. et comb. nov

Valid

Manchester, Kvaček & Judd

Ypresian

Klondike Mountain Formation

 United States
( Washington)

A Trochodendraceae; a new genus for "Concavistylon" wehrii Manchester et al. (2018). Announced in 2020; the final version of the article naming it was published in 2021.

Trochodendron infernense[62]

Sp. nov

Valid

Manchester, Kvaček & Judd

Paleocene

 United States
( Wyoming)

A species of Trochodendron. Announced in 2020; the final version of the article naming it was published in 2021.

Vitales

Name Novelty Status Authors Age Type locality Location Notes Images

Yua jiangxiensis[63]

Sp. nov

Valid

He & Wang

Miocene

Toupi Formation

 China

A species of Yua. Announced in 2020; the final version of the article naming it was published in 2021.

Other angiosperms

Name Novelty Status Authors Age Type locality Location Notes Images

Aextoxicoxylon kawasianus[64]

Sp. nov

Valid

Vera et al.

Late Cretaceous

Puntudo Chico Formation

 Argentina

A fossil dicot wood

Atlantocarpus[65]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (Albian)

Potomac Group

 Portugal
 United States
( Virginia)

An early flowering plant, possibly related to the group Austrobaileyales. Genus includes new species A. virginiensis.

Carpolithes gergoei[13]

Sp. nov

Valid

Hably & Erdei in Hably

Miocene

 Hungary

A fossil fruit of a flowering plant of uncertain phylogenetic placement.

Catanthus[66]

Gen. et sp. nov

In press

Friis, Crane & Pedersen

Early Cretaceous

 Portugal

An early flowering plant. Genus includes new species C. dolichostemon.

Cavilignum[67]

Gen. et sp. nov

Valid

Siegert & Hermsen

Early Pliocene

Gray Fossil Site

 United States
( Tennessee)

A flowering plant of uncertain phylogenetic placement, described on the basis of fossil endocarps. Genus includes new species C. pratchettii.

Chainandra[68]

Gen. et sp. nov

Valid

Poinar & Chambers

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

Genus includes new species C. zeugostylus.

Cichoreacidites? flammulatus[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021.

Crotonoidaepollenites echinatus[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021.

Cyathitepala[69]

Gen. et sp. nov

Valid

Poinar & Chambers

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

Genus includes new species C. papillosa.

Dasykothon[70]

Gen. et sp. nov

Valid

Poinar & Chambers

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A flowering plant of uncertain phylogenetic placement, possibly a member of Laurales. Genus includes new species D. leptomiscus.

Dinganthus[71]

Gen. et sp. nov

Valid

Liu et al.

Miocene

Dominican amber

 Dominican Republic

A eudicot of uncertain phylogenetic placement. Genus includes new species D. pentamera.

Echistephanoporites annulatus[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021.

Eofructus[72]

Gen. et sp. nov

Valid

Han & Wang

Early Cretaceous

Yixian Formation

 China

An infructescence including a central axis and five fruits resembling Liaoningfructus. Genus includes new species E. liutiaogouensis.

Foveotricolporites crassus[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021.

Inaperturopollenites microechinatus[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021.

Ladakhipollenites carmoi[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021.

Lambertiflora[65]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (Albian)

Potomac Group

 United States
( Virginia)

An early flowering plant, possibly related to the group Austrobaileyales. Genus includes new species L. elegans.

Malvacipolloides diversus[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021.

Malvacipolloides echibaculatus[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021.

Malvacipolloides romeroae[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021.

Menatanthus[73]

Gen. et sp. nov

Valid

Uhl, Paudayal & El Atfy in Uhl et al.

Paleocene (Thanetian)

 France

A eudicot of uncertain phylogenetic placement. Genus includes new species M mosbruggeri. Announced in 2020; the final version of the article naming it was published in 2021.

Mugideiriflora[65]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (Aptian-early Albian)

Almargem Formation

 Portugal

An early flowering plant, possibly related to the group Austrobaileyales. Genus includes new species M. portugallica.

Phantophlebia[74]

Gen. et sp. nov

Valid

Poinar & Chambers

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A flowering plant of uncertain phylogenetic placement, possibly related to myrsinoid members of the family Primulaceae. Genus includes new species P. dicycla.

Platanites willigeri[75]

Sp. nov

Valid

Halamski & Kvaček in Halamski et al.

Late Cretaceous (Santonian)

Czerna Formation

 Poland

Trifoliolate platanoid leaves.

Psilaperiporites delicatus[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021.

Psilaperiporites lunaris[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021.

Ranunculacidites reticulatus[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021.

Rasenganus[76]

Gen. et sp. nov

Valid

Xing & Gu

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A possible epizoochorous fruit. Genus includes new species R. auricularus.

Retibrevitricolpites microreticulatus[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021.

Retibrevitricolporites costaporus[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021.

Retibrevitricolporites? toigoae[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021.

Retipollenites solimoensis[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021.

Retitriporites crassoreticulatus[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021.

Rhoipites alfredii[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021.

Singpuria[77]

Gen. et sp. nov

Valid

Ramteke, Manchester & Nagrale in Ramteke et al.

Late Cretaceous (Maastrichtian)

Deccan Intertrappean Beds

 India

A member of Pentapetalae of uncertain phylogenetic placement. Genus includes new species S. kapgatei.

Sinoherba[78]

Gen. et sp. nov

Valid

Liu & Wang in Liu, Chen & Wang

Early Cretaceous (BarremianAptian)

Yixian Formation

 China

An early monocot. Genus includes new species S. ningchengensis. Announced in 2020; the final version of the article naming it was published in 2021.

Varifructus[79]

Gen. et sp. nov

In press

Liu et al.

Early Cretaceous

Yixian Formation

 China

An early flowering plant. Genus includes new species V. lingyuanensis.

Wireroadia[80]

Gen. et sp. et comb. nov

Valid

Zhang et al.

Late Cretaceous (Cenomanian to Santonian)

 United States
( Alabama
 Massachusetts
 New Jersey
 New York)

A winged fruit of a eudicot of uncertain phylogenetic placement. Genus includes new species W. viccallii, as well as W. major (Hollick).

Pinales

Name Novelty Status Authors Age Type locality Location Notes Images

Agathis ledongensis[81]

Sp. nov

Valid

Oskolski et al.

Late Oligocene–early Miocene

Qiutangling Formation

 China

A species of Agathis

Agathoxylon cozzoi[82]

Sp. nov

Valid

Gnaedinger & Zavattieri

Late Triassic

Chihuido Formation

 Argentina

Araucaria cuneoi[83]

Sp. nov

Valid

Noll & Kunzmann

Middle Jurassic

 Argentina

A species of Araucaria.

Araucaria famii[84]

Sp. nov

Valid

Stockey & Rothwell

Late Cretaceous (Campanian)

 Canada
( British Columbia)

A species of Araucaria.

Araucaria fildesensis[85]

Sp. nov

Valid

Shi et al.

Eocene

Fossil Hill Formation

Antarctica
(King George Island)

A species of Araucaria

Araucaria huncoensis[86]

Sp. nov

Valid

Rossetto‐Harris in Rossetto‐Harris et al.

Early Eocene

Laguna del Hunco Formation

 Argentina

A species of Araucaria.

Araucaria stockeyana[83]

Sp. nov

Valid

Noll & Kunzmann

Middle Jurassic

 Argentina

A species of Araucaria.

Araucarites pachacuteci[87] Sp. nov

In press

Martínez in Martínez et al.

Early Cretaceous (BerriasianValanginian)

Huancané Formation

 Peru

A member of the family Araucariaceae

Brachyoxylon zhouii[88]

Sp. nov

Valid

Jiang et al.

Early Cretaceous

Guantou Formation

 China

A conifer wood. Announced in 2020; the final version of the article naming it was published in 2021.

Brachyphyllum sattlerae[89] Sp. nov Valid Batista et al. Early Cretaceous (Aptian) Crato Formation  Brazil A member of the family Pinidae.

Callialastrobus[90]

Gen. et sp. nov

In press

Kvaček & Mendes

Early Cretaceous (late Aptian–early Albian)

Lusitanian Basin

 Portugal

A pollen cone of a member of Araucariaceae. Genus includes new species C. sousai.

Cedrus anatolica[91]

Sp. nov

Valid

Akkemik

Early Miocene

Hançili Formation

 Turkey

A species of Cedrus. Announced in 2020; the final version of the article naming it was published in 2021.

Circoporoxylon tibetense[92]

Sp. nov

In press

Xia et al.

Middle Jurassic (Callovian)

Xiali Formation

 China

Possibly a member of the family Podocarpaceae.

Comoxostrobus[93]

Gen. et sp. nov

Valid

Stockey, Rothwell & Atkinson

Late Cretaceous (early Coniacian)

 Canada
( British Columbia)

A member of the family Cupressaceae belonging to the subfamily Taiwanioideae. Genus includes new species C. rossii.

Cupressinoxylon klimovii[94]

Nom. nov

Valid

Blokhina

Miocene

 Russia

A member of the family Cupressaceae; a replacement name for Cupressinoxylon biotoides Blokhina (1989).

Cupressinoxylon llantenesense[82]

Sp. nov

Valid

Gnaedinger & Zavattieri

Late Triassic

Llantenes Formation

 Argentina

Cupressinoxylon manuelii[95] Sp. nov In press Ríos-Santos, Cevallos-Ferriz & Pujana Late Cretaceous (Campanian-Maastrichtian) Cabullona Group  Mexico

Ductoagathoxylon wangii[96]

Sp. nov

In press

Gou & Feng in Gou et al.

Middle Jurassic

Xishanyao Formation

 China

A conifer stem.

Friisia[97]

Gen. et sp. nov

In press

Mendes & Kvaček

Early Cretaceous (late Aptian – early Albian)

Lusitanian Basin

 Portugal

An ovuliferous cone of a member of the family Podocarpaceae. Genus includes new species F. lusitanica.

Juniperoxylon acarcaea[98]

Sp. nov

In press

Akkemik

Early Miocene

Hançili Formation

 Turkey

A member of the family Cupressaceae.

Lesbosoxylon kemaliyensis[99]

Sp. nov

Valid

Akkemik & Mantzouka in Akkemik, Mantzouka & Kıran Yıldırım

Miocene

Divriği Formation

 Turkey

A member of the family Pinaceae.

Marskea cuspidata[100]

Sp. nov

Valid

Frolov & Mashchuk

Middle Jurassic

Prisayan Formation

 Russia

A member of the family Taxaceae.

Mukawastrobus[101]

Gen. et sp. nov

Valid

Stockey, Nishida & Rothwell

Late Cretaceous (late Campanian—early Maastrichtian)

 Japan

A member of the family Cupressaceae belonging to the subfamily Taiwanioideae. Genus includes new species M. satoi.

Piceoxylon yumeniense[102]

Sp. nov

Valid

Zhou, Peng, Deng, Zhang & Yang in Zhou et al.

Early Cretaceous

Xiagou Formation

 China

Fossil wood of a member of the family Pinaceae. Announced in 2020; the final version of the article naming it was published in 2021.

Pinuxylon selmeierianum[103]

Sp. nov

Valid

Dolezych & Reinhardt

Paleogene

Eureka Sound Group

 Canada
( Nunavut)

A member of the family Pinaceae described on the basis of fossil wood

Protophyllocladoxylon chijinense[102]

Sp. nov

Valid

Zhou, Peng, Deng, Zhang & Yang in Zhou et al.

Early Cretaceous

Xiagou Formation

 China

Announced in 2020; the final version of the article naming it was published in 2021.

Tsuga asiatica[104]

Sp. nov

Valid

Wu & Zhou in Wu et al.

Late Paleogene

 China

A species of Tsuga. Announced in 2019; the final version of the article naming it was published in 2020.

Other seed plants

Name Novelty Status Authors Age Type locality Location Notes Images

Amyelon turpanense[105]

Sp. nov

In press

Shi, Yu & Sun

Permian (Lopingian)

Wutonggou

 China

A root of a member of Cordaitales

Androstrobus obovatus[106]

Sp. nov

In press

Bodnar et al.

Late Triassic

Potrerillos Formation

 Argentina

A member of Cycadales.

Araripestrobus[107]

Gen. et sp. nov

Valid

Seyfullah, Roberts, Schmidt & Kunzmann in Seyfullah et al.

Early Cretaceous (Aptian-Albian)

Crato

 Brazil

A seed plant belonging to the group Erdtmanithecales. Genus includes new species A. resinosus.

Archaeopetalanthus[108]

Gen. et sp. nov

Valid

Naugolnykh

Carboniferous

Listvjanskaya

 Russia

A member of Pinophyta belonging to the group Vojnovskyales. Genus includes new species A. progressus.

Battenispermum[109]

Gen. et sp. nov

In press

Mendes, Pedersen & Friis

Early Cretaceous

 Portugal

A seed plant belonging to the informal grouping Bennettitales-Erdtmanithecales-Gnetales. Genus includes new species B. hirsutum.

Carpolithus volantus[110]

Sp. nov

Valid

Gómez et al.

Early Cretaceous (Aptian)

La Cantera Formation

 Argentina

A fossil seed, possibly produced by a member of Gnetales.

Ductolobatopitys[111]

Gen. et sp. nov

Valid

Conceição & Crisafulli in Conceição et al.

Permian (Cisuralian)

Pedra de Fogo Formation

 Brazil

A gymnosperm described on the basis of fossil wood. Genus includes new species D. mussae.

Filigigantopteris[112]

Gen. et 2 sp. nov

In press

Zhou et al.

Late Permian

Nayixiong Formation

 China

A gigantopterid. Genus includes new species F. asymmetrica and F. dahaia.

Ginkgo pediculata[113]

Sp. nov

In press

Deng, Yang & Zhou

Early Cretaceous

 China

A species of Ginkgo.

Jianchangia[114]

Gen. et sp. nov

Valid

Yang, Wang & Ferguson

Early Cretaceous (Aptian)

Jiufotang Formation

 China

A member of Ephedraceae. Genus includes new species J. verticillata.

Johniphyllum[115]

Gen. et sp. nov

Valid

Looy & Duijnstee

Permian (Guadalupian)

 United States
( Texas)

A member of Voltziales. Genus includes new species J. multinerve.

Jordaniopteris[116]

Gen. et comb. nov

Valid

Anderson in Anderson et al.

Permian (possibly Lopingian)

Um Irna Formation

 Jordan

A seed fern. A new genus for "Dicroidium" irnensis Abu Hamad et al. (2008); genus also includes "Dicroidium" jordanensis Abu Hamad et al. (2008), "Dicroidium" robustum Kerp & Vörding (2008) and "Dicroidium" bandelii Abu Hamad et al. (2017).

Kaokoxylon brasiliensis[111]

Sp. nov

Valid

Conceição, Neregato & Iannuzzi in Conceição et al.

Permian (Cisuralian)

Pedra de Fogo Formation

 Brazil

A conifer described on the basis of fossil wood.

Nilssonia mirovanae[117]

Sp. nov

Valid

Čepičková & Kvaček

Late Cretaceous (Cenomanian)

Peruc-Korycany Formation

 Czech Republic

A cycad.

Novaiorquepitys[118]

Gen. et sp. nov

In press

Conceição & Crisafulli in Conceição et al.

Permian (Cisuralian)

Pedra de Fogo Formation

 Brazil

A gymnosperm stem. Genus includes new species N. maranhensis Conceição, Neregato & Iannuzzi.

Ovalocarpus butmanii[119]

Sp. nov

Valid

Naugolnykh & Linkevich

Permian (Artinskian)

 Russia
(Template:Country data Sverdlovsk Oblast)

A member of Ginkgoales belonging to the family Cheirocladaceae.

Palaeocupressinoxylon[120]

Gen. et sp. nov

In press

Wan, Yang & Wang

Late Permian

Turpan–Hami Basin

 China

A silicified gymnospermous fossil wood. Genus includes new species P. uniseriale.

Phoenicopsis anadyrensis[121]

Sp. nov

Valid

Nosova in Zolina et al.

Late Cretaceous–Paleocene (MaastrichtianDanian)

Rarytkin

 Russia
(Template:Country data Chukotka Autonomous Okrug)

A member of Czekanowskiales

Pseudovoltzia sapflorensis[115]

Sp. nov

Valid

Looy & Duijnstee

Permian (Guadalupian)

 United States
( Texas)

A member of Voltziales

Pterostoma neehoffii[122]

Sp. nov

Valid

Conran et al.

Middle Miocene

 New Zealand

A cycad

Pteruchus frenguellii[123]

Sp. nov

In press

Blomenkemper et al.

Late Permian

Umm Irna Formation

 Jordan

A pollen organ of a seed fern

Pteruchus lepidus[123]

Sp. nov

In press

Blomenkemper et al.

Late Permian

Umm Irna Formation

 Jordan

A pollen organ of a seed fern

Samaropsis jinchangensis[124]

Sp. nov

Valid

Hua & Sun in Hua et al.

Early Permian

 China

A seed fossil. Announced in 2019; the final version of the article naming was published in 2020.

Umaltolepis involuta[125]

Sp. nov

In press

Nosova

Middle Jurassic

Angren Formation

 Uzbekistan

Umaltolepis sogdianica[125]

Sp. nov

In press

Nosova

Middle Jurassic

Angren Formation

 Uzbekistan

Umkomasia aequatorialis[123]

Sp. nov

In press

Blomenkemper et al.

Late Permian

Umm Irna Formation

 Jordan

A cupulate structure of a seed fern

Wantus[115]

Gen. et sp. nov

Valid

Looy & Duijnstee

Permian (Guadalupian)

 United States
( Texas)

A member of Voltziales. Genus includes new species W. acaulis.

Wudaeophyton[126]

Gen. et sp. nov

Valid

Pšenička et al.

Early Permian

Taiyuan Formation

 China

A small vine, most similar to pteridosperms from the group Callistophytales. Genus includes new species W. wangii.

Yangopteris[127]

Gen. et comb. nov

In press

Zhou et al.

Permian (Asselian)

 China

A seed fern; a new genus for "Alethopteris" ascendens Halle.

Yvyrapitys[118]

Gen. et sp. nov

In press

Conceição & Crisafulli in Conceição et al.

Permian (Cisuralian)

Pedra de Fogo Formation

 Brazil

A gymnosperm stem. Genus includes new species Y. novaiorquensis Conceição, Neregato & Iannuzzi.

Other plants

Name Novelty Status Authors Age Type locality Location Notes Images

Annularia paisii[128]

Sp. nov

Valid

Correia et al.

Carboniferous (Gzhelian)

 Portugal

Blasiites huolinhensis[129]

Sp. nov

In press

Li et al.

Early Cretaceous

Huolinhe Formation

 China

A liverwort belonging to the family Blasiaceae.

Botryopteris multifolia[130]

Sp. nov

In press

He et al.

Permian (Lopingian)

Junlian Formation

 China

A fern

Birisia mandshurica[131]

Sp. nov

Valid

Golovneva, Grabovskiy & Zolina

Early Cretaceous (Albian)

Frentsevka Formation

 Russia
(Template:Country data Primorsky Krai)

A fern belonging to the family Dicksoniaceae.

Calamites cambrensis[132]

Sp. nov

Valid

Thomas

Carboniferous (Pennsylvanian)

 United Kingdom

Catenuporella[133]

Gen. et sp. nov

Valid

Zhang et al.

Late Ordovician

Ordos Basin

 China

A green alga belonging to the group Dasycladales. Genus includes new species C. gigantia.

Charaxis spicatus[134]

emend. nov.

Valid

Pérez-Cano, Bover-Arnal et Martín-Closas in Pérez-Cano et al.

Barremian

Maestrat Basin

 Spain

Thallus of Echinochara lazarii. Both taxa has been firstly found anatomically attached

Chlamydomonas hanublikanus[135]

Sp. nov

Vršanská & Hinkelman

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A species of Chlamydomonas

Circinites[46]

Gen. et sp. nov

In press

Robledo & Anzótegui in Robledo et al.

Miocene-Pliocene

 Argentina

A fern belonging to the family Pteridaceae. Genus includes new species C. pteridoides.

Clavatisporites cenomaniana[136]

Sp. nov

Valid

Santamarina in Santamarina et al.

Late Cretaceous (Cenomanian)

Mata Amarilla Formation

 Argentina

Spores of a member of Filicopsida of uncertain phylogenetic placement. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020.

Clavator calcitrapus var. jiangluoensis[134]

comb. nov

Valid

Pérez-Cano, Bover-Arnal et Martín-Closas in Pérez-Cano et al.

Barremian

Maestrat Basin

 Spain

Clavatoracean species.

Collarecodium? nezpercae[137] Sp. nov Valid Bucur & Rigaud in Bucur et al. Late Triassic (Norian)  United States
( Idaho)
A green alga belonging to the group Bryopsidales and possibly to the family Udoteaceae.

Collarisporites minor[136]

Sp. nov

Valid

Santamarina in Santamarina et al.

Late Cretaceous (Cenomanian)

Mata Amarilla Formation

 Argentina

Spores of a member of Filicopsida of uncertain phylogenetic placement. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020.

Coniopteris sandaolingensis[138]

Sp. nov

Valid

Yuan & Sun in Yuan et al.

Middle Jurassic

Xishanyao Formation

 China

Dimicheleodendron[139]

Gen. et comb. nov

Valid

Thomas & Cleal

Carboniferous

 United Kingdom

A lycophyte; a new genus for "Lepidodendron" hickii.

Drynaria diplosticha[140]

Sp. nov

Valid

Yu & Xie in Yu et al.

Late Miocene

Bangmai Formation

 China

A fern belonging to the family Polypodiaceae.

Echinochara lazarii[134]

comb. nov

Valid

Pérez-Cano, Bover-Arnal et MArtín-Closas in Pérez-Cano et al.

Barremian

Maestrat Basin

 Spain

A member of Clavatoraceans.

Equicalastrobus pusillus[141]

Sp. nov

Valid

Zhang & Yan in Zhang et al.

Late Triassic

Baojishan Basin

 China

A member of Equisetales. Announced in 2020; the final version of the article naming was published in 2021.

Equisetum yenbaiense[142]

Sp. nov

Valid

Aung et al.

Late Miocene

 Vietnam

A species of Equisetum

Equisetum yongpingense[142]

Sp. nov

Valid

Aung et al.

Late Pliocene

Sanying Formation

 Vietnam

A species of Equisetum

Filippoporella[143] Gen. et sp. nov In press Sokač & Grgasović Early Paleocene  Croatia A green alga belonging to the group Dasycladales. Genus includes new species F. barattoloi.

Frullania partita[144]

Sp. nov

Valid

Li et al.

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A liverwort, a species of Frullania

Frullania vanae[145]

Sp. nov

Valid

Mamontov et al.

Eocene

Rovno amber

 Ukraine

A liverwort, a species of Frullania

Gippslandites[146]

Gen. et sp. nov

Valid

McSweeney, Shimeta & Buckeridge

Late Silurian–early Devonian

 Australia

A member of Zosterophyllaceae. Genus includes new species G. minutus.

Gmujij[147] Gen. et sp. nov Valid Pfeiler & Tomescu Devonian (Emsian) Battery Point  Canada
( Quebec)
An early euphyllophyte. Genus includes new species G. tetraxylopteroides. Announced in 2020; the final version of the article naming it was published in 2021.
Griphoporella minuta[137] Sp. nov Valid Bucur & Peybernes in Bucur et al. Late Triassic  Japan A green alga belonging to the group Dasycladales and the family Triploporellaceae.
Hansopteris[148] Gen. et sp. nov In press Zhou et al. Permian (Asselian)  China An anachoropterid fern. Genus includes new species H. uncinatus.
Holosporella magna[137] Sp. nov Valid Bucur & Fucelli in Bucur et al. Late Triassic (Norian)  United States
( Nevada)
A green alga belonging to the group Dasycladales and the family Triploporellaceae.
Holosporella? rossanae[137] Sp. nov Valid Bucur & Del Piero in Bucur et al. Late Triassic (Norian)  Canada
( Yukon)
A green alga belonging to the group Dasycladales and the family Triploporellaceae.

Inocladus[149]

Gen. et comb. nov

Valid

LoDuca et al.

Silurian

 United States

An alga related to the group Bryopsidales. Genus includes "Buthotrephis" divaricata White (1901), "B." newlini White (1901), "B." lesquereuxi Grote & Pitt (1876) and "Chondrites" verus Ruedemann (1925). Announced in 2020; the final version of the article naming it was published in 2021.

Intermurella ordosensis[133]

Sp. nov

Valid

Zhang et al.

Late Ordovician

Ordos Basin

 China

A green alga belonging to the group Dasycladales.

Jurafructus[150]

Gen. et sp. nov

Valid

Chen et al.

Middle−Late Jurassic

Jiulongshan Formation

 China

A plant of uncertain phylogenetic placement, possibly a flowering plant described on the basis of a probable fossil drupe. Genus includes new species J. daohugouensis.

Keraphyton[151]

Gen. et sp. nov

Valid

Champreux, Meyer-Berthaud & Decombeix

Devonian (Famennian)

Mandowa Mudstone Formation

 Australia

A member of Iridopteridales of uncertain phylogenetic placement. Genus includes new species K. mawsoniae.

Khasurtya[152]

Gen. et sp. nov

Valid

Mamontov in Kopylov et al.

Early Cretaceous

 Russia

A liverwort belonging to the group Marchantiidae. Genus includes new species K. ginkgoides.

Lepidodendron demkinae[153]

Sp. nov

Valid

Mosseichik

Carboniferous (Viséan)

 Russia

Lobatannularia linjiaensis[154]

Sp. nov

Valid

Xu et al.

Middle Triassic

Linjia Formation

 China

A member of Equisetales.

Lygodium sanshuiense[155]

Sp. nov

Valid

Naugolnykh et al.

Paleocene

Buxin Formation

 China

A species of Lygodium. Announced in 2019; the final version of the article naming it was published in 2020.

Metzgeriites kujiensis[156]

Sp. nov

Valid

Katagiri in Katagiri & Shinden

Late Cretaceous (Santonian)

Tamagawa Formation

 Japan

A liverwort.

Munieria martinclosasi[134]

comb. nov.

Valid

Pérez-Cano, Bover-Arnal et Martín-Closas in Pérez-Cano et al.

Barremian

Lebanon

 Lebanon

Clavatoracean thallus. Formerly known as Charaxis martinclosasi

Neoarthropitys[157] Gen. et sp. nov In press Gnaedinger et al. Middle Triassic Quebrada de los Fósiles  Argentina A member of Equisetales. Genus includes new species N. gondwanaensis.

Osmundacaulis asiatica[158]

Sp. nov

Valid

Cheng et al.

Cretaceous

 China

A member of the family Osmundaceae

Osmundacaulis sinica[158]

Sp. nov

Valid

Cheng et al.

Cretaceous

 China

A member of the family Osmundaceae

Ovoidites circumplicatus[159]

Sp. nov

Valid

Zavattieri, Gutiérrez & Monti

Middle Triassic

Quebrada de los Fósiles Formation

 Argentina

A green alga belonging to the group Zygnematales.

Ovoidites tripartitus[159]

Sp. nov

Valid

Zavattieri, Gutiérrez & Monti

Middle Triassic

Quebrada de los Fósiles Formation

 Argentina

A green alga belonging to the group Zygnematales.

Palaeostachya guanglongii[160]

Sp. nov

In press

Liu et al.

Permian (Asselian)

Taiyuan Formation

 China

A member of the family Calamitaceae.

Parazosterophyllum[146]

Gen. et sp. nov

Valid

McSweeney, Shimeta & Buckeridge

Late Silurian–early Devonian

 Australia

A member of Zosterophyllaceae. Genus includes new species P. timsiae.

Patruliuspora oregonica[137] Sp. nov Valid Bucur & Rigaud in Bucur et al. Late Triassic (Norian)  United States
( Oregon)
A green alga belonging to the group Dasycladales and the family Polyphysaceae.
Patruliuspora pacifica[137] Sp. nov Valid Bucur, Del Piero & Peyrotty in Bucur et al. Late Triassic (Norian)  Canada
( Yukon)
A green alga belonging to the group Dasycladales and the family Polyphysaceae.
Pellites hamiensis[161] Sp. nov Valid Li et al. Middle Jurassic Xishanyao  China A liverwort belonging to the family Pelliaceae.

Plenasium (Aurealcaulis) elegans[162]

Sp. nov

In press

Hiller et al.

Eocene

Na Duong Formation

 Vietnam

A member of Osmundaceae

Pleuromeia shaolinii[163]

Sp. nov

Valid

Zhang & Wang in Zhang et al.

Middle Triassic

Linjia

 China

Polycingulatisporites multiverrucata[136]

Sp. nov

Valid

Santamarina in Santamarina et al.

Late Cretaceous (Cenomanian)

Mata Amarilla

 Argentina

Spores of a member of Bryophyta of uncertain phylogenetic placement, possibly of sphagnaceous affinity. Announced in 2019; the final version of the article naming it was published in 2020.

Polypodiisporites minutiverrucatus[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pteridophyte spore. Announced in 2020; the final version of the article naming it was published in 2021.

Polysporia baetica[164]

Sp. nov

In press

Álvarez-Vázquez, Bek & Drábková

Carboniferous (Pennsylvanian)

Peñarroya-Belmez-Espiel Coalfield

 Spain

A member of Isoetales

Polystichum pacltovae[165]

Sp. nov

Valid

Kvaček in Kvaček & Teodoridis

Oligocene

 Czech Republic

A fern, a species of Polystichum

Proodontosoria[166]

Gen. et sp. nov

Valid

Li et al.

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A fern belonging to the family Lindsaeaceae. Genus includes new species P. myanmarensis.

Proterocladus antiquus[167]

Sp. nov

Valid

Tang et al.

Mesoproterozoic
circa 1 Ga

Nanfen

 China

An early siphonocladalean chlorophyte

Psilatriletes cozzuolii[10]

Sp. nov

Valid

Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito

Miocene

Solimões Basin

 Brazil

Pteridophyte spore. Announced in 2020; the final version of the article naming it was published in 2021.

Psilochara monevaensis[168]

Sp. nov

Valid

Sanjuan & Soulié-Märsche

Middle Miocene

 Spain

A charophyte.

Qianshouia[169]

Gen. et sp. nov

Valid

Huang et al.

Late Devonian

Wutong Formation

 China

A plant of uncertain phylogenetic placement, possibly a lycopsid or a sphenopsid. Genus includes new species Q. mira.

Scolecopteris minuta[170]

Sp. nov

In press

Wan et al.

Early Permian

Taiyuan Formation

 China

A fern belonging to the group Marattiales.

Sigillaria pfefferkornii[171]

Sp. nov

In press

D'Antonio, Boyce & Wang

Permian (Asselian)

 China

Sigillaria wudensis[171]

Sp. nov

In press

D'Antonio, Boyce & Wang

Permian (Asselian)

 China

Sphaerochara miocenica[168]

Sp. nov

Valid

Sanjuan & Soulié-Märsche

Miocene

 Lebanon
 Spain

A charophyte.

Thyrsopteris cretacea[172]

Sp. nov

Valid

Li et al.

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A species of Thyrsopteris

Tomiostrobus sinensis[173]

Sp. nov

Valid

Feng in Feng et al.

Early Triassic (Induan)

Kayitou Formation

 China

A member of the family Isoetaceae.

Tumidopteris astra[174]

Sp. nov

Valid

Naugolnykh

Permian (Roadian)

Pechora coal basin

 Russia

A fern belonging to the family Gleicheniaceae.

Ufadendron elongatum[175]

Sp. nov

Valid

Tang et al.

Late Permian

Linxi

 China

A lycopsid belonging to the family Tomiodendraceae

Uzhurodendron[176]

Gen. et sp. nov

Valid

Mosseichik & Filimonov

Carboniferous (Tournaisian)

Bystrianskaya

 Russia
(Template:Country data Krasnoyarsk Krai)

A member of Lycopodiopsida. Genus includes new species U. asiaticum.

Zeilleria fosteri[177]

Sp. nov

Valid

Thomas et al.

Carboniferous (Bashkirian)

 United Kingdom

A fern

General research

  • A study on the evolutionary history of green plants is published by Nie et al. (2020).[178]
  • Description of new fossil material of Yurtusia uniformis from the Cambrian Yanjiahe Formation (China ) and a study on the phylogenetic relationships and possible life cycle of this organism is published by Shang et al. (2020), who consider Y. uniformis to be a likely green microalga.[179]
  • A study on the phylogenetic relationships of extant and fossil complex thalloid liverworts (Marchantiidae) is published by Flores et al. (2020).[180]
  • Evidence of development of dichotomous roots in euphyllophytes that were extant during the Devonian and Carboniferous periods is presented by Hetherington, Berry & Dolan (2020), who interpret their findings as indicating that dichotomous root branching evolved in both lycophytes and euphyllophytes.[181]
  • An early land plant producing multiple spore size classes is described from the Lower Devonian Campbellton Formation (Canada ) by Bonacorsi et al. (2020).[182]
  • A study on the impact of the appearance and evolution of herbivorous tetrapods on the evolution of land plants from the Carboniferous to the Early Triassic is published by Brocklehurst, Kammerer & Benson (2020).[183]
  • A study on the production of periderm in Late Paleozoic arborescent lycopsids is published by D'Antonio & Boyce (2020), who argue that these lycopsids did not grow from sporelings into large trees through the production of a periderm cylinder, because physiological limitations would have prohibited the production of thick periderm.[184]
  • A study on the architecture and development of the Carboniferous arborescent lycopsid Paralycopodites is published by DiMichele & Bateman (2020).[185]
  • New information on the anatomy of Weichselia reticulata is presented by Blanco‐Moreno, Decombeix & Prestianni (2020).[186]
  • A study on the phylogenetic placement of the extinct fern genus Coniopteris is published by Li et al. (2020).[187]
  • New information on the morphology of Paleoazolla patagonica is presented by Benedetti et al. (2020), who evaluate the implications of this taxon for the knowledge of the evolution of water ferns.[188]
  • A study aiming to determine which ferns were most likely to be the producers of Cyathidites spores from earliest Paleocene plant localities across western North America, and were most likely to be among the first plants in western North America to thrive in the immediate aftermath of the Cretaceous–Paleogene extinction event, is published by Berry (2020).[189]
  • A study on the morphology and development of Genomosperma, and on its implications for the knowledge of the evolutionary origins of seed development, is published by Meade, Plackett & Hilton (2020).[190]
  • A pollen organ resembling seed fern pollen organs Dictyothalamus and Melissiotheca is described from the Lopingian Umm Irna Formation (Jordan) by Zavialova et al. (2020), who interpret this finding as evidence of persistence of lyginopterid seed ferns until the late Permian.[191]
  • Evidence of increasing atmospheric CO2 concentration at the onset of the end-Triassic extinction event, based on data from fossil leaves of the seed fern Lepidopteris ottonis from southern Sweden, is presented by Slodownik, Vajda & Steinthorsdottir (2020), who confirm L. ottonis as a valid proxy for pCO2 reconstructions.[192]
  • A study on the anatomy of the seed cone scales of Krassilovia mongolica is published by Herrera et al. (2020), who argue that K. mongolica and Podozamites harrisii are the seed cones and leaves of the same extinct plant, and name a new family Krassiloviaceae within the order Voltziales.[193]
  • A study on the microscopic wood anatomy of a fossil tree trunk of Agathoxylon arizonicum with the characteristic external features of a fire scar from the Upper Triassic Chinle Formation (Petrified Forest National Park, Arizona, United States) is published by Byers et al. (2020), who evaluate the implications of this specimen for the knowledge of the evolution of fire-adapted plant traits.[194]
  • A putative bamboo "Chusquea" oxyphylla from the early Eocene Laguna del Hunco biota (Argentina ) is reinterpreted as a conifer by Wilf (2020), who transfers this species to the genus Retrophyllum.[195]
  • A study on evolutionary history of conifers as indicated by fossil and molecular data, aiming to determine whether the rise of angiosperms drove the decline of conifers and other gymnosperms, is published by Condamine et al. (2020).[196]
  • Presence of secretory tissues is reported in extinct flowers from the Cretaceous amber from Myanmar and Cenozoic Dominican amber (including specimens preserved while in the process of emitting compounds) by Poinar & Poinar (2020).[197]
  • Fossil pollen of flowering plants is reported from the Aptian and Albian of Australia by Korasidis & Wagstaff (2020), who evaluate the implications of their findings for the knowledge of the timing of the appearance and diversification of the flowering plants in the high-latitude southern basins of Australia.[198]
  • A study on the morphology of palm and palm-like pollen from the Eocene Yaw Formation (Myanmar), and on the implications of these fossils for the knowledge of distribution and diversity of Eocene palms across the globe, is published by Huang et al. (2020).[199]
  • Fossils fruits of Illigera eocenica, representing the second fossil occurrence of Illigera worldwide and the first in Asia, are described from the Eocene Niubao Formation (central Tibetan Plateau) by Wang et al. (2020), who evaluate the implications of this finding for the knowledge of the climate in the central Tibetan Plateau during the early middle Eocene, and for the knowledge of the floristic links between Asia and North America during the Paleogene.[200]
  • A study on the morphology and phylogenetic relationships of Montsechia vidalii is published by Gomez et al. (2020).[201]
  • Eocene leaves of members of the family Urticaceae with stinging trichomes are described from the Okanogan Highlands (British Columbia, Canada ) by DeVore et al. (2020).[202]
  • A revision of the fossil record of the family Nothofagaceae from South America is published by Pujana et al. (2020).[203]
  • A study on the extinction of plants from south polar terrestrial ecosystems during the Permian–Triassic extinction event and on their recovery after this extinction event, based on data from the Sydney Basin (Australia ), is published by Mays et al. (2020).[204]
  • A study on the impact of ecological disturbances around the Permian–Triassic boundary (from the Wuchiapingian to Ladinian) on land plant communities is published by Nowak, Vérard & Kustatscher (2020).[205]
  • A study on the age of the Paleogene Kanaka Creek fossil flora (Huntingdon Formation; British Columbia, Canada ) and on its implications for reconstructions of the contemporaneous paleoclimate and paleoenvironment is published by Mathewes, Greenwood & Love (2020).[206]
  • Evidence from Eocene plant fossils from the Bangong-Nujiang suture indicating that the Tibetan Plateau area hosted a diverse subtropical ecosystem approximately 47 million years ago and that this area was both low and humid at the time is presented by Su et al. (2020), who also report that the composition of this flora is similar to Early-Middle Eocene floras in both North America and Europe, but shows little affinity to Eocene floras from the Indian Plate.[207]
  • A study aiming to estimate leaf dry mass per area in fossil plants from 22 western North American sites spanning the Eocene–Oligocene transition is published online by Butrim & Royer (2020), who evaluate the implications of their findings for the knowledge of the impact of the environmental changes occurring during the Eocene–Oligocene transition on leaf‐economic strategies of plants.[208]
  • A study on the Neogene paleobotanical record and climate in the northernmost part of the Central Andean Plateau, based on data from the Descanso Formation (Peru), is published by Martínez et al. (2020), who report the earliest evidence of a puna-like ecosystem in the Pliocene and a montane ecosystem without modern analogs in the Miocene.[209]
  • Fossil fruits (mericarps) of the neoendemic Apiaceae Melanoselinum (Daucus) decipiens were reported from the lacustrine and fluvial sediments of Porto da Cruz, Madeira, dated 1.3 Ma, by Góis-Marques et al. 2020.[210] This paper not only reports the oldest Daucus s.l. fossil known to date but also the first fossil evidence of a plant with insular woodiness (see Island gigantism).
  • The leaf fossil Mesodescolea plicata from the Early Cretaceous of Patagonia, first interpreted as a cycad with affinities with extant Stangeria, is reinterpreted as an angiosperm leaf with affinities with Austrobaileyales or Chloranthales by Coiro et al. 2020,[211] with implications for the evolution of leaf shape in the early radiation of the angiosperms.
  • A study on the phylogenetic relationships of 10 Cretaceous flower taxa (Chloranthistemon endressii, Dakotanthus cordiformis, Kajanthus lusitanicus, Mauldinia mirabilis, Microvictoria svitkoana, Paleoclusia chevalieri, Paradinandra suecica, Spanomera mauldiniensis, Tylerianthus crossmanensis and Virginianthus calycanthoides) is published by Schönenberger et al. (2020).[212]

References

  1. Shook Ling Low; Tao Su; Teresa E. V. Spicer; Fei-Xiang Wu; Tao Deng; Yao-Wu Xing; Zhe-Kun Zhou (2020). "Oligocene Limnobiophyllum (Araceae) from the central Tibetan Plateau and its evolutionary and palaeoenvironmental implications". Journal of Systematic Palaeontology 18 (5): 415–431. doi:10.1080/14772019.2019.1611673. Bibcode2020JSPal..18..415L. 
  2. 2.0 2.1 Yuling Na; Jane Blanchard; Hongshan Wang (2020). "Fruits, seeds and flowers from the Puryear clay pit (middle Eocene Cockfield Formation), western Tennessee, USA". Palaeontologia Electronica 23 (3): Article number 23(3):a49. doi:10.26879/1045. 
  3. 3.0 3.1 3.2 3.3 3.4 Vann Smith; Sophie Warny; David M. Jarzen; Thomas Demchuk; Vivi Vajda; Sean P.S. Gulick (2020). "Paleocene–Eocene palynomorphs from the Chicxulub impact crater, Mexico. Part 2: angiosperm pollen". Palynology 44 (3): 489–519. doi:10.1080/01916122.2019.1705417. Bibcode2020Paly...44..489S. http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-4105. 
  4. Mahasin Ali Khan; Manoshi Hazra; Sumana Mahato; Robert A. Spicer; Kaustav Roy; Taposhi Hazra; Manosij Bandopadhaya; Teresa E.V. Spicer et al. (2020). "A Cretaceous Gondwana origin of the wax palm subfamily (Ceroxyloideae: Arecaceae) and its paleobiogeographic context". Review of Palaeobotany and Palynology 283: Article 104318. doi:10.1016/j.revpalbo.2020.104318. Bibcode2020RPaPa.28304318K. 
  5. Mahasin Ali Khan; Kaustav Roy; Taposhi Hazra; Sumana Mahato; Subir Bera (2020). "A new coryphoid palm from the Maastrichtian-Danian sediments of Madhya Pradesh and its palaeoenvironmental implications". Journal of the Geological Society of India 95 (1): 75–83. doi:10.1007/s12594-020-1388-1. Bibcode2020JGSI...95...75K. 
  6. David Robert Greenwood; John G. Conran (2020). "Fossil coryphoid palms from the Eocene of Vancouver, British Columbia, Canada". International Journal of Plant Sciences 181 (2): 224–240. doi:10.1086/706450. 
  7. Kaustav Roy; Taposhi Hazra; Manoshi Hazra; Sumana Mahato; Subir Bera; Mahasin Ali Khan (2020). "A new coryphoid costapalmate palm leaf from the Maastrichtian-Danian of India". Botany Letters 168 (2): 155–166. doi:10.1080/23818107.2020.1845974. 
  8. Patricia Vallati; Andrea De Sosa Tomas; Gabriel Casal (2020). "A Maastrichtian terrestrial palaeoenvironment close to the K/Pg boundary in the Golfo San Jorge basin, Patagonia, Argentina". Journal of South American Earth Sciences 97: Article 102401. doi:10.1016/j.jsames.2019.102401. Bibcode2020JSAES..9702401V. 
  9. 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 Zlatko Kvaček; Vasilis Teodoridis; Thomas Denk (2020). "The Pliocene flora of Frankfurt am Main, Germany: taxonomy, palaeoenvironments and biogeographic affinities". Palaeobiodiversity and Palaeoenvironments 100 (3): 647–703. doi:10.1007/s12549-019-00391-6. Bibcode2020PdPe..100..647K. 
  10. 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 10.12 10.13 10.14 10.15 10.16 10.17 10.18 10.19 10.20 10.21 10.22 10.23 10.24 10.25 10.26 10.27 10.28 10.29 10.30 10.31 10.32 10.33 10.34 10.35 Fátima Praxedes Rabelo Leite; Silane Aparecida Ferreira da Silva-Caminha; Carlos D’Apolito (2020). "New Neogene index pollen and spore taxa from the Solimões Basin (Western Amazonia), Brazil". Palynology 45 (1): 115–141. doi:10.1080/01916122.2020.1758971. 
  11. M. Laura Pipo; Ari Iglesias; Josefina Bodnar (2020). "A new vesselless angiosperm stem with a cambial variant from the Upper Cretaceous of Antarctica". Acta Palaeontologica Polonica 65 (2): 261–272. doi:10.4202/app.00697.2019. 
  12. 12.0 12.1 12.2 12.3 Indah B. Huegele; Steven R. Manchester (2020). "An early Paleocene carpoflora from the Denver Basin of Colorado, USA, and its implications for plant-animal interactions and fruit size evolution". International Journal of Plant Sciences 181 (6): 646–665. doi:10.1086/707727. 
  13. 13.0 13.1 13.2 13.3 Lilla Hably (2020). "The Karpatian (late early Miocene) flora of the Mecsek area". Acta Palaeobotanica 60 (1): 51–122. doi:10.35535/acpa-2020-0003. 
  14. Thomas Denk; Johannes Martin Bouchal; Pavel Smirnov; Yaroslav Trubin (2020). "Late Oligocene leaf and pollen flora of Southwestern Siberia: taxonomy, biogeography and palaeoenvironments". Historical Biology: An International Journal of Paleobiology 33 (11): 2951–2976. doi:10.1080/08912963.2020.1839064. https://figshare.com/articles/dataset/Late_Oligocene_leaf_and_pollen_flora_of_Southwestern_Siberia_taxonomy_biogeography_and_palaeoenvironments/13365394. 
  15. Hai Zhu; Steven R. Manchester (2020). "Fruit of Staphylea (Staphyleaceae) from the Oligocene of Montana, USA". Review of Palaeobotany and Palynology 280: Article 104275. doi:10.1016/j.revpalbo.2020.104275. Bibcode2020RPaPa.28004275Z. 
  16. Susanne S. Renner; Viviana D. Barreda; María Cristina Tellería; Luis Palazzesi; Tanja M. Schuster (2020). "Early evolution of Coriariaceae (Cucurbitales) in light of a new early Campanian (ca. 82 Mya) pollen record from Antarctica". Taxon 69 (1): 87–99. doi:10.1002/tax.12203. 
  17. MacKenzie Allan Smith; Steven R. Manchester (2020). "CT-scans of capsules from the Clarno Formation (Oregon, USA) reveal an extinct Eocene theaceous taxon". Acta Palaeobotanica 60 (2): 251–258. doi:10.35535/acpa-2020-0013. 
  18. Xiang‐Chuan Li; Steven R. Manchester; Qin Wang; Liang Xiao; Tian‐Long Qi; Yun‐Zhi Yao; Dong Ren; Qiang Yang (2020). "A unique record of Cercis from the late early Miocene of interior Asia and its significance for paleoenvironment and paleophytogeography". Journal of Systematics and Evolution 59 (6): 1321–1338. doi:10.1111/jse.12640. 
  19. 19.0 19.1 Johanna Baez; Alexandra Crisafulli (2020). "Novelties in the xylotaphoflora from Chiquimil Formation (Miocene), Catamarca-Argentina". Journal of South American Earth Sciences 107: Article 102943. doi:10.1016/j.jsames.2020.102943. 
  20. 20.0 20.1 Oris J. Rodríguez-Reyes; Emilio Estrada-Ruiz (2020). "Two new reports of ancient rainforest trees from the Azuero Peninsula, Panama". Ameghiniana 57 (3): 209–218. doi:10.5710/AMGH.22.02.2020.3299. 
  21. 21.0 21.1 21.2 A.L. Averyanova; Yaowu Xing (2020). "New Paleogene angiosperm species of Zaissan Depression (eastern Kazakhstan)". Botanicheskii Zhurnal 105 (1): 46–57. doi:10.31857/S0006813620010044. 
  22. 22.0 22.1 22.2 22.3 22.4 22.5 22.6 22.7 Xiaoyan Liu; Hanzhang Song; Jianhua Jin (2020). "Diversity of Fagaceae on Hainan Island of South China during the middle Eocene: implications for phytogeography and paleoecology". Frontiers in Ecology and Evolution 8: Article 255. doi:10.3389/fevo.2020.00255. 
  23. 23.0 23.1 Li Xue; Linbo Jia; Gi-soo Nam; Yongjiang Huang; Shitao Zhang; Yuqing Wang; Zhuo Zhou; Yongsheng Chen (2020). "Involucre fossils of Carpinus, a northern temperate element, from the Miocene of China and the evolution of its species diversity in East Asia". Plant Diversity 42 (3): 155–167. doi:10.1016/j.pld.2020.01.001. PMID 32695948. 
  24. Anthony L. Swinehart; James O. Farlow (2020). "Plant and invertebrate macrofossils from the Pipe Creek Sinkhole (Late Neogene), Grant County, Indiana". Historical Biology: An International Journal of Paleobiology 33 (11): 3111–3140. doi:10.1080/08912963.2020.1851686. 
  25. Dimitra Mantzouka; Miroslav Ivanov; Vladimir Bozukov (2020). "The first report of an 'evergreen Castanopsis type' wood (Fagaceae) for the Late Miocene–Early Pliocene of Europe (Bulgaria, Blagoevgrad Graben)". Geological Journal 56 (2): 786–803. doi:10.1002/gj.3919. 
  26. Cédric Del Rio; Teng‐Xiang Wang; Jia Liu; Shui‐Qing Liang; Robert A. Spicer; Fei‐Xiang Wu; Zhe‐Kun Zhou; Tao Su (2020). "Asclepiadospermum gen. nov., the earliest fossil record of Asclepiadoideae (Apocynaceae) from the early Eocene of central Qinghai‐Tibetan Plateau, and its biogeographic implications". American Journal of Botany 107 (1): 126–138. doi:10.1002/ajb2.1418. PMID 31944266. 
  27. Cédric Del Rio; Jian Huang; Gregory W. Stull; Rémi Allemand; Zhe‐Kun Zhou; Tao Su (2020). "First macrofossil record of Icacinaceae in East Asia (early Oligocene, Wenshan Basin) and its ecological implications". Journal of Systematics and Evolution 60 (2): 445–455. doi:10.1111/jse.12700. 
  28. Cédric Del Rio; Dario De Franceschi (2020). "Icacinaceae fossil fruits from three sites of the Paris Basin (early Eocene, France): local diversity and global biogeographic implications". Geodiversitas 42 (2): 17–28. doi:10.5252/geodiversitas2020v42a2. http://sciencepress.mnhn.fr/en/periodiques/geodiversitas/42/fasc1/fruits-fossiles-d-icacinaceae-provenant-de-trois-sites-du-bassin-parisien-debut-eocene-france-diversite-locale-et-implications-biogeographiques. [yes|permanent dead link|dead link}}]
  29. Andrew C. Rozefelds; Gregory Stull; Peta Hayes; David R. Greenwood (2020). "The fossil record of Icacinaceae in Australia supports long-standing Palaeo-Antarctic rainforest connections in southern high latitudes". Historical Biology: An International Journal of Paleobiology 33 (11): 2854–2864. doi:10.1080/08912963.2020.1832089. 
  30. Gregory Stull; Bruce H. Tiffney; Steven R. Manchester; Cédric Del Rio; Scott L. Wing (2020). "Endocarps of Pyrenacantha (Icacinaceae) from the early Oligocene of Egypt". International Journal of Plant Sciences 181 (4): 432–442. doi:10.1086/706854. 
  31. Ünal Akkemik; Dimitra Mantzouka; Umut Tunç; Fikret Koçbulut (2020). "The first paleoxylotomical evidence from the Mid-Eocene Climate Optimum from Turkey". Review of Palaeobotany and Palynology 285: Article 104356. doi:10.1016/j.revpalbo.2020.104356. 
  32. 32.0 32.1 32.2 Daniela P. Ruiz; M. Sol Raigemborn; Mariana Brea; Roberto R. Pujana (2020). "Paleocene Las Violetas Fossil Forest: Wood anatomy and paleoclimatology". Journal of South American Earth Sciences 98: Article 102414. doi:10.1016/j.jsames.2019.102414. Bibcode2020JSAES..9802414R. 
  33. Kenton L. Chambers; George O. Poinar, Jr (2020). "Thymolepis toxandra gen. et sp. nov., a mid-Cretaceous fossil flower with horseshoe-shaped anthers". Journal of the Botanical Research Institute of Texas 14 (1): 57–64. doi:10.17348/jbrit.v14.i1.896. 
  34. George O. Poinar, Jr; Kenton L. Chambers; Urszula T. Iwaniec; Fernando E. Vega (2020). "Valviloculus pleristaminis gen. et sp. nov., a Lauralean fossil flower with valvate anthers from mid-Cretaceous Myanmar amber". Journal of the Botanical Research Institute of Texas 14 (2): 359–366. doi:10.17348/jbrit.v14.i2.1014. 
  35. 35.0 35.1 Jun‐Ling Dong; Bai‐Nian Sun; Ai‐Jing Li; Hui Chen (2020). "The diversity of Smilax (Smilacaceae) leaves from the Middle Miocene in southeastern China". Geological Journal 56 (2): 744–757. doi:10.1002/gj.3882. 
  36. Lu‐Liang Huang; Jian‐Hua Jin; Cheng Quan; Alexei A. Oskolski (2020). "Mummified Magnoliaceae woods from the upper Oligocene of South China, with biogeography, paleoecology, and wood trait evolution implications". Journal of Systematics and Evolution 58 (1): 89–100. doi:10.1111/jse.12480. 
  37. Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2020). "Melloniflora, a new extinct multiparted flower from the Early Cretaceous of Virginia, USA". International Journal of Plant Sciences 181 (9): 887–897. doi:10.1086/710490. 
  38. Atsufumi Narita; Atsushi Yabe; Kazuhiko Uemura; Midori Matsumoto (2020). "Late middle Miocene Konan flora from northern Hokkaido, Japan". Acta Palaeobotanica 60 (2): 259–295. doi:10.35535/acpa-2020-0012. 
  39. Mahasin Ali Khan; Robert A. Spicer; Teresa E. V. Spicer; Kaustav Roy; Manoshi Hazra; Taposhi Hazra; Sumana Mahato; Sanchita Kumar et al. (2020). "Dipterocarpus (Dipterocarpaceae) leaves from the K-Pg of India: a Cretaceous Gondwana presence of the Dipterocarpaceae". Plant Systematics and Evolution 306 (6): Article 90. doi:10.1007/s00606-020-01718-z. Bibcode2020PSyEv.306...90K. 
  40. Maria C. Zamaloa; Maria A. Gandolfo; Kevin C. Nixon (2020). "52 million years old Eucalyptus flower sheds more than pollen grains". American Journal of Botany 107 (12): 1763–1771. doi:10.1002/ajb2.1569. PMID 33274448. 
  41. Eliana Moya; Mariana Brea (2020). "Combretaceous fossil wood from Ituzaingó Formation (Late Miocene?), Argentina, indicate a coastal marine environment". Review of Palaeobotany and Palynology 281: Article 104270. doi:10.1016/j.revpalbo.2020.104270. Bibcode2020RPaPa.28104270M. 
  42. Ya Li; Yi-Ming Cui; Carole T. Gee; Xiao-Qing Liang; Cheng-Sen Li (2020). "Primotrapa gen. nov., an extinct transitional genus bridging the evolutionary gap between Lythraceae and Trapoideae, from the early Miocene of North China". BMC Evolutionary Biology 20 (1): 150. doi:10.1186/s12862-020-01697-2. PMID 33183234. Bibcode2020BMCEE..20..150L. 
  43. David Peris; Conrad C. Labandeira; Eduardo Barrón; Xavier Delclòs; Jes Rust; Bo Wang (2020). "Generalist pollen-feeding beetles during the mid-Cretaceous". iScience 23 (3): Article 100913. doi:10.1016/j.isci.2020.100913. PMID 32191877. Bibcode2020iSci...23j0913P. 
  44. Nathan A. Jud; Maria A. Gandolfo (2020). "Fossil evidence from South America for the diversification of Cunoniaceae by the earliest Palaeocene". Annals of Botany 127 (3): 305–315. doi:10.1093/aob/mcaa154. PMID 32860407. 
  45. 45.0 45.1 45.2 45.3 45.4 45.5 Xiao‐Yan Liu; Steven R. Manchester; Andrew C. Rozefelds; Cheng Quan; Jian‐Hua Jin (2020). "First fossil fruits of Elaeocarpus (Elaeocarpaceae) in East Asia: implications for phytogeography and paleoecology". Journal of Systematics and Evolution 60 (2): 456–471. doi:10.1111/jse.12684. 
  46. 46.0 46.1 Juan M. Robledo; Luisa M. Anzótegui; Olga G. Martínez; Ricardo N. Alonso (2020). "Flora and insect trace fossils from the Mio-Pliocene Quebrada del Toro locality (Gobernador Solá, Salta, Argentina)". Journal of South American Earth Sciences 100: Article 102544. doi:10.1016/j.jsames.2020.102544. Bibcode2020JSAES.10002544R. 
  47. 47.0 47.1 Raymond J. Carpenter; Lynne A. Milne (2020). "New species of xeromorphic Banksia (Proteaceae) foliage and Banksia-like pollen from the late Eocene of Western Australia". Australian Journal of Botany 68 (3): 165–178. doi:10.1071/BT19110. 
  48. Indah Badriyyah Huegele; Robert J. Spielbauer; Steven R. Manchester (2020). "Morphology and systematic affinities of Platanus dissecta Lesquereux (Platanaceae) from the Miocene of western North America". International Journal of Plant Sciences 181 (3): 324–341. doi:10.1086/706453. 
  49. 49.0 49.1 49.2 49.3 49.4 49.5 Cédric Del Rio; Jian Huang; Ping Liu; Wei‐Yu‐Dong Deng; Teresa E.V. Spicer; Fei‐Xiang Wu; Zhe‐Kun Zhou; Tao Su (2020). "New Eocene fossil fruits and leaves of Menispermaceae from the central Tibetan Plateau and their biogeographic implications". Journal of Systematics and Evolution 59 (6): 1287–1306. doi:10.1111/jse.12701. 
  50. Hui Jia; David K. Ferguson; Bainian Sun; Xiangning Meng; Yifan Hua (2020). "Phytogeographic implications of a fossil endocarp of Diploclisia (Menispermaceae) from the Miocene of eastern China". Geological Journal 56 (2): 758–767. doi:10.1002/gj.3867. 
  51. 51.0 51.1 51.2 Meng Han; Xin‐Kai Wu; Ming Tu; Tatiana M. Kodrul; Jian‐Hua Jin (2020). "Diversity of Menispermaceae from the Paleocene and Eocene of South China". Journal of Systematics and Evolution 58 (3): 354–366. doi:10.1111/jse.12499. 
  52. Zhekun Zhou; Tengxiang Wang; Jian Huang; Jia Liu; Weiyudong Deng; Shihu Li; Chenglong Deng; Tao Su (2020). "Fossil leaves of Berhamniphyllum (Rhamnaceae) from Markam, Tibet and their biogeographic implications". Science China Earth Sciences 63 (2): 224–234. doi:10.1007/s11430-019-9477-8. Bibcode2020ScChD..63..224Z. 
  53. Zixi Wang; Fabiany Herrera; Junwu Shu; Suxin Yin; Gongle Shi (2020). "A new Choerospondias (Anacardiaceae) endocarp from the middle Miocene of Southeast China and its paleoecological implications". Review of Palaeobotany and Palynology 283: Article 104312. doi:10.1016/j.revpalbo.2020.104312. Bibcode2020RPaPa.28304312W. 
  54. Oris Rodríguez-Reyes; Emilio Estrada-Ruiz; Peter Gasson (2020). "Evidence of large Anacardiaceae trees from the Oligocene–early Miocene Santiago Formation, Azuero, Panama". Boletín de la Sociedad Geológica Mexicana 72 (2): Article A300719. doi:10.18268/BSGM2020v72n2a300719. http://boletinsgm.igeolcu.unam.mx/bsgm/index.php/component/content/article/381-sitio/resumenes/cuarta-epoca/7206/2212-7202-A300719_Rodriguez-Reyes. 
  55. Brian A. Atkinson (2020). "Fossil evidence for a Cretaceous rise of the mahogany family". American Journal of Botany 107 (1): 139–147. doi:10.1002/ajb2.1416. PMID 31903551. 
  56. M. Jimena Franco; Eliana Moya; Mariana Brea; Camila Martínez Martínez (2020). "Astroniumxylon, Schinopsixylon, and Parametopioxylon n. gen. fossil woods from upper Cenozoic of Argentina: taxonomic revision, new taxon and new records". Journal of Paleontology 94 (2): 185–201. doi:10.1017/jpa.2019.97. Bibcode2020JPal...94..185F. https://zenodo.org/record/4961184. 
  57. Steven R. Manchester; Kory A. Disney; Kasey K. Pham (2020). "Winged fruits of rutaceous affinity from the Eocene of western North America". Fossil Imprint 76 (2): 211–216. doi:10.37520/fi.2020.018. 
  58. Zack J. Quirk; Elizabeth J. Hermsen (2020). "Neogene Corylopsis Seeds from Eastern Tennessee". Journal of Systematics and Evolution 59 (3): 611–621. doi:10.1111/jse.12571. 
  59. Yi-Min Tian; Jian Huang; Tao Su; Shi-Tao Zhang (2020). "Early Oligocene Itea (Iteaceae) leaves from East Asia and their biogeographic implications". Plant Diversity 43 (2): 142–151. doi:10.1016/j.pld.2020.09.006. PMID 33997547. 
  60. Alex R. Scharfstein; Ruth A. Stockey; Gar W. Rothwell (2020). "Evolution and phylogeny of Altingiaceae: anatomically preserved infructescences from Late Cretaceous deposits of Vancouver Island, British Columbia, Canada". International Journal of Plant Sciences 181 (4): 452–463. doi:10.1086/707107. 
  61. Rocío Deanna; Peter Wilf; Maria A. Gandolfo (2020). "New physaloid fruit‐fossil species from early Eocene South America". American Journal of Botany 107 (12): 1749–1762. doi:10.1002/ajb2.1565. PMID 33247843. 
  62. 62.0 62.1 62.2 Steven R. Manchester; Zlatko Kvaček; Walter S. Judd (2020). "Morphology, anatomy, phylogenetics and distribution of fossil and extant Trochodendraceae in the Northern Hemisphere". Botanical Journal of the Linnean Society 195 (3): 467–484. doi:10.1093/botlinnean/boaa046. 
  63. Wen-Long He; Xiao-Jing Wang (2020). "A Miocene flora from the Toupi Formation in Jiangxi Province, southeastern China". Palaeoworld 30 (4): 757–769. doi:10.1016/j.palwor.2020.12.006. 
  64. Ezequiel Ignacio Vera; Valeria S. Perez Loinaze; Magdalena Llorens; Mauro Gabriel Passalia (2020). "The fossil genus Aextoxicoxylon (Magnoliopsida) in the Upper Cretaceous Puntudo Chico Formation, Chubut Province, Argentina". Cretaceous Research 107: Article 104315. doi:10.1016/j.cretres.2019.104315. Bibcode2020CrRes.10704315V. 
  65. 65.0 65.1 65.2 Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2020). "Multiparted, apocarpous flowers from the Early Cretaceous of eastern North America and Portugal". Fossil Imprint 76 (2): 279–296. doi:10.37520/fi.2020.023. 
  66. Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2020). "Catanthus, An Extinct Magnoliid Flower From The Early Cretaceous Of Portugal". International Journal of Plant Sciences 182 (1): 28–45. doi:10.1086/711081. 
  67. Caroline Siegert; Elizabeth J. Hermsen (2020). "Cavilignum pratchettii gen. et sp. nov., a novel type of fossil endocarp with open locules from the Neogene Gray Fossil Site, Tennessee, USA". Review of Palaeobotany and Palynology 275: Article 104174. doi:10.1016/j.revpalbo.2020.104174. Bibcode2020RPaPa.27504174S. 
  68. George O. Poinar, Jr; Kenton L. Chambers (2020). "Chainandra zeugostylus gen. et sp. nov., a mid-Cretaceous amber fossil with sagittate anthers opening widely at maturity". Journal of the Botanical Research Institute of Texas 14 (2): 367–372. doi:10.17348/jbrit.v14.i2.1015. 
  69. George O. Poinar, Jr; Kenton L. Chambers (2020). "Cyathitepala papillosa gen. et sp. nov., a mid-Cretaceous fossil flower from Myanmar amber with valvate anthers". Journal of the Botanical Research Institute of Texas 14 (2): 351–358. doi:10.17348/jbrit.v14.i2.1013. 
  70. George O. Poinar, Jr; Kenton L. Chambers (2020). "Dasykothon leptomiscus gen. et sp. nov., a fossil flower of possible Lauralean affinity from Myanmar amber". Journal of the Botanical Research Institute of Texas 14 (1): 65–71. doi:10.17348/jbrit.v14.i1.897. 
  71. Xue-Die Liu; José Bienvenido Diez; Yong Fan; Zhong-Jian Liu; Xin Wang (2020). "A unique flower in Miocene amber sheds new light on the evolution of flowers". Palaeoentomology 3 (4): 423–432. doi:10.11646/palaeoentomology.3.4.15. 
  72. Gang Han; Xin Wang (2020). "A New Infructescence of Angiosperms from the Early Cretaceous of China". Acta Geologica Sinica (English Edition) 94 (5): 1711–1713. doi:10.1111/1755-6724.14591. Bibcode2020AcGlS..94.1711H. http://www.geojournals.cn/dzxben/ch/reader/view_abstract.aspx?file_no=2020endzxb05026&flag=1. 
  73. Dieter Uhl; Khum N. Paudayal; Sophie Hervet; Haytham El Atfy (2020). "Menatanthus mosbruggeri gen. nov. et sp. nov. – A flower with in situ pollen tetrads from the Paleocene maar lake of Menat (Puy-de-Dôme, France)". Palaeobiodiversity and Palaeoenvironments 101 (1): 51–58. doi:10.1007/s12549-020-00453-0. 
  74. George O. Poinar, Jr; Kenton L. Chambers (2020). "Phantophlebia dicycla gen. et sp. nov., a five-merous fossil flower in mid-Cretaceous Myanmar amber". Journal of the Botanical Research Institute of Texas 14 (1): 73–80. doi:10.17348/jbrit.v14.i1.898. 
  75. Adam T. Halamski; Jiří Kvaček; Marcela Svobodová; Ewa Durska; Zuzana Heřmanová (2020). "Late Cretaceous mega-, meso-, and microfloras from Lower Silesia". Acta Palaeontologica Polonica 65 (4): 811–878. doi:10.4202/app.00744.2020. 
  76. Lida Xing; Lei Gu (2020). "The possible earliest epizoochorous fruit preserved in mid-Cretaceous Burmese amber". Cretaceous Research 114: Article 104498. doi:10.1016/j.cretres.2020.104498. Bibcode2020CrRes.11404498X. 
  77. Deepak D. Ramteke; Steven R. Manchester; Vaishali D. Nagrale; Selena Y. Smith (2020). "Singpuria, a new genus of Eudicot flower from the latest Cretaceous Deccan Intertrappean Beds of India". Acta Palaeobotanica 60 (2): 323–332. doi:10.35535/acpa-2020-0017. 
  78. Zhong-Jian Liu; Li-Jun Chen; Xin Wang (2020). "A whole-plant monocot from the Lower Cretaceous". Palaeoworld 30 (1): 169–175. doi:10.1016/j.palwor.2020.03.008. 
  79. Xuedie Liu; Liang Ma; Bin Liu; Zhong-Jian Liu; Xin Wang (2020). "A novel angiosperm including various parts from the Early Cretaceous sheds new light on flower evolution". Historical Biology: An International Journal of Paleobiology 33 (11): 2706–2714. doi:10.1080/08912963.2020.1825411. 
  80. Xiaoqing Zhang; Yongdong Wang; David L. Dilcher; Steven R. Manchester (2020). "Wireroadia, a new genus of winged fruit from the Cretaceous of Alabama and New England, USA". International Journal of Plant Sciences 181 (9): 898–910. doi:10.1086/710492. 
  81. Alexei A. Oskolski; Luliang Huang; Anna V. Stepanova; Jianhua Jin (2020). "Araucarioid wood from the late Oligocene–early Miocene of Hainan Island: first fossil evidence for the genus Agathis in the Northern Hemisphere". Journal of Plant Research 133 (2): 157–173. doi:10.1007/s10265-019-01165-z. PMID 31915952. Bibcode2020JPlR..133..157O. 
  82. 82.0 82.1 Silvia C. Gnaedinger; Ana María Zavattieri (2020). "Coniferous woods from the Upper Triassic of southwestern Gondwana, Tronquimalal Group, Neuquén Basin, Mendoza Province, Argentina". Journal of Paleontology 94 (3): 387–416. doi:10.1017/jpa.2020.1. Bibcode2020JPal...94..387G. 
  83. 83.0 83.1 Robert Noll; Lutz Kunzmann (2020). "Diversity in fossil Araucaria Juss.: new species from the Middle Jurassic Jaramillo Petrified Forests in Santa Cruz province, Argentina". Palaeontographica Abteilung B 301 (1–3): 3–75. doi:10.1127/palb/2020/0070. Bibcode2020PalAB.301....3N. 
  84. Ruth A. Stockey; Gar W. Rothwell (2020). "Diversification of crown group Araucaria: the role of Araucaria famii sp. nov. in the mid‐Cretaceous (Campanian) radiation of Araucariaceae in the Northern Hemisphere". American Journal of Botany 107 (7): 1072–1093. doi:10.1002/ajb2.1505. PMID 32705687. 
  85. Gongle Shi; Haomin Li; Andrew B. Leslie; Zhiyan Zhou (2020). "Araucaria bract-scale complex and associated foliage from the early-middle Eocene of Antarctica and their implications for Gondwanan biogeography". Historical Biology: An International Journal of Paleobiology 32 (2): 164–173. doi:10.1080/08912963.2018.1472255. Bibcode2020HBio...32..164S. 
  86. Gabriella Rossetto‐Harris; Peter Wilf; Ignacio H. Escapa; Ana Andruchow‐Colombo (2020). "Eocene Araucaria Sect. Eutacta from Patagonia and floristic turnover during the initial isolation of South America". American Journal of Botany 107 (5): 806–832. doi:10.1002/ajb2.1467. PMID 32388874. 
  87. L.C.A. Martínez; E. Pacheco Huacallo; R.R. Pujana; H. Padula (2020). "A new megaflora (leaves and reproductive structures) from the Huancané Formation (Lower Cretaceous), Peru". Cretaceous Research 110: Article number 104426. doi:10.1016/j.cretres.2020.104426. Bibcode2020CrRes.11004426M. 
  88. Zikun Jiang; Hao Wu; Ning Tian; Yongdong Wang; Aowei Xie (2020). "A new species of conifer wood Brachyoxylon from the Cretaceous of Eastern China and its paleoclimate significance". Historical Biology: An International Journal of Paleobiology 33 (10): 1989–1995. doi:10.1080/08912963.2020.1755282. 
  89. Maria Edenilce P. Batista; Lutz Kunzman; Artur A. A. Sá; Antônio Álamo F. Saraiva; Maria Iracema B. Loiola (2020). "A new species of Brachyphyllum from the Crato Formation (Lower Cretaceous), Araripe Basin, Brazil". Ameghiniana 57 (6): 519–533. doi:10.5710/AMGH.23.06.2020.3333. 
  90. Jiří Kvaček; Mário Miguel Mendes (2020). "Callialastrobus sousai gen. et sp. nov., a new araucariaceous pollen cone from the Early Cretaceous of Catefica (Lusitanian Basin, western Portugal) bearing Callialasporites and Araucariacites pollen". Review of Palaeobotany and Palynology 283: Article 104313. doi:10.1016/j.revpalbo.2020.104313. Bibcode2020RPaPa.28304313K. 
  91. Ünal Akkemik (2020). "A new fossil Cedrus species from the early Miocene of northwestern Turkey and its possible affinities". Palaeoworld 30 (4): 746–756. doi:10.1016/j.palwor.2020.12.003. 
  92. Guoqing Xia; Ning Tian; Marc Philippe; Haisheng Yi; Chihua Wu; Gaojie Li; Zhiqiang Shi (2020). "Oldest Jurassic wood with Gondwanan affinities from the Middle Jurassic of Tibetan Plateau and its paleoclimatological and paleoecological significance". Review of Palaeobotany and Palynology 281: Article 104283. doi:10.1016/j.revpalbo.2020.104283. Bibcode2020RPaPa.28104283X. 
  93. Ruth A. Stockey; Gar W. Rothwell; Brian A. Atkinson (2020). "Late Cretaceous diversification of cupressaceous conifers: a taiwanioid seed cone from the Eden Main, Vancouver Island, British Columbia, Canada". International Journal of Plant Sciences 181 (5): 529–541. doi:10.1086/708383. 
  94. Nadezhda I. Blokhina (2020). "Cupressinoxylon klimovii Blokhina, nom. nov. ‒ a new species name replacing Cupressinoxylon biotoides Blokhina, 1989 (Cupressaceae)". Botanica Pacifica 9 (2): 196. doi:10.17581/bp.2020.09218. 
  95. César Ríos-Santos; Sergio R.S. Cevallos-Ferriz; R.R. Pujana (2020). "Cupressaceous woods in the Upper Cretaceous Cabullona Group in Fronteras, Sonora, Mexico". Journal of South American Earth Sciences 104: Article 102756. doi:10.1016/j.jsames.2020.102756. Bibcode2020JSAES.10402756R. 
  96. Xu-Dong Gou; Sui Wan; Fu-Guang Zhao; Xin-Shi Cheng; Hai-Bo Wei; Yun Guo; Shi-Ling Yang; Zhuo Feng (2020). "A new conifer stem, Ductoagathoxylon wangii from the Middle Jurassic of the Santanghu Basin, Xinjiang, Northwest China". Review of Palaeobotany and Palynology 285: Article 104357. doi:10.1016/j.revpalbo.2020.104357. 
  97. Mário Miguel Mendes; Jiří Kvaček (2020). "Friisia lusitanica gen. et sp. nov., a new podocarpaceous ovuliferous cone from the Lower Cretaceous of Lusitanian Basin, western Portugal". Cretaceous Research 108: Article 104352. doi:10.1016/j.cretres.2019.104352. Bibcode2020CrRes.10804352M. 
  98. Ünal Akkemik (2020). "A new species of Juniperoxylon from the early Miocene of northwestern Turkey". Acta Palaeontologica Romaniae 17 (1): 15–26. doi:10.35463/j.apr.2021.01.02. 
  99. Ünal Akkemik; Dimitra Mantzouka; Demet Kıran Yıldırım (2020). "The first report of Lesbosoxylon Süss & Velitzelos from the early-middle Miocene of eastern Anatolia". Geodiversitas 42 (23): 427–441. doi:10.5252/geodiversitas2020v42a23. http://sciencepress.mnhn.fr/en/periodiques/geodiversitas/42/23. 
  100. Andrey O. Frolov; Irina M. Mashchuk (2020). "Discovery of isolated leaves of Marskea (Taxaceae) in the Middle Jurassic sediments of Irkutsk Basin (East Siberia, Russia)". Phytotaxa 449 (2): 164–172. doi:10.11646/phytotaxa.449.2.4. 
  101. Ruth A. Stockey; Harufumi Nishida; Gar W. Rothwell (2020). "Evolutionary diversification of taiwanioid conifers: evidence from a new Upper Cretaceous seed cone from Hokkaido, Japan". Journal of Plant Research 133 (5): 681–692. doi:10.1007/s10265-020-01214-y. PMID 32686035. Bibcode2020JPlR..133..681S. 
  102. 102.0 102.1 Ling-Qi Zhou; Cuo Peng; Peng Deng; Xiao-Qin Zhang; Guo-Lin Yang; Wen-Xiu Ren; Jun Wang; Xiao-Qiang Li et al. (2020). "New records of Early Cretaceous petrified wood in Yumen, northwestern Gansu Province, China and their palaeoclimatic implications". Palaeoworld 30 (3): 503–514. doi:10.1016/j.palwor.2020.08.002. 
  103. Martina Dolezych; Lutz Reinhardt (2020). "First evidence for the conifer Pinus, as Pinuxylon selmeierianum sp. nov., during the Paleogene on Wootton Peninsula, northern Ellesmere Island, Nunavut, Canada". Canadian Journal of Earth Sciences 57 (1): 25–39. doi:10.1139/cjes-2018-0163. Bibcode2020CaJES..57...25D. 
  104. Meng-Xiao Wu; Jian Huang; Tao Su; Qin Leng; Zhe-Kun Zhou (2020). "Tsuga seed cones from the late Paleogene of southwestern China and their biogeographical and paleoenvironmental implications". Palaeoworld 29 (3): 617–628. doi:10.1016/j.palwor.2019.07.005. 
  105. Xiao Shi; Jianxin Yu; Yuewu Sun (2020). "Tyloses in the Lopingian cordaitalean root from Xinjiang, Northwest China". Review of Palaeobotany and Palynology 273: Article 104134. doi:10.1016/j.revpalbo.2019.104134. Bibcode2020RPaPa.27304134S. 
  106. Josefina Bodnar; Eduardo M. Morel; Eliana P. Coturel; Daniel G. Ganuza (2020). "New plant fossil records and biostratigraphic analysis from the Uspallata Group (Late Triassic) at Cacheuta Hill, Cuyo Basin, west-central Argentina". Geobios 60: 3–27. doi:10.1016/j.geobios.2020.04.002. Bibcode2020Geobi..60....3B. 
  107. Leyla J. Seyfullah; Emily A. Roberts; Alexander R. Schmidt; Eugenio Ragazzi; Ken B. Anderson; Daniel Rodrigues do Nascimento Jr.; Wellington Ferreira da Silva Filho; Lutz Kunzmann (2020). "Revealing the diversity of amber source plants from the Early Cretaceous Crato Formation, Brazil". BMC Evolutionary Biology 20 (1): 107. doi:10.1186/s12862-020-01651-2. PMID 32819273. Bibcode2020BMCEE..20..107S. 
  108. Serge V. Naugolnykh (2020). "Archaeopetalanthus progressus gen. et sp. nov. – a new representative of the vojnovskyopsid gymnosperms from the Carboniferous of Siberia (Russia)". Wulfenia 27: 97–113. https://www.researchgate.net/publication/345140733. 
  109. Mário Miguel Mendes; Kaj Raunsgaard Pedersen; Else Marie Friis (2020). "Battenispermum hirsutum gen. et sp. nov., a new Early Cretaceous seed from Portugal with chlamydospermous organisation". Cretaceous Research 109: Article 104376. doi:10.1016/j.cretres.2020.104376. Bibcode2020CrRes.10904376M. 
  110. María A. Gómez; Gabriela G. Puebla; Mercedes B. Prámparo; Andrea B. Arcucci (2020). "Fossil seeds from the La Cantera Formation, Early Cretaceous, San Luis Province, Argentina". Acta Palaeobotanica 60 (1): 181–198. doi:10.35535/acpa-2020-0008. 
  111. 111.0 111.1 Domingas Maria da Conceição; Luiz Saturnino de Andrade; Rodrigo Neregato; Roberto Iannuzzi; Alexandra Crisafulli; Juan Carlos Cisneros (2020). "New petrified gymnosperms from the Permian of Maranhão (Pedra de Fogo Formation), Brazil: Ductolobatopitys nov. gen. and Kaokoxylon". Geobios 60: 47–59. doi:10.1016/j.geobios.2020.04.003. Bibcode2020Geobi..60...47C. 
  112. Wei-Ming Zhou; Bi-Yun Chen; Wei Sun; Xue-Zhi He; Jason Hilton; Jun Wang (2020). "A new gigantopterid genus from the late Permian of the Daha Coalfield, Tibetan Plateau and its implication on plant-insect interactions". Historical Biology: An International Journal of Paleobiology 33 (12): 3228–3240. doi:10.1080/08912963.2020.1860033. https://research.birmingham.ac.uk/portal/en/publications/a-new-gigantopterid-genus-from-the-late-permian-of-the-daha-coalfield-tibetan-plateau-and-its-implication-on-plantinsect-interactions(6522a667-5362-4c9c-bab2-e7eadfa592e6).html. 
  113. Sheng-Hui Deng; Xiao-Ju Yang; Zhi-Yan Zhou (2020). "A new Ginkgo from the Lower Cretaceous of Liaoning, Northeast China and its evolutionary implications". Review of Palaeobotany and Palynology 283: Article 104315. doi:10.1016/j.revpalbo.2020.104315. Bibcode2020RPaPa.28304315D. 
  114. Yong Yang; Yingwei Wang; David Kay Ferguson (2020). "A new macrofossil ephedroid plant with unusual bract morphology from the Lower Cretaceous Jiufotang Formation of northeastern China". BMC Evolutionary Biology 20 (1): Article number 19. doi:10.1186/s12862-019-1569-y. PMID 32019502. Bibcode2020BMCEE..20...19Y. 
  115. 115.0 115.1 115.2 Cindy V. Looy; Ivo A. P. Duijnstee (2020). "Voltzian conifers of the South Ash Pasture flora (Guadalupian, Texas): Johniphyllum multinerve gen. et sp. nov., Pseudovoltzia sapflorensis sp. nov., and Wantus acaulis gen. et sp. nov.". International Journal of Plant Sciences 181 (3): 363–385. doi:10.1086/706853. 
  116. Heidi M. Anderson; Maria Barbacka; Marion K. Bamford; W. B. Keith Holmes; John M. Anderson (2020). "Dicroidium (foliage) and affiliated wood Part 3 of a reassessment of Gondwana Triassic plant genera and a reclassification of some previously attributed". Alcheringa: An Australasian Journal of Palaeontology 44 (1): 64–92. doi:10.1080/03115518.2019.1622779. Bibcode2020Alch...44...64A. 
  117. Jana Čepičková; Jiří Kvaček (2020). "Two cycads Nilssonia mirovanae sp. nov. and Pseudoctenis babinensis J.Kvaček from the Cenomanian of the Bohemian Cretaceous Basin (the Czech Republic) as indicators of water stress in the palaeoenvironment". Fossil Imprint 76 (2): 315–324. doi:10.37520/fi.2020.025. 
  118. 118.0 118.1 Domingas Maria da Conceição; Alexandra Crisafulli; Roberto Iannuzzi; Rodrigo Neregato; Juan Carlos Cisneros; Luiz Saturnino de Andrade (2020). "New petrified gymnosperms from the Permian of Maranhão (Pedra de Fogo Formation), Brazil: Novaiorquepitys and Yvyrapitys". Review of Palaeobotany and Palynology 276: Article 104177. doi:10.1016/j.revpalbo.2020.104177. Bibcode2020RPaPa.27604177D. 
  119. Sergey V. Naugolnykh; Valeryi V. Linkevich (2020). "Artinskian flora (Lower Permian) of the stratotypic area (the Middle Cis-Urals)". Socialno-ecologicheskie Technologii 10 (2): 133–150. doi:10.31862/2500-2961-2020-10-2-133-150. 
  120. Ming-Li Wan; Wan Yang; Jun Wang (2020). "Palaeocupressinoxylon uniseriale n. gen. n. sp., a gymnospermous wood from the upper Permian of Central Taodonggou, southern Bogda Mountains, northwestern China". Palaeoworld 29 (1): 117–125. doi:10.1016/j.palwor.2019.06.002. 
  121. Anastasia Zolina; Lina Golovneva; Natalya Nosova; Alexander Grabovskiy (2020). "A new species of Phoenicopsis (Leptostrobales) from the Maastrichtian–Danian of Chukotka, Russia". Geobios 63: 67–75. doi:10.1016/j.geobios.2020.09.002. Bibcode2020Geobi..63...67Z. 
  122. John G. Conran; Jennifer M. Bannister; Uwe Kaulfuss; Daphne E. Lee (2020). "Pterostoma neehoffii (cf. Zamiaceae): a new species of extinct cycad from the middle Miocene of New Zealand and an overview of fossil New Zealand cycads". New Zealand Journal of Botany 58 (1): 30–47. doi:10.1080/0028825X.2019.1653939. Bibcode2020NZJB...58...30C. 
  123. 123.0 123.1 123.2 Patrick Blomenkemper; Hans Kerp; Abdalla Abu Hamad; Benjamin Bomfleur (2020). "Contributions towards whole-plant reconstructions of Dicroidium plants (Umkomasiaceae) from the Permian of Jordan". Review of Palaeobotany and Palynology 278: Article 104210. doi:10.1016/j.revpalbo.2020.104210. Bibcode2020RPaPa.27804210B. 
  124. Yifan Hua; Xuelian Wang; Junlin Dong; Yanzhao Ji; Bainian Sun (2020). "A number of new seed fossils from the lower Permian of Gansu, Northwest China: implication for research on arils". Historical Biology: An International Journal of Paleobiology 32 (8): 1098–1107. doi:10.1080/08912963.2019.1566323. Bibcode2020HBio...32.1098H. 
  125. 125.0 125.1 Natalya Nosova (2020). "Female reproductive structures of Umaltolepis Krassilov and associated short shoots, buds and leaves of Pseudotorellia Florin from the Middle Jurassic of Angren, Uzbekistan". Review of Palaeobotany and Palynology 281: Article 104266. doi:10.1016/j.revpalbo.2020.104266. Bibcode2020RPaPa.28104266N. 
  126. Josef Pšenička; Jun Wang; Jason Hilton; Weiming Zhou; Jiří Bek; Stanislav Opluštil; Jana Votočková Frojdová (2020). "A small heterophyllous vine climbing on Psaronius and Cordaites trees in the earliest Permian forests of North China". International Journal of Plant Sciences 181 (6): 616–645. doi:10.1086/708814. http://pure-oai.bham.ac.uk/ws/files/98939556/708814.pdf. 
  127. Weiming Zhou; Shan Wan; Mingli Wan; Jason Hilton; Josef Pšenička; Jun Wang (2020). "Yangopteris ascendens (Halle) gen. et comb. nov., a climbing alethopterid pteridosperm from the Asselian (earliest Permian) Wuda Tuff Flora". Review of Palaeobotany and Palynology 294: Article 104282. doi:10.1016/j.revpalbo.2020.104282. https://research.birmingham.ac.uk/portal/en/publications/yangopteris-ascendens-halle-gen-et-comb-nov-a-climbing-alethopterid-pteridosperm-from-the-asselian-earliest-permian-wuda-tuff-flora(7618b969-88c1-44a5-a3e1-2d1c5a3880bf).html. 
  128. Pedro Correia; Arden R. Bashforth; Zbynĕk Šimůnek; Christopher J. Cleal; Artur A. Sá; Conrad C. Labandeira (2020). "The history of herbivory on sphenophytes: a new calamitalean with an insect gall from the Upper Pennsylvanian of Portugal and a review of arthropod herbivory on an ancient lineage". International Journal of Plant Sciences 181 (4): 387–418. doi:10.1086/707105. 
  129. Ruiyun Li; Xiaoqiang Li; Xuelian Wang; Bainian Sun (2020). "First fossil liverwort with in situ flask-shaped receptacles from the Lower Cretaceous of Inner Mongolia, China". Cretaceous Research 119: Article 104684. doi:10.1016/j.cretres.2020.104684. ISSN 0195-6671. 
  130. Xiao-Yuan He; Shi-Jun Wang; Jason Hilton; Jean Galtier; Hong-Guan Jiang (2020). "An advanced species of the fern Botryopteris Renault from the Permian of southwestern China". Review of Palaeobotany and Palynology 273: Article 104136. doi:10.1016/j.revpalbo.2019.104136. Bibcode2020RPaPa.27304136H. http://pure-oai.bham.ac.uk/ws/files/82924629/Revised_Botryo_multif_manuscript_NO_CHANGES_MARKED.pdf. 
  131. L. B. Golovneva; A. A. Grabovskiy; A. A. Zolina (2020). "A new species of the genus Birisia (Dicksoniaceae) from the lower–middle Albian deposits of Southern Primorye, Far East of Russia". Palaeobotany 11: 74–95. doi:10.31111/palaeobotany/2020.11.74. https://cyberleninka.ru/article/n/a-new-species-of-the-genus-birisia-dicksoniaceae-from-the-lower-middle-albian-deposits-of-southern-primorye-far-east-of-russia. 
  132. Barry A. Thomas (2020). "A new species of leafy calamite stem from the Pennsylvanian (Bolsovian) of the South Wales Coalfield". Acta Palaeobotanica 60 (1): 207–211. doi:10.35535/acpa-2020-0010. 
  133. 133.0 133.1 Yueyang Zhang; Hongxia Jiang; Yasheng Wu; Hongping Bao; Junfeng Ren; Zhengliang Huang (2020). "Calcified dasycladaleans from the Upper Ordovician in the Ordos Basin, China". Acta Micropalaeontologica Sinica 37 (3): 228–237. doi:10.16087/j.cnki.1000-0674.2020.03.003. 
  134. 134.0 134.1 134.2 134.3 Jordi Pérez-Cano; Telm Bover-Arnal; Carles Martín-Closas (2020). "Barremian charophytes from the Maestrat Basin". Cretaceous Research 115. doi:10.1016/j.cretres.2020.104544. 
  135. Jan Hinkelman; Lucia Vršanská (2020). "A Myanmar amber cockroach with protruding feces contains pollen and a rich microcenosis". The Science of Nature 107 (2): Article number 13. doi:10.1007/s00114-020-1669-y. PMID 32125545. Bibcode2020SciNa.107...13H. 
  136. 136.0 136.1 136.2 Patricio Emmanuel Santamarina; Viviana Dora Barreda; Ari Iglesias; Augusto Nicolás Varela (2020). "Palynology from the Cenomanian Mata Amarilla Formation, southern Patagonia, Argentina". Cretaceous Research 109: Article 104354. doi:10.1016/j.cretres.2019.104354. Bibcode2020CrRes.10904354S. 
  137. 137.0 137.1 137.2 137.3 137.4 137.5 Ioan I. Bucur; Sylvain Rigaud; Nicolò Del Piero; Andrea Fucelli; Eric Heerwagen; Camille Peybernes; Giovan Peyrotty; Christian Verard et al. (2020). "Upper Triassic calcareous algae from the Panthalassa Ocean". Rivista Italiana di Paleontologia e Stratigrafia 126 (2): 499–540. doi:10.13130/2039-4942/13681. 
  138. Xiu-Cai Yuan; Cong-Hui Xiong; Fan-Kai Sun; Zi-Xi Wang; Teng Mao; Yi-Jie Li; Chun-Hui Liu; Ming-Xuan Sun et al. (2020). "The geological significance of a new species of Coniopteris from the Middle Jurassic of northwestern China". Historical Biology: An International Journal of Paleobiology 32 (2): 267–280. doi:10.1080/08912963.2018.1488251. Bibcode2020HBio...32..267Y. 
  139. Barry A. Thomas; Christopher J. Cleal (2020). "The nomenclature of fossil‐taxa representing different preservational states: Lepidodendron as a case‐study". Taxon 69 (5): 1052–1061. doi:10.1002/tax.12291. 
  140. Yang Yu; San-Ping Xie; John Devaney; Si-Hang Zhang; Tian-Yu Chen; Xu Zeng; Bing Wang; Yu Zhang (2020). "A new species of Drynaria (Polypodiaceae) from the late Miocene of Yunnan, Southwest China and implications on the genus evolution". Palaeobiodiversity and Palaeoenvironments 100 (4): 939–949. doi:10.1007/s12549-020-00429-0. Bibcode2020PdPe..100..939Y. https://mural.maynoothuniversity.ie/16135/1/Yu2020_Article_ANewSpeciesOfDrynariaPolypodia.pdf. 
  141. Li Zhang; Yong Wang; Hong-Yu Chen; Lei Han; Yu-Xin Zhang; Wen-Jia Li; Tao Yang; Hao-Jian Wang et al. (2020). "New fossil material of Equicalastrobus (Equisetales) and associated leaves from the Late Triassic of Baojishan basin, Gansu Province, China". Historical Biology: An International Journal of Paleobiology 33 (9): 1522–1533. doi:10.1080/08912963.2020.1716747. 
  142. 142.0 142.1 Aye Thida Aung; Jian Huang; Truong Van Do; Ai Song; Jia Liu; Zhe-Kun Zhou; Tao Su (2020). "Three new fossil records of Equisetum (Equisetaceae) from the Neogene of south-western China and northern Vietnam". PhytoKeys (138): 3–15. doi:10.3897/phytokeys.138.38674. PMID 31988601. 
  143. Branko Sokač; Tonći Grgasović (2020). "New dasycladalean alga with unusual two types of laterals from the Palaocene deposits of Konavle, SE of Dubrovnik (Dinarides, Croatia)". Revue de Micropaléontologie 69: Article 100464. doi:10.1016/j.revmic.2020.100464. Bibcode2020RvMic..6900464S. 
  144. Ya Li; Yong-Dong Wang; Harald Schnerder; Peng-Cheng Wu (2020). "Frullania partita sp. nov. (Frullaniaceae, Porellales), a new leafy liverwort from the mid-Cretaceous of Myanmar". Cretaceous Research 108: Article 104341. doi:10.1016/j.cretres.2019.104341. Bibcode2020CrRes.10804341L. 
  145. Yuriy S. Mamontov; John J. Atwood; Evgeny E. Perkovsky; Michael S. Ignatov (2020). "Hepatics from Rovno amber (Ukraine): Frullania pycnoclada and a new species, F. vanae". The Bryologist 123 (3): 421–430. doi:10.1639/0007-2745-123.3.421. 
  146. 146.0 146.1 Fearghus R. McSweeney; Jeff Shimeta; John St. J. S. Buckeridge (2020). "Two new genera of early Tracheophyta (Zosterophyllaceae) from the upper Silurian–Lower Devonian of Victoria, Australia". Alcheringa: An Australasian Journal of Palaeontology 44 (3): 379–396. doi:10.1080/03115518.2020.1744725. Bibcode2020Alch...44..379M. 
  147. Kelly C. Pfeiler; Alexandru M. F. Tomescu (2020). "An Early Devonian actinostelic euphyllophyte with secondary growth from the Emsian of Gaspé (Canada) and the importance of tracheid wall thickening patterns in early euphyllophyte systematics". Papers in Palaeontology 7 (2): 1081–1095. doi:10.1002/spp2.1335. 
  148. Weiming Zhou; Josef Pšenička; Jiří Bek; Mingli Wan; C. Kevin Boyce; Jun Wang (2020). "A new anachoropterid fern from the Asselian (Cisuralian) Wuda Tuff Flora". Review of Palaeobotany and Palynology 294: Article 104346. doi:10.1016/j.revpalbo.2020.104346. 
  149. Steven T. LoDuca; Anthony L. Swinehart; Matthew A. LeRoy; Denis K. Tetreault; Shawn Steckenfinger (2020). "Codium-like taxa from the Silurian of North America: morphology, taxonomy, paleoecology, and phylogenetic affinity". Journal of Paleontology 95 (2): 207–235. doi:10.1017/jpa.2020.85. 
  150. Li-jun Chen; Ye-mao Hou; Peng-fei Yin; Xin Wang (2020). "An edible fruit from the Jurassic of China". China Geology 3 (1): 8–15. doi:10.31035/cg2020010. Bibcode2020CGeo....3....8C. 
  151. Antoine Champreux; Brigitte Meyer-Berthaud; Anne-Laure Decombeix (2020). "Keraphyton gen. nov., a new Late Devonian fern-like plant from Australia". PeerJ 8: e9321. doi:10.7717/peerj.9321. PMID 32587800. 
  152. D. S. Kopylov; A. P. Rasnitsyn; D. S. Aristov; A. S. Bashkuev; N. V. Bazhenova; V. Yu. Dmitriev; A. V. Gorochov; M. S. Ignatov et al. (2020). "The Khasurty Fossil Insect Lagerstätte". Paleontological Journal 54 (11): 1221–1394. doi:10.1134/S0031030120110027. Bibcode2020PalJ...54.1221K. 
  153. Yu.V. Mosseichik (2020). "Lepidodendron species from the Viséan of the Moscow Basin". Lethaea Rossica 20: 19–33. http://paleobot.ru/pdf/02_2020_20.pdf. 
  154. Yi-zhi Xu; Ning Yue; Shi Liu; Yi Zhang; Shao-lin Zheng; Yong-dong Wang; Xin-ran Huo (2020). "Lobatannularia linjiaensis sp. nov. from the Middle Triassic of Benxi, Liaoning". Acta Palaeontologica Sinica 59 (3): 329–344. doi:10.19800/j.cnki.aps.2019.024. http://gswxb.cnjournals.cn/gswxb/article/abstract/20200305. 
  155. Sergey V. Naugolnykh; Ming Tu; Xiao-Yan Liu; Jian-Hua Jin (2020). "A new species of Lygodium (Schizaeaceae) from the Buxin Formation (Paleocene), Sanshui Basin, South China". Palaeoworld 29 (3): 606–616. doi:10.1016/j.palwor.2019.07.003. 
  156. Tomoyuki Katagiri; Hisao Shinden (2020). "Discovery of a simple thalloid liverwort Metzgeriites kujiensis (Metzgeriaceae), a new species from Late Cretaceous Japanese amber". Hattoria 11: 13–21. doi:10.18968/hattoria.11.0_13. 
  157. Silvia Gnaedinger; Bárbara Cariglino; Ana María Zavattieri; Mariana Monti; Pedro R. Gutiérrez (2020). "Neoarthropitys gondwanaensis gen. et sp. nov. from the Middle Triassic of Gondwana: An intermediate stage in the anatomical trend of Equisetalean stems". Review of Palaeobotany and Palynology 282: Article 104298. doi:10.1016/j.revpalbo.2020.104298. Bibcode2020RPaPa.28204298G. 
  158. 158.0 158.1 Yeming Cheng; Fengxiang Liu; Xiaonan Yang; Tongxing Sun (2020). "Two new species of Mesozoic tree ferns (Osmundaceae: Osmundacaulis) in Eurasia as evidence of long-term geographic isolation". Geoscience Frontiers 11 (5): 1875–1888. doi:10.1016/j.gsf.2020.01.019. Bibcode2020GeoFr..11.1875C. 
  159. 159.0 159.1 Ana M. Zavattieri; Pedro R. Gutiérrez; Mariana Monti (2020). "Middle Triassic freshwater green algae and fungi of the Puesto Viejo Basin, central-western Argentina: palaeoenvironmental implications". Alcheringa: An Australasian Journal of Palaeontology 44 (3): 430–459. doi:10.1080/03115518.2020.1749302. Bibcode2020Alch...44..430Z. 
  160. Li Liu; Josef Pšenička; Jiří Bek; Mingli Wan; Hermann W. Pfefferkorn; Jun Wang (2020). "A whole calamitacean plant Palaeostachya guanglongii from the Asselian (Permian) Taiyuan Formation in the Wuda Coalfield, Inner Mongolia, China". Review of Palaeobotany and Palynology 294: Article 104245. doi:10.1016/j.revpalbo.2020.104245. 
  161. Ruiyun Li; Xiaoqiang Li; Shenghui Deng; Bainian Sun (2020). "Morphology and microstructure of Pellites hamiensis nov. sp., a Middle Jurassic liverwort from northwestern China and its evolutionary significance". Geobios 62: 23–29. doi:10.1016/j.geobios.2020.07.003. Bibcode2020Geobi..62...23L. 
  162. P. Hiller; M. Böhme; S. Schneider; J. Prieto; B. Bomfleur (2020). "Plenasium (Aurealcaulis) elegans sp. nov. from the Eocene of Vietnam – a connecting link in the evolution of modern Royal Ferns (Osmundeae, Osmundaceae)". Journal of Systematic Palaeontology 18 (8): 703–715. doi:10.1080/14772019.2019.1683771. Bibcode2020JSPal..18..703H. 
  163. Yi Zhang; Yong-Dong Wang; Yue Hong; Liu Cao; Fu-liang Gao (2020). "Pleuromeia discovered from the Middle Triassic Linjia Formation of Benxi, Northeast China". Palaeoworld 29 (4): 706–714. doi:10.1016/j.palwor.2020.02.004. 
  164. Carmen Álvarez-Vázquez; Jiří Bek; Jana Drábková (2020). "Polysporia baetica sp. nov., a new heterosporous sub-arborescent isoetalean from lower Bolsovian (Middle Pennsylvanian) strata of the Peñarroya-Belmez-Espiel Coalfield (Córdoba, SW Spain)". Review of Palaeobotany and Palynology 272: Article 104115. doi:10.1016/j.revpalbo.2019.104115. Bibcode2020RPaPa.27204115A. 
  165. Zlatko Kvaček; Vasilis Teodoridis (2020). "A new Oligocene fern of Dryopteridaceae from the Českéstředohoří Mts (Czech Republic)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 295 (1): 9–16. doi:10.1127/njgpa/2020/0864. 
  166. Chunxiang Li; Robbin C. Moran; Junye Ma; Bo Wang; Jiasheng Hao (2020). "A new fossil record of Lindsaeaceae (Polypodiales) from the mid-Cretaceous amber of Myanmar". Cretaceous Research 105: Article 104040. doi:10.1016/j.cretres.2018.12.010. Bibcode2020CrRes.10504040L. 
  167. Qing Tang; Ke Pang; Xunlai Yuan; Shuhai Xiao (2020). "A one-billion-year-old multicellular chlorophyte". Nature Ecology & Evolution 4 (4): 543–549. doi:10.1038/s41559-020-1122-9. PMID 32094536. Bibcode2020NatEE...4..543T. 
  168. 168.0 168.1 Josep Sanjuan; Ingeborg Soulié-Märsche (2020). "New charophyte assemblage from middle Miocene lacustrine deposits of Moneva (Ebro Basin, Spain)". Geobios 59: 79–90. doi:10.1016/j.geobios.2020.03.001. Bibcode2020Geobi..59...79S. 
  169. Pu Huang; Le Liu; Lu Liu; Min Qin; De-Ming Wang; Jin-Zhuang Xue (2020). "A new plant with novel leaves from the Upper Devonian of Zhejiang Province, China". Palaeoworld 29 (4): 695–705. doi:10.1016/j.palwor.2020.03.003. 
  170. Mingli Wan; Wenjun Sun; Jiří Bek; Feng Liu; Christopher Hill; Jun Wang (2020). "Scolecopteris minuta sp. nov., a marattialean fern from the early Permian Wuda Tuff Flora of Inner Mongolia, China". Review of Palaeobotany and Palynology 294: Article 104246. doi:10.1016/j.revpalbo.2020.104246. 
  171. 171.0 171.1 Michael P. D'Antonio; C. Kevin Boyce; Jun Wang (2020). "Two new species of Sigillaria Brongniart from the Wuda Tuff (Asselian: Inner Mongolia, China) and their implications for lepidodendrid life history reconstruction". Review of Palaeobotany and Palynology 294: Article 104203. doi:10.1016/j.revpalbo.2020.104203. 
  172. Chunxiang Li; Robbin C. Moran; Junye Ma; Bo Wang; Jiasheng Hao; Qun Yang (2020). "A mid-Cretaceous tree fern of Thyrsopteridaceae (Cyatheales) preserved in Myanmar amber". Cretaceous Research 105: Article 104050. doi:10.1016/j.cretres.2019.01.002. Bibcode2020CrRes.10504050L. 
  173. Zhuo Feng; Hai-Bo Wei; Yun Guo; Xiao-Yuan He; Qun Sui; Yu Zhou; Hang-Yu Liu; Xu-Dong Gou et al. (2020). "From rainforest to herbland: New insights into land plant responses to the end-Permian mass extinction". Earth-Science Reviews 204: Article 103153. doi:10.1016/j.earscirev.2020.103153. Bibcode2020ESRv..20403153F. 
  174. Serge V. Naugolnykh (2020). "A new species of the genus Tumidopteris Naugolnykh from the Permian of the Pechora Cis-Urals, Russia". Fossil Imprint 76 (2): 270–278. doi:10.37520/fi.2020.022. 
  175. Zhen Tang; Yi Zhang; Serge V. Naugolnykh; Changqing Zheng; Lu Shi; Tao Qin; Junhao Huang (2020). "Ufadendron elongatum sp. nov., an Angaran lycopsid from the Upper Permian of Inner Mongolia, China". Journal of Earth Science 31 (1): 1–8. doi:10.1007/s12583-019-1230-0. Bibcode2020JEaSc..31....1T. 
  176. Yu.V. Mosseichik; A.N. Filimonov (2020). "A new interpretation of Cyclostigma-like lepidophytes from the lower Tournaisian of the Minusinsk Basin (Southern Siberia)". Lethaea Rossica 20: 1–18. http://paleobot.ru/pdf/01_2020_20.pdf. 
  177. Barry A. Thomas; Peter Appleton; Christopher J. Cleal; Leyla J. Seyfullah (2020). "The distribution of plant fossils and their palaeoecology in Duckmantian (Bashkirian, Lower Pennsylvanian) strata at Brymbo, North Wales, UK". Geological Journal 55 (4): 3179–3207. doi:10.1002/gj.3529. Bibcode2020GeolJ..55.3179T. 
  178. Yuan Nie; Charles S. P. Foster; Tianqi Zhu; Ru Yao; David A. Duchêne; Simon Y. W. Ho; Bojian Zhong (2020). "Accounting for uncertainty in the evolutionary timescale of green plants through clock-partitioning and fossil calibration strategies". Systematic Biology 69 (1): 1–16. doi:10.1093/sysbio/syz032. PMID 31058981. 
  179. Xiaodong Shang; Pengju Liu; Małgorzata Moczydłowska; Ben Yang (2020). "Algal affinity and possible life cycle of the early Cambrian acritarch Yurtusia uniformis from South China". Palaeontology 63 (6): 903–917. doi:10.1111/pala.12491. Bibcode2020Palgy..63..903S. 
  180. Jorge R. Flores; Alexander C. Bippus; Guillermo M. Suárez; Jaakko Hyvönen (2020). "Defying death: incorporating fossils into the phylogeny of the complex thalloid liverworts (Marchantiidae, Marchantiophyta) confirms high order clades but reveals discrepancies in family‐level relationships". Cladistics 37 (3): 231–247. doi:10.1111/cla.12442. PMID 34478198. 
  181. Alexander J. Hetherington; Christopher M. Berry; Liam Dolan (2020). "Multiple origins of dichotomous and lateral branching during root evolution". Nature Plants 6 (5): 454–459. doi:10.1038/s41477-020-0646-y. PMID 32366983. http://orca.cf.ac.uk/131851/1/Berry.pdf. 
  182. Nikole K. Bonacorsi; Patricia G. Gensel; Francis M. Hueber; Charles H. Wellman; Andrew B. Leslie (2020). "A novel reproductive strategy in an Early Devonian plant". Current Biology 30 (9): R388–R389. doi:10.1016/j.cub.2020.03.040. PMID 32369746. 
  183. Neil Brocklehurst; Christian F. Kammerer; Roger J. Benson (2020). "The origin of tetrapod herbivory: effects on local plant diversity". Proceedings of the Royal Society B: Biological Sciences 287 (1928): Article ID 20200124. doi:10.1098/rspb.2020.0124. PMID 32517628. 
  184. Michael P. D'Antonio; C. Kevin Boyce (2020). "Arborescent lycopsid periderm production was limited". New Phytologist 228 (2): 741–751. doi:10.1111/nph.16727. PMID 32506426. 
  185. William A. DiMichele; Richard M. Bateman (2020). "Better together: Joint consideration of anatomy and morphology illuminates the architecture and life history of the Carboniferous arborescent lycopsid Paralycopodites". Journal of Systematics and Evolution 58 (6): 783–804. doi:10.1111/jse.12662. 
  186. Candela Blanco‐Moreno; Anne‐Laure Decombeix; Cyrille Prestianni (2020). "New insights into the affinities, autoecology, and habit of the Mesozoic fern Weichselia reticulata based on the revision of stems from Bernissart (Mons Basin, Belgium)". Papers in Palaeontology 7 (3): 1351–1372. doi:10.1002/spp2.1344. https://hal.umontpellier.fr/hal-03038289/file/BlancoMoreno%20et%20al%202021%20postprint%20for%20HAL.pdf. 
  187. Chunxiang Li; Xinyuan Miao; Li-Bing Zhang; Junye Ma; Jiasheng Hao (2020). "Re-evaluation of the systematic position of the Jurassic–Early Cretaceous fern genus Coniopteris". Cretaceous Research 105: Article 104136. doi:10.1016/j.cretres.2019.04.007. Bibcode2020CrRes.10504136L. 
  188. Facundo De Benedetti; María del C. Zamaloa; María A. Gandolfo; Néstor R. Cúneo (2020). "Reinterpretation of Paleoazolla: a heterosporous water fern from the Late Cretaceous of Patagonia, Argentina". American Journal of Botany 107 (7): 1054–1071. doi:10.1002/ajb2.1501. PMID 32596837. 
  189. Keith Berry (2020). "The first plants to recolonize western North America following the Cretaceous-Paleogene mass extinction event". International Journal of Plant Sciences 182 (1): 19–27. doi:10.1086/711847. 
  190. Luke E. Meade; Andrew R.G. Plackett; Jason Hilton (2020). "Reconstructing development of the earliest seed integuments raises a new hypothesis for the evolution of ancestral seed‐bearing structures". New Phytologist 229 (3): 1782–1794. doi:10.1111/nph.16792. PMID 32639670. 
  191. Natalia Zavialova; Patrick Blomenkemper; Hans Kerp; Abdalla Abu Hamad; Benjamin Bomfleur (2020). "A lyginopterid pollen organ from the upper Permian of the Dead Sea region". Grana 60 (2): 81–96. doi:10.1080/00173134.2020.1772360. 
  192. Miriam Slodownik; Vivi Vajda; Margret Steinthorsdottir (2020). "Fossil seed fern Lepidopteris ottonis from Sweden records increasing CO2 concentration during the end-Triassic extinction event". Palaeogeography, Palaeoclimatology, Palaeoecology 564: Article 110157. doi:10.1016/j.palaeo.2020.110157. 
  193. Fabiany Herrera; Gongle Shi; Chris Mays; Niiden Ichinnorov; Masamichi Takahashi; Joseph J. Bevitt; Patrick S. Herendeen; Peter R. Crane (2020). "Reconstructing Krassilovia mongolica supports recognition of a new and unusual group of Mesozoic conifers". PLOS ONE 15 (1): e0226779. doi:10.1371/journal.pone.0226779. PMID 31940374. Bibcode2020PLoSO..1526779H. 
  194. Bruce A. Byers; Lucía DeSoto; Dan Chaney; Sidney R. Ash; Anya B. Byers; Jonathan B. Byers; Markus Stoffel (2020). "Fire-scarred fossil tree from the Late Triassic shows a pre-fire drought signal". Scientific Reports 10 (1): Article number 20104. doi:10.1038/s41598-020-77018-w. PMID 33208853. 
  195. Peter Wilf (2020). "Eocene "Chusquea" fossil from Patagonia is a conifer, not a bamboo". PhytoKeys (139): 77–89. doi:10.3897/phytokeys.139.48717. PMID 32076379. 
  196. Fabien L. Condamine; Daniele Silvestro; Eva B. Koppelhus; Alexandre Antonelli (2020). "The rise of angiosperms pushed conifers to decline during global cooling". Proceedings of the National Academy of Sciences of the United States of America 117 (46): 28867–28875. doi:10.1073/pnas.2005571117. PMID 33139543. Bibcode2020PNAS..11728867C. 
  197. George Poinar; Greg Poinar (2020). "The antiquity of floral secretory tissues that provide today's fragrances". Historical Biology: An International Journal of Paleobiology 32 (4): 494–499. doi:10.1080/08912963.2018.1502288. Bibcode2020HBio...32..494P. 
  198. Vera A. Korasidis; Barbara E. Wagstaff (2020). "The rise of flowering plants in the high southern latitudes of Australia". Review of Palaeobotany and Palynology 272: Article 104126. doi:10.1016/j.revpalbo.2019.104126. Bibcode2020RPaPa.27204126K. 
  199. Huasheng Huang; Robert Morley; Alexis Licht; Guillaume Dupont-Nivet; Friðgeir Grímsson; Reinhard Zetter; Jan Westerweel; Zaw Win et al. (2020). "Eocene palms from central Myanmar in a South-East Asian and global perspective: evidence from the palynological record". Botanical Journal of the Linnean Society 194 (2): 177–206. doi:10.1093/botlinnean/boaa038. 
  200. Teng‐Xiang Wang; Cédric Del Rio; Steven R. Manchester; Jia Liu; Fei‐Xiang Wu; Wei‐Yu‐Dong Deng; Tao Su; Zhe‐Kun Zhou (2020). "Fossil fruits of Illigera (Hernandiaceae) from the Eocene of central Tibetan Plateau". Journal of Systematics and Evolution 59 (6): 1276–1286. doi:10.1111/jse.12687. 
  201. Bernard Gomez; Véronique Daviero‐Gomez; Clément Coiffard; Abel Barral; Carles Martín‐Closas; David L. Dilcher (2020). "Montsechia vidalii from the Barremian of Spain, the earliest known submerged aquatic angiosperm, and its systematic relationship to Ceratophyllum". Taxon 69 (6): 1273–1292. doi:10.1002/tax.12409. 
  202. Melanie L. DeVore; Alphonse Nyandwi; Winnie Eckardt; Elias Bizuru; Myriam Mujawamariya; Kathleen B. Pigg (2020). "Urticaceae leaves with stinging trichomes were already present in latest early Eocene Okanogan Highlands, British Columbia, Canada". American Journal of Botany 107 (10): 1449–1456. doi:10.1002/ajb2.1548. PMID 33091153. 
  203. Roberto R. Pujana; Damián A. Fernández; Carolina Panti; Nicolás Caviglia (2020). "The micro- and megafossil record of Nothofagaceae from South America". Botanical Journal of the Linnean Society 196: 1–20. doi:10.1093/botlinnean/boaa097. ISSN 0024-4074. 
  204. Chris Mays; Vivi Vajda; Tracy D. Frank; Christopher R. Fielding; Robert S. Nicoll; Allen P. Tevyaw; Stephen McLoughlin (2020). "Refined Permian−Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems". GSA Bulletin 132 (7–8): 1489–1513. doi:10.1130/B35355.1. Bibcode2020GSAB..132.1489M. http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-3834. 
  205. Hendrik Nowak; Christian Vérard; Evelyn Kustatscher (2020). "Palaeophytogeographical patterns across the Permian–Triassic boundary". Frontiers in Earth Science 8: Article 613350. doi:10.3389/feart.2020.613350. Bibcode2020FrEaS...8..609N. 
  206. Rolf W. Mathewes; David Robert Greenwood; Renee Love (2020). "The Kanaka Creek fossil flora (Huntingdon Formation), British Columbia, Canada—paleoenvironment and evidence for Paleocene age using palynology and macroflora". Canadian Journal of Earth Sciences 57 (3): 348–365. doi:10.1139/cjes-2018-0325. Bibcode2020CaJES..57..348M. 
  207. Tao Su; Robert A. Spicer; Fei-Xiang Wu; Alexander Farnsworth; Jian Huang; Cédric Del Rio; Tao Deng; Lin Ding et al. (2020). "A Middle Eocene lowland humid subtropical "Shangri-La" ecosystem in central Tibet". Proceedings of the National Academy of Sciences of the United States of America 117 (52): 32989–32995. doi:10.1073/pnas.2012647117. PMID 33288692. Bibcode2020PNAS..11732989S. 
  208. Matthew J. Butrim; Dana L. Royer (2020). "Leaf‐economic strategies across the Eocene–Oligocene transition correlate with dry season precipitation and paleoelevation". American Journal of Botany 107 (12): 1772–1785. doi:10.1002/ajb2.1580. PMID 33290590. 
  209. C. Martínez; C. Jaramillo; A. Correa-Metrío; W. Crepet; J. E. Moreno; A. Aliaga; F. Moreno; M. Ibañez-Mejia et al. (2020). "Neogene precipitation, vegetation, and elevation history of the Central Andean Plateau". Science Advances 6 (35): eaaz4724. doi:10.1126/sciadv.aaz4724. PMID 32923618. Bibcode2020SciA....6.4724M. 
  210. Góis‐Marques, Carlos A.; Nascimento, Lea de; Fernández‐Palacios, José María; Madeira, José; Sequeira, Miguel Menezes de (2020). "Tracing insular woodiness in giant Daucus (s.l.) fruit fossils from the Early Pleistocene of Madeira Island (Portugal)" (in en). Taxon 68 (6): 1314–1320. doi:10.1002/tax.12175. ISSN 1996-8175. 
  211. Coiro, Mario; Martínez, Leandro C. A.; Upchurch, Garland R.; Doyle, James A. (2020). "Evidence for an extinct lineage of angiosperms from the Early Cretaceous of Patagonia and implications for the early radiation of flowering plants" (in en). New Phytologist 228 (1): 344–360. doi:10.1111/nph.16657. ISSN 1469-8137. PMID 32400897. https://www.zora.uzh.ch/id/eprint/188092/1/New_Phytologist_2020_accepted-manuscript.pdf. 
  212. Jürg Schönenberger; Maria von Balthazar; Andrea López Martínez; Béatrice Albert; Charlotte Prieu; Susana Magallón; Hervé Sauquet (2020). "Phylogenetic analysis of fossil flowers using an angiosperm‐wide data set: proof‐of‐concept and challenges ahead". American Journal of Botany 107 (10): 1433–1448. doi:10.1002/ajb2.1538. PMID 33026116.