Biology:2020 in paleobotany
This article records new taxa of fossil plants that are scheduled to be described during the year 2020, as well as other significant discoveries and events related to paleobotany that are scheduled to occur in the year 2020.
Flowering plants
Alismatales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Limnobiophyllum pedunculatum[1] |
Sp. nov |
Valid |
Low, Su & Xing in Low et al. |
Late Oligocene |
China |
A member of the family Araceae. |
Apiales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Na, Blanchard & Wang |
Middle Eocene |
Cockfield Formation |
United States |
A member of the family Araliaceae. |
Arecales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Echimonocolpites chicxulubensis[3] |
Sp. nov |
Valid |
Smith et al. |
Mexico |
Pollen of a flowering plant, probably a member of the family Arecaceae. |
|||
Sp. nov |
In press |
Khan, Hazra & Bera in Khan et al. |
India |
A petrified palm stem of a member of the subfamily Ceroxyloideae. |
||||
Sp. nov |
Valid |
Khan, Roy & Bera in Khan et al. |
India |
A petrified palm stem. |
||||
Sp. nov |
Valid |
Greenwood & Conran |
Canada |
|||||
Sabalites karondiensis[7] |
Sp. nov |
In press |
Roy, Hazra & Khan in Roy et al. |
Late Cretaceous-Paleocene (latest Maastrichtian-earliest Danian) |
Deccan Intertrappean Beds |
India |
A palm frond . |
|
Spinizonocolpites riochiquensis[8] |
Sp. nov |
Valid |
Vallati & De Sosa Tomas in Vallati, De Sosa Tomas & Casal |
Argentina |
A member of Arecaceae described on the basis of fossil pollen grains. Announced in 2019; the final version of the article naming it was published in 2020. |
Buxales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Pachysandra europaea[9] |
Sp. nov |
Valid |
Kvaček, Teodoridis & Denk |
Pliocene |
Germany |
A species of Pachysandra. Announced in 2019; the final version of the article naming it was published in 2020. |
Caryophyllales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gomphrenipollis garciae[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen of a flowering plant, possibly produced by members of the family Amaranthaceae. Announced in 2020; the final version of the article naming it was published in 2021. |
Chloranthales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sarcandraxylon[11] |
Gen. et sp. nov |
Valid |
Pipo, Iglesias & Bodnar |
Late Cretaceous (early–middle Campanian) |
A member of the family Chloranthaceae. Genus includes new species S. sanjosense. |
Cornales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Amersinia littletonensis[12] |
Sp. nov |
Valid |
Huegele & Manchester |
Early Paleocene |
Denver Formation |
United States |
||
Langtonia parva[12] |
Sp. nov |
Valid |
Huegele & Manchester |
Early Paleocene |
Denver Formation |
United States |
A member of the family Mastixiaceae. |
|
Mastixicarpum hoodii[12] |
Sp. nov |
Valid |
Huegele & Manchester |
Early Paleocene |
Denver Formation |
United States |
A member of the family Mastixiaceae. |
|
Nyssa gergoei[13] |
Sp. nov |
Valid |
Hably |
Miocene |
Hungary |
A tupelo. |
||
Nyssa gyoergyi[13] |
Sp. nov |
Valid |
Hably |
Miocene |
Hungary |
A tupelo. |
||
Platycrater iljinskajae[14] |
Sp. nov |
In press |
Denk et al. |
Late Oligocene |
Russia |
|||
Portnallia alexanderi[12] |
Sp. nov |
Valid |
Huegele & Manchester |
Early Paleocene |
Denver Formation |
United States |
A member of the family Mastixiaceae. |
Crossosomatales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Staphylea woodworthensis[15] | Sp. nov | In press | Zhu & Manchester | Oligocene | Renova Formation | United States ( Montana) |
A species of Staphylea. |
Cucurbitales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Coriaripites goodii[16] |
Sp. nov |
Valid |
Barreda, Palazzesi & Tellería in Renner et al. |
Late Cretaceous (Campanian–early Maastrichtian) |
Lopez de Bertodano Formation |
Pollen grains similar to those of extant members of the genus Coriaria. |
||
Echitriporites jolyi[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen produced by members of the genus Cayaponia. Announced in 2020; the final version of the article naming it was published in 2021. |
Ericales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Andrewsiocarpon puryearensis[2] |
Sp. nov |
Valid |
Na, Blanchard & Wang |
Middle Eocene |
Cockfield Formation |
United States |
A member of the family Theaceae. |
|
Anubiscarpon[17] |
Gen. et sp. nov |
Valid |
Smith & Manchester |
Middle Eocene |
Clarno Formation |
United States |
A member of the family Theaceae. Genus includes new species A. andersonae. |
Fabales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Cercis zekuensis[18] |
Sp. nov |
Valid |
Li et al. |
Early Miocene |
China |
A species of Cercis. Announced in 2020; the final version of the article naming it was published in 2021. |
||
Gleditsia pliocaenica[9] |
Sp. nov |
Valid |
Kvaček, Teodoridis & Denk |
Pliocene |
Germany |
A species of Gleditsia. Announced in 2019; the final version of the article naming it was published in 2020. |
||
Menendoxylon lutzi[19] | Sp. nov | In press | Baez & Crisafulli | Miocene | Chiquimil | Argentina | Fossil wood of a member of the family Fabaceae. | |
Parkiidites marileae[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen produced by members of the genus Parkia. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Prioria martineziorum[20] |
Sp. nov |
Valid |
Rodríguez-Reyes & Estrada-Ruiz |
Oligocene-Miocene |
Santiago Formation |
Panama |
A species of Prioria. |
|
Psilastephanocolporites deoliverae[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen produced by members of the family Polygalaceae. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Psilastephanocolporites endoporatus[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Announced in 2020; the final version of the article naming it was published in 2021. |
|
Striatopollis grahamii[3] |
Sp. nov |
Valid |
Smith et al. |
Eocene (Ypresian) |
Mexico |
Pollen of an eudicot, probably a member of the family Fabaceae. |
Fagales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Alnus chaybulakensis[21] |
Sp. nov |
Valid |
Averyanova & Xing |
Kazakhstan |
An alder. |
|||
Berryophyllum hainanensis[22] |
Sp. nov |
Valid |
Liu & Jin in Liu, Song & Jin |
Changchang Formation |
China |
A member of the family Fagaceae. |
||
Carpinus asymmetrica[23] |
Sp. nov |
In press |
Xue & Jia in Xue et al. |
Early Miocene |
Maguan |
China |
A species of Carpinus. |
|
Carpinus symmetrica[23] |
Sp. nov |
In press |
Xue & Jia in Xue et al. |
Early Miocene |
Maguan Basin |
China |
A species of Carpinus |
|
Carya pipecreekensis[24] |
Sp. nov |
In press |
Swinehart & Farlow |
Late Neogene |
Pipe Creek Sinkhole |
United States |
A hickory. |
|
Castaneophyllum hainanensis[22] |
Sp. nov |
Valid |
Liu & Jin in Liu, Song & Jin |
Eocene |
Changchang Formation |
China |
A member of the family Fagaceae. |
|
Castaneophyllum lanceolata[22] |
Sp. nov |
Valid |
Liu & Jin in Liu, Song & Jin |
Eocene |
Changchang Formation |
China |
A member of the family Fagaceae. |
|
Castanopsis bulgarica[25] | Sp. nov | Valid | Mantzouka, Ivanov & Bozukov | Late Miocene–early Pliocene (late Messinian–early Zanclean) | Pokrovnik | Bulgaria | A species of Castanopsis. Announced in 2020; the final version of the article naming it was published in 2021. | |
Lithocarpus changchangensis[22] |
Sp. nov |
Valid |
Liu & Jin in Liu, Song & Jin |
Eocene |
Changchang Formation |
China |
A species of Lithocarpus. |
|
Quercus borissovii[21] |
Sp. nov |
Valid |
Averyanova & Xing |
Kazakhstan |
An oak. |
|||
Quercus changchangensis[22] |
Sp. nov |
Valid |
Liu & Jin in Liu, Song & Jin |
Eocene |
Changchang Formation |
China |
An oak. |
|
Quercus paleoargyrotricha[22] |
Sp. nov |
Valid |
Liu & Jin in Liu, Song & Jin |
Eocene |
Changchang Formation |
China |
An oak. |
|
Quercus paleohypargyrea[22] |
Sp. nov |
Valid |
Liu & Jin in Liu, Song & Jin |
Eocene |
Changchang Formation |
China |
An oak. |
|
Quercus paleolamellosa[22] |
Sp. nov |
Valid |
Liu & Jin in Liu, Song & Jin |
Eocene |
Changchang Formation |
China |
An oak. |
Garryales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Eucommia szaferi[9] |
Sp. nov |
Valid |
Kvaček, Teodoridis & Denk |
Pliocene |
Germany |
A species of Eucommia. Announced in 2019; the final version of the article naming it was published in 2020. |
Gentianales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Asclepiadospermum[26] |
Gen. et 2 sp. nov |
Valid |
Del Rio et al. |
Early Eocene |
Niubao Formation |
China |
An asclepiadoid Apocynaceae genus. |
|
Margocolporites carinae[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen produced by members of the genus Rauvolfia. Announced in 2020; the final version of the article naming it was published in 2021. |
Icacinales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Iodes elliptica[27] |
Sp. nov |
In press |
Del Rio et al. |
Early Oligocene |
Wenshan Basin |
China |
A member of the family Icacinaceae. |
|
Iodes passiciensis[28] |
Sp. nov |
Valid |
Del Rio & De Franceschi |
Early Eocene |
France |
A member of the family Icacinaceae. |
||
Manchesteria[29] |
Gen. et sp. nov |
In press |
Stull & Rozefelds in Rozefelds et al. |
Cenozoic (mid-Miocene or, more likely, middle Eocene) |
Australia |
A member of the family Icacinaceae. Genus includes new species M. australis. |
||
Pyrenacantha simonsii[30] |
Sp. nov |
Valid |
Stull et al. |
Early Oligocene |
Egypt |
A species of Pyrenacantha. |
Lamiales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Echitricolpites cruziae[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen produced by members of the genus Aegiphila. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Multiareolites? reticulatus[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen produced by members of the family Acanthaceae. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Retistephanocolpites curvimuratus[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Announced in 2020; the final version of the article naming it was published in 2021. |
|
Retistephanocolpites pardoi[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen of a flowering plant, possibly produced by members of the genus Amphilophium. Announced in 2020; the final version of the article naming it was published in 2021. |
Laurales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Actinodaphnoxylon[31] |
Gen. et sp. nov |
In press |
Akkemik et al. |
Turkey |
A member of the family Lauraceae. Genus includes new species A. zileensis. |
|||
Mezilaurinoxylon oleiferum[32] |
Sp. nov |
Valid |
Ruiz, Brea & Pujana in Ruiz et al. |
Argentina |
A member of the family Lauraceae. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020. |
|||
Patagonoxylon[32] |
Gen. et sp. nov |
Valid |
Ruiz, Brea & Pujana in Ruiz et al. |
Argentina |
A member of Laurales of uncertain phylogenetic placement. Genus includes new species P. scalariforme. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020. |
|||
Thymolepis[33] |
Gen. et sp. nov |
Valid |
Chambers & Poinar |
Myanmar |
Possibly an early representative of Monimiaceae. Genus includes new species T. toxandra. |
|||
Valviloculus[34] |
Gen. et sp. nov |
Valid |
Poinar et al. |
Late Cretaceous (Cenomanian) |
Burmese amber |
Myanmar |
Possibly a member of Laurales related to the families Monimiaceae and Atherospermataceae. Genus includes new species V. pleristaminis. |
Liliales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Smilax fujianensis[35] |
Sp. nov |
Valid |
Dong et al. |
Middle Miocene |
China |
A species of Smilax. Announced in 2020; the final version of the article naming it was published in 2021. |
||
Smilax zhangpuensis[35] |
Sp. nov |
Valid |
Dong et al. |
Middle Miocene |
China |
A species of Smilax. Announced in 2020; the final version of the article naming it was published in 2021. |
Magnoliales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Magnolia nanningensis[36] |
Sp. nov |
Valid |
Huang et al. |
Late Oligocene |
Nanning Basin |
China |
A species of Magnolia. |
|
Magnolia waltheri[9] |
Sp. nov |
Valid |
Kvaček, Teodoridis & Denk |
Pliocene |
Germany |
A species of Magnolia. Announced in 2019; the final version of the article naming it was published in 2020. |
||
Melloniflora[37] |
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Potomac Group |
United States |
A relative of extant early-diverging members of the Magnoliales. Genus includes new species M. virginiensis. |
Malpighiales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Salix palaeofutura[38] |
Sp. nov |
Valid |
Narita et al. |
Miocene |
Bifuka Formation |
Japan |
A willow. |
Malvales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Bastardioxylon[19] | Gen. et sp. nov | In press | Baez & Crisafulli | Miocene | Chiquimil | Argentina | Fossil wood of a member of the family Malvaceae. Genus includes new species B. antiqua. | |
Dipterocarpus dindoriensis[39] | Sp. nov | Valid | Khan, Spicer & Bera in Khan et al. | Late Cretaceous (Maastrichtian) | Deccan Intertrappean Beds | India | A species of Dipterocarpus. | |
Echiperiporites germeraadii[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Announced in 2020; the final version of the article naming it was published in 2021. |
|
Echiperiporites jaramilloi[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen produced by members of the genus Hibiscus. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Echiperiporites titanicus[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen produced by members of the genus Malachra. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Retistephanocolporites elizabeteae[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen produced by members of the genus Ceiba. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Veraguasoxylon[20] |
Gen. et sp. nov |
Valid |
Rodríguez-Reyes & Estrada-Ruiz |
Oligocene-Miocene |
Santiago Formation |
Panama |
A member of the family Malvaceae. Genus includes new species V. panamense. |
Myrtales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Eucalyptus xoshemium[40] |
Sp. nov |
Valid |
Gandolfo & Zamaloa in Zamaloa, Gandolfo & Nixon |
Argentina |
A species of Eucalyptus. |
|||
Mangroveoxylon[41] |
Gen. et comb. nov |
In press |
Moya & Brea |
Late Miocene? |
Argentina |
A member of the family Combretaceae; a new genus for "Menendoxylon" areniensis Lutz (1979). |
||
Myrceugenellites grandiporosum[32] |
Sp. nov |
Valid |
Ruiz, Brea & Pujana in Ruiz et al. |
Argentina |
A member of the family Myrtaceae. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020. |
|||
Primotrapa[42] |
Gen. et sp. nov |
Valid |
Li & Li in Li et al. |
Late Eocene to early Miocene |
Hannuoba |
China |
A member of Trapoideae. Genus includes new species P. weichangensis, as well as "Carpolithus" pomelii Saporta (1878) and "Hemitrapa" alpina Su & Zhou in Su et al. (2018). |
Nymphaeales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Praenymphaeapollenites[43] |
Gen. et sp. nov |
Valid |
Barrón, Peris & Labandeira in Peris et al. |
Myanmar |
Pollen of a member of Nymphaeaceae. |
Oxalidales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Cunoniantha[44] |
Gen. et sp. nov |
Valid |
Jud & Gandolfo |
Argentina |
A member of the family Cunoniaceae. Genus includes new species C. bicarpellata. Announced in 2020; the final version of the article naming it was published in 2021. |
|||
Elaeocarpus nanningensis[45] |
Sp. nov |
In press |
Liu et al. |
Late Oligocene |
Yongning Formation |
China |
A species of Elaeocarpus. |
|
Elaeocarpus prelacunosus[45] |
Sp. nov |
In press |
Liu et al. |
Late Miocene |
Foluo Formation |
China |
A species of Elaeocarpus. |
|
Elaeocarpus preprunifolioides[45] |
Sp. nov |
In press |
Liu et al. |
Late Miocene |
Foluo Formation |
China |
A species of Elaeocarpus. |
|
Elaeocarpus prerugosus[45] |
Sp. nov |
In press |
Liu et al. |
Late Miocene |
Foluo Formation |
China |
A species of Elaeocarpus. |
|
Elaeocarpus preserratus[45] |
Sp. nov |
In press |
Liu et al. |
Late Miocene |
Foluo Formation |
China |
A species of Elaeocarpus. |
|
Elaeocarpus presikkimensis[45] |
Sp. nov |
In press |
Liu et al. |
Miocene |
Erzitang Formation |
China |
A species of Elaeocarpus. |
Poales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Monoporopollenites scabratus[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen produced by members of the family Poaceae. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Rhizomatites[46] |
Gen. et sp. nov |
In press |
Robledo & Anzótegui in Robledo et al. |
Miocene-Pliocene |
Argentina |
A member of Cyperaceae. Genus includes new species R. cyperoides. |
Proteales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Banksia microphylla[47] |
Sp. nov |
Valid |
Carpenter in Carpenter & Milne |
Late Eocene |
Australia |
A species of Banksia. |
||
Sp. nov |
Valid |
Milne in Carpenter & Milne |
Late Eocene |
Australia |
A Banksia-like pollen. |
|||
Platanus emryi[48] |
Sp. nov |
Valid |
Huegele, Spielbauer & Manchester |
Miocene |
United States |
A species of Platanus. |
Ranunculales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Cissampelos defranceschii[49] |
Sp. nov |
Valid |
Del Rio & Su in Del Rio et al. |
Middle Eocene |
Niubao Formation |
China |
A species of Cissampelos. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Clematis csabae[13] |
Sp. nov |
Valid |
Hably |
Miocene |
Hungary |
A species of Clematis. |
||
Diploclisia praeaffinis[50] |
Sp. nov |
Valid |
Jia et al. |
Late Miocene |
China |
A member of the family Menispermaceae. Announced in 2020; the final version of the article naming it was published in 2021. |
||
Menispermites bangorensis[49] |
Sp. nov |
Valid |
Huang in Del Rio et al. |
Middle Eocene |
Niubao Formation |
China |
A member of the family Menispermaceae. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Menispermites haominae[49] |
Sp. nov |
Valid |
Huang in Del Rio et al. |
Middle Eocene |
Niubao Formation |
China |
A member of the family Menispermaceae. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Menispermites tibetica[49] |
Sp. nov |
Valid |
Huang in Del Rio et al. |
Middle Eocene |
Niubao Formation |
China |
A member of the family Menispermaceae. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Paleoorbicarpum[51] |
Gen. et sp. nov |
Valid |
Han et al. |
Sanshui Basin |
China |
A member of the family Menispermaceae. Genus includes new species P. parvum. |
||
Stephania bangorensis[49] |
Sp. nov |
Valid |
Del Rio & Su in Del Rio et al. |
Middle Eocene |
Niubao Formation |
China |
A species of Stephania. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Stephania geniculata[51] |
Sp. nov |
Valid |
Han et al. |
Sanshui Basin |
China |
A species of Stephania |
||
Stephania ornamenta[51] |
Sp. nov |
Valid |
Han et al. |
Sanshui Basin |
China |
A species of Stephania |
||
Stephania shuangxingii[49] |
Sp. nov |
Valid |
Del Rio & Su in Del Rio et al. |
Middle Eocene |
Niubao Formation |
China |
A species of Stephania. Announced in 2020; the final version of the article naming it was published in 2021. |
Rosales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Berhamniphyllum junrongii[52] |
Sp. nov |
Valid |
Zhou, Wang & Huang in Zhou et al. |
Late Eocene |
Markam Basin |
China |
A member of the family Rhamnaceae |
|
Crataegus pentagynoides[9] |
Sp. nov |
Valid |
Kvaček, Teodoridis & Denk |
Pliocene |
Germany |
A species of Crataegus. Announced in 2019; the final version of the article naming it was published in 2020. |
||
Hemiptelea kryshtofovichii[21] |
Sp. nov |
Valid |
Averyanova & Xing |
Kazakhstan |
A member of the family Ulmaceae. |
|||
Scabrastephanoporites[3] |
Gen. et sp. nov |
Valid |
Smith et al. |
Eocene (Ypresian) |
Mexico |
Pollen of an eudicot, probably a member of the family Ulmaceae or Cannabaceae. Genus includes new species S. variabilis. |
Sapindales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Acer dombeyopsis[9] |
Sp. nov |
Valid |
Kvaček, Teodoridis & Denk |
Pliocene |
Germany |
A maple. Announced in 2019; the final version of the article naming it was published in 2020. |
||
Acer viburnoides[9] |
Sp. nov |
Valid |
Kvaček, Teodoridis & Denk |
Pliocene |
Germany |
A maple. Announced in 2019; the final version of the article naming it was published in 2020. |
||
Acer vitiforme[9] |
Sp. nov |
Valid |
Kvaček, Teodoridis & Denk |
Pliocene |
Germany |
A maple. Announced in 2019; the final version of the article naming it was published in 2020. |
||
Brosipollis reticulatus[3] |
Sp. nov |
Valid |
Smith et al. |
Eocene (Ypresian) |
Mexico |
Pollen of a flowering plant, probably a member of the family Burseraceae. |
||
Choerospondias fujianensis[53] |
Sp. nov |
In press |
Wang et al. |
Miocene |
China |
A species of Choerospondias. |
||
Llanodelacruzoxylon[54] | Gen. et sp. nov | Rodríguez-Reyes, Estrada-Ruiz & Gasson | Oligocene–Miocene | Santiago Formation | Panama | A member of the family Anacardiaceae. Genus includes new species L. sandovalii. | ||
Manchestercarpa[55] |
Gen. et sp. nov |
Valid |
Atkinson |
Canada |
A member of the family Meliaceae described on the basis of a fossil fruit. Genus includes new species M. vancouverensis. |
|||
Parametopioxylon[56] |
Gen. et sp. nov |
Valid |
Franco et al. |
Miocene |
Argentina |
A member of the family Anacardiaceae described on the basis of fossil wood. Genus includes new species P. crystalliferum. |
||
Psilastephanocolporites hammenii[3] |
Sp. nov |
Valid |
Smith et al. |
Eocene (Ypresian) |
Mexico |
Pollen of a flowering plant, probably a member of the family Meliaceae |
||
Quinquala[57] |
Gen. et sp. nov |
Valid |
Manchester & Disney in Manchester, Disney & Pham |
Clarno Formation |
United States |
A fossil fruit with affinities with the Rutaceae. Genus includes new species Q. obovata. |
||
Rousea cavitata[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Announced in 2020; the final version of the article naming it was published in 2021. |
Saxifragales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Corylopsis grisea[58] |
Sp. nov |
Valid |
Quirk & Hermsen |
Early Pliocene |
Gray Fossil Site |
United States |
A species of Corylopsis. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Itea polyneura[59] |
Sp. nov |
In press |
Huang & Tian in Tian et al. |
Huazhige Formation |
China |
A species of Itea. |
||
Protoaltingia[60] |
Gen. et sp. nov |
Valid |
Scharfstein, Stockey & Rothwell |
Canada |
A member of the family Altingiaceae. Genus includes new species P. comoxense. |
Solanales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Physalis hunickenii[61] |
Sp. nov |
Valid |
Deanna, Wilf & Gandolfo |
Early Eocene |
Argentina |
A species of Physalis. |
Trochodendrales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Eotrochion[62] |
Gen. et sp. nov |
Valid |
Manchester, Kvaček & Judd |
United States |
A member of the family Trochodendraceae. Genus includes new species E. polystylum. Announced in 2020; the final version of the article naming it was published in 2021. |
|||
Gen. et comb. nov |
Valid |
Manchester, Kvaček & Judd |
United States |
A Trochodendraceae; a new genus for "Concavistylon" wehrii Manchester et al. (2018). Announced in 2020; the final version of the article naming it was published in 2021. |
||||
Trochodendron infernense[62] |
Sp. nov |
Valid |
Manchester, Kvaček & Judd |
Paleocene |
United States |
A species of Trochodendron. Announced in 2020; the final version of the article naming it was published in 2021. |
Vitales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Yua jiangxiensis[63] |
Sp. nov |
Valid |
He & Wang |
Miocene |
Toupi Formation |
China |
A species of Yua. Announced in 2020; the final version of the article naming it was published in 2021. |
Other angiosperms
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Aextoxicoxylon kawasianus[64] |
Sp. nov |
Valid |
Vera et al. |
Puntudo Chico Formation |
Argentina |
A fossil dicot wood |
||
Atlantocarpus[65] |
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Potomac Group |
Portugal |
An early flowering plant, possibly related to the group Austrobaileyales. Genus includes new species A. virginiensis. |
||
Carpolithes gergoei[13] |
Sp. nov |
Valid |
Hably & Erdei in Hably |
Miocene |
Hungary |
A fossil fruit of a flowering plant of uncertain phylogenetic placement. |
||
Catanthus[66] |
Gen. et sp. nov |
In press |
Friis, Crane & Pedersen |
Portugal |
An early flowering plant. Genus includes new species C. dolichostemon. |
|||
Cavilignum[67] |
Gen. et sp. nov |
Valid |
Siegert & Hermsen |
Early Pliocene |
Gray Fossil Site |
United States |
A flowering plant of uncertain phylogenetic placement, described on the basis of fossil endocarps. Genus includes new species C. pratchettii. |
|
Chainandra[68] |
Gen. et sp. nov |
Valid |
Poinar & Chambers |
Late Cretaceous (Cenomanian) |
Burmese amber |
Myanmar |
Genus includes new species C. zeugostylus. |
|
Cichoreacidites? flammulatus[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Crotonoidaepollenites echinatus[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Cyathitepala[69] |
Gen. et sp. nov |
Valid |
Poinar & Chambers |
Late Cretaceous (Cenomanian) |
Burmese amber |
Myanmar |
Genus includes new species C. papillosa. |
|
Dasykothon[70] |
Gen. et sp. nov |
Valid |
Poinar & Chambers |
Myanmar |
A flowering plant of uncertain phylogenetic placement, possibly a member of Laurales. Genus includes new species D. leptomiscus. |
|||
Dinganthus[71] |
Gen. et sp. nov |
Valid |
Liu et al. |
Miocene |
Dominican Republic |
A eudicot of uncertain phylogenetic placement. Genus includes new species D. pentamera. |
||
Echistephanoporites annulatus[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Eofructus[72] |
Gen. et sp. nov |
Valid |
Han & Wang |
China |
An infructescence including a central axis and five fruits resembling Liaoningfructus. Genus includes new species E. liutiaogouensis. |
|||
Foveotricolporites crassus[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Inaperturopollenites microechinatus[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Ladakhipollenites carmoi[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Lambertiflora[65] |
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (Albian) |
Potomac Group |
United States |
An early flowering plant, possibly related to the group Austrobaileyales. Genus includes new species L. elegans. |
|
Malvacipolloides diversus[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Malvacipolloides echibaculatus[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Malvacipolloides romeroae[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Menatanthus[73] |
Gen. et sp. nov |
Valid |
Uhl, Paudayal & El Atfy in Uhl et al. |
France |
A eudicot of uncertain phylogenetic placement. Genus includes new species M mosbruggeri. Announced in 2020; the final version of the article naming it was published in 2021. |
|||
Mugideiriflora[65] |
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (Aptian-early Albian) |
Almargem Formation |
Portugal |
An early flowering plant, possibly related to the group Austrobaileyales. Genus includes new species M. portugallica. |
|
Phantophlebia[74] |
Gen. et sp. nov |
Valid |
Poinar & Chambers |
Late Cretaceous (Cenomanian) |
Burmese amber |
Myanmar |
A flowering plant of uncertain phylogenetic placement, possibly related to myrsinoid members of the family Primulaceae. Genus includes new species P. dicycla. |
|
Platanites willigeri[75] |
Sp. nov |
Valid |
Halamski & Kvaček in Halamski et al. |
Czerna Formation |
Poland |
Trifoliolate platanoid leaves. |
||
Psilaperiporites delicatus[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Psilaperiporites lunaris[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Ranunculacidites reticulatus[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Rasenganus[76] |
Gen. et sp. nov |
Valid |
Xing & Gu |
Myanmar |
A possible epizoochorous fruit. Genus includes new species R. auricularus. |
|||
Retibrevitricolpites microreticulatus[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Retibrevitricolporites costaporus[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Retibrevitricolporites? toigoae[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Retipollenites solimoensis[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Retitriporites crassoreticulatus[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Rhoipites alfredii[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pollen of a flowering plant. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Singpuria[77] |
Gen. et sp. nov |
Valid |
Ramteke, Manchester & Nagrale in Ramteke et al. |
Late Cretaceous (Maastrichtian) |
Deccan Intertrappean Beds |
India |
A member of Pentapetalae of uncertain phylogenetic placement. Genus includes new species S. kapgatei. |
|
Sinoherba[78] |
Gen. et sp. nov |
Valid |
Liu & Wang in Liu, Chen & Wang |
China |
An early monocot. Genus includes new species S. ningchengensis. Announced in 2020; the final version of the article naming it was published in 2021. |
|||
Varifructus[79] |
Gen. et sp. nov |
In press |
Liu et al. |
China |
An early flowering plant. Genus includes new species V. lingyuanensis. |
|||
Wireroadia[80] |
Gen. et sp. et comb. nov |
Valid |
Zhang et al. |
United States |
A winged fruit of a eudicot of uncertain phylogenetic placement. Genus includes new species W. viccallii, as well as W. major (Hollick). |
Pinales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Agathis ledongensis[81] |
Sp. nov |
Valid |
Oskolski et al. |
Late Oligocene–early Miocene |
Qiutangling Formation |
China |
A species of Agathis |
|
Sp. nov |
Valid |
Gnaedinger & Zavattieri |
Chihuido Formation |
Argentina |
||||
Araucaria cuneoi[83] |
Sp. nov |
Valid |
Noll & Kunzmann |
Middle Jurassic |
Argentina |
A species of Araucaria. |
||
Araucaria famii[84] |
Sp. nov |
Valid |
Stockey & Rothwell |
Late Cretaceous (Campanian) |
Canada |
A species of Araucaria. |
||
Araucaria fildesensis[85] |
Sp. nov |
Valid |
Shi et al. |
Fossil Hill Formation |
Antarctica |
A species of Araucaria |
||
Araucaria huncoensis[86] |
Sp. nov |
Valid |
Rossetto‐Harris in Rossetto‐Harris et al. |
Early Eocene |
Argentina |
A species of Araucaria. |
||
Araucaria stockeyana[83] |
Sp. nov |
Valid |
Noll & Kunzmann |
Middle Jurassic |
Argentina |
A species of Araucaria. |
||
Araucarites pachacuteci[87] | Sp. nov |
In press |
Martínez in Martínez et al. |
Huancané Formation |
Peru |
A member of the family Araucariaceae |
||
Brachyoxylon zhouii[88] |
Sp. nov |
Valid |
Jiang et al. |
Guantou Formation |
China |
A conifer wood. Announced in 2020; the final version of the article naming it was published in 2021. |
||
Brachyphyllum sattlerae[89] | Sp. nov | Valid | Batista et al. | Early Cretaceous (Aptian) | Crato Formation | Brazil | A member of the family Pinidae. | |
Callialastrobus[90] |
Gen. et sp. nov |
In press |
Kvaček & Mendes |
Early Cretaceous (late Aptian–early Albian) |
Lusitanian Basin |
Portugal |
A pollen cone of a member of Araucariaceae. Genus includes new species C. sousai. |
|
Cedrus anatolica[91] |
Sp. nov |
Valid |
Akkemik |
Early Miocene |
Hançili Formation |
Turkey |
A species of Cedrus. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Circoporoxylon tibetense[92] |
Sp. nov |
In press |
Xia et al. |
Middle Jurassic (Callovian) |
Xiali Formation |
China |
Possibly a member of the family Podocarpaceae. |
|
Comoxostrobus[93] |
Gen. et sp. nov |
Valid |
Stockey, Rothwell & Atkinson |
Late Cretaceous (early Coniacian) |
Canada |
A member of the family Cupressaceae belonging to the subfamily Taiwanioideae. Genus includes new species C. rossii. |
||
Cupressinoxylon klimovii[94] |
Nom. nov |
Valid |
Blokhina |
Miocene |
Russia |
A member of the family Cupressaceae; a replacement name for Cupressinoxylon biotoides Blokhina (1989). |
||
Cupressinoxylon llantenesense[82] |
Sp. nov |
Valid |
Gnaedinger & Zavattieri |
Llantenes Formation |
Argentina |
|||
Cupressinoxylon manuelii[95] | Sp. nov | In press | Ríos-Santos, Cevallos-Ferriz & Pujana | Late Cretaceous (Campanian-Maastrichtian) | Cabullona Group | Mexico | ||
Ductoagathoxylon wangii[96] |
Sp. nov |
In press |
Gou & Feng in Gou et al. |
Middle Jurassic |
Xishanyao Formation |
China |
A conifer stem. |
|
Friisia[97] |
Gen. et sp. nov |
In press |
Mendes & Kvaček |
Early Cretaceous (late Aptian – early Albian) |
Lusitanian Basin |
Portugal |
An ovuliferous cone of a member of the family Podocarpaceae. Genus includes new species F. lusitanica. |
|
Juniperoxylon acarcaea[98] |
Sp. nov |
In press |
Akkemik |
Early Miocene |
Hançili Formation |
Turkey |
A member of the family Cupressaceae. |
|
Lesbosoxylon kemaliyensis[99] |
Sp. nov |
Valid |
Akkemik & Mantzouka in Akkemik, Mantzouka & Kıran Yıldırım |
Miocene |
Divriği Formation |
Turkey |
A member of the family Pinaceae. |
|
Marskea cuspidata[100] |
Sp. nov |
Valid |
Frolov & Mashchuk |
Middle Jurassic |
Prisayan Formation |
Russia |
A member of the family Taxaceae. |
|
Mukawastrobus[101] |
Gen. et sp. nov |
Valid |
Stockey, Nishida & Rothwell |
Late Cretaceous (late Campanian—early Maastrichtian) |
Japan |
A member of the family Cupressaceae belonging to the subfamily Taiwanioideae. Genus includes new species M. satoi. |
||
Piceoxylon yumeniense[102] |
Sp. nov |
Valid |
Zhou, Peng, Deng, Zhang & Yang in Zhou et al. |
Early Cretaceous |
China |
Fossil wood of a member of the family Pinaceae. Announced in 2020; the final version of the article naming it was published in 2021. |
||
Pinuxylon selmeierianum[103] |
Sp. nov |
Valid |
Dolezych & Reinhardt |
Eureka Sound Group |
Canada |
A member of the family Pinaceae described on the basis of fossil wood |
||
Protophyllocladoxylon chijinense[102] |
Sp. nov |
Valid |
Zhou, Peng, Deng, Zhang & Yang in Zhou et al. |
Early Cretaceous |
Xiagou Formation |
China |
Announced in 2020; the final version of the article naming it was published in 2021. |
|
Tsuga asiatica[104] |
Sp. nov |
Valid |
Wu & Zhou in Wu et al. |
Late Paleogene |
China |
A species of Tsuga. Announced in 2019; the final version of the article naming it was published in 2020. |
Other seed plants
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Amyelon turpanense[105] |
Sp. nov |
In press |
Shi, Yu & Sun |
Permian (Lopingian) |
Wutonggou |
China |
A root of a member of Cordaitales |
|
Androstrobus obovatus[106] |
Sp. nov |
In press |
Bodnar et al. |
Potrerillos Formation |
Argentina |
A member of Cycadales. |
||
Araripestrobus[107] |
Gen. et sp. nov |
Valid |
Seyfullah, Roberts, Schmidt & Kunzmann in Seyfullah et al. |
Brazil |
A seed plant belonging to the group Erdtmanithecales. Genus includes new species A. resinosus. |
|||
Archaeopetalanthus[108] |
Gen. et sp. nov |
Valid |
Naugolnykh |
Listvjanskaya |
Russia |
A member of Pinophyta belonging to the group Vojnovskyales. Genus includes new species A. progressus. |
||
Battenispermum[109] |
Gen. et sp. nov |
In press |
Mendes, Pedersen & Friis |
Portugal |
A seed plant belonging to the informal grouping Bennettitales-Erdtmanithecales-Gnetales. Genus includes new species B. hirsutum. |
|||
Carpolithus volantus[110] |
Sp. nov |
Valid |
Gómez et al. |
Argentina |
A fossil seed, possibly produced by a member of Gnetales. |
|||
Ductolobatopitys[111] |
Gen. et sp. nov |
Valid |
Conceição & Crisafulli in Conceição et al. |
Pedra de Fogo Formation |
Brazil |
A gymnosperm described on the basis of fossil wood. Genus includes new species D. mussae. |
||
Filigigantopteris[112] |
Gen. et 2 sp. nov |
In press |
Zhou et al. |
Late Permian |
Nayixiong Formation |
China |
A gigantopterid. Genus includes new species F. asymmetrica and F. dahaia. |
|
Ginkgo pediculata[113] |
Sp. nov |
In press |
Deng, Yang & Zhou |
Early Cretaceous |
China |
A species of Ginkgo. |
||
Jianchangia[114] |
Gen. et sp. nov |
Valid |
Yang, Wang & Ferguson |
China |
A member of Ephedraceae. Genus includes new species J. verticillata. |
|||
Johniphyllum[115] |
Gen. et sp. nov |
Valid |
Looy & Duijnstee |
United States |
A member of Voltziales. Genus includes new species J. multinerve. |
|||
Jordaniopteris[116] |
Gen. et comb. nov |
Valid |
Anderson in Anderson et al. |
Um Irna Formation |
Jordan |
A seed fern. A new genus for "Dicroidium" irnensis Abu Hamad et al. (2008); genus also includes "Dicroidium" jordanensis Abu Hamad et al. (2008), "Dicroidium" robustum Kerp & Vörding (2008) and "Dicroidium" bandelii Abu Hamad et al. (2017). |
||
Sp. nov |
Valid |
Conceição, Neregato & Iannuzzi in Conceição et al. |
Permian (Cisuralian) |
Pedra de Fogo Formation |
Brazil |
A conifer described on the basis of fossil wood. |
||
Sp. nov |
Valid |
Čepičková & Kvaček |
Peruc-Korycany Formation |
Czech Republic |
A cycad. |
|||
Novaiorquepitys[118] |
Gen. et sp. nov |
In press |
Conceição & Crisafulli in Conceição et al. |
Permian (Cisuralian) |
Pedra de Fogo Formation |
Brazil |
A gymnosperm stem. Genus includes new species N. maranhensis Conceição, Neregato & Iannuzzi. |
|
Ovalocarpus butmanii[119] |
Sp. nov |
Valid |
Naugolnykh & Linkevich |
A member of Ginkgoales belonging to the family Cheirocladaceae. |
||||
Palaeocupressinoxylon[120] |
Gen. et sp. nov |
In press |
Wan, Yang & Wang |
Late Permian |
Turpan–Hami Basin |
China |
A silicified gymnospermous fossil wood. Genus includes new species P. uniseriale. |
|
Phoenicopsis anadyrensis[121] |
Sp. nov |
Valid |
Nosova in Zolina et al. |
Late Cretaceous–Paleocene (Maastrichtian–Danian) |
Rarytkin |
A member of Czekanowskiales | ||
Pseudovoltzia sapflorensis[115] |
Sp. nov |
Valid |
Looy & Duijnstee |
United States |
A member of Voltziales |
|||
Pterostoma neehoffii[122] |
Sp. nov |
Valid |
Conran et al. |
Middle Miocene |
New Zealand |
A cycad |
||
Sp. nov |
In press |
Blomenkemper et al. |
Late Permian |
Jordan |
A pollen organ of a seed fern |
|||
Pteruchus lepidus[123] |
Sp. nov |
In press |
Blomenkemper et al. |
Jordan |
A pollen organ of a seed fern |
|||
Sp. nov |
Valid |
Hua & Sun in Hua et al. |
Early Permian |
China |
A seed fossil. Announced in 2019; the final version of the article naming was published in 2020. |
|||
Sp. nov |
In press |
Nosova |
Middle Jurassic |
Angren Formation |
Uzbekistan |
|||
Umaltolepis sogdianica[125] |
Sp. nov |
In press |
Nosova |
Middle Jurassic |
Angren Formation |
Uzbekistan |
||
Sp. nov |
In press |
Blomenkemper et al. |
Jordan |
A cupulate structure of a seed fern |
||||
Wantus[115] |
Gen. et sp. nov |
Valid |
Looy & Duijnstee |
United States |
A member of Voltziales. Genus includes new species W. acaulis. |
|||
Wudaeophyton[126] |
Gen. et sp. nov |
Valid |
Pšenička et al. |
Early Permian |
Taiyuan Formation |
China |
A small vine, most similar to pteridosperms from the group Callistophytales. Genus includes new species W. wangii. |
|
Yangopteris[127] |
Gen. et comb. nov |
In press |
Zhou et al. |
China |
A seed fern; a new genus for "Alethopteris" ascendens Halle. |
|||
Yvyrapitys[118] |
Gen. et sp. nov |
In press |
Conceição & Crisafulli in Conceição et al. |
Permian (Cisuralian) |
Pedra de Fogo Formation |
Brazil |
A gymnosperm stem. Genus includes new species Y. novaiorquensis Conceição, Neregato & Iannuzzi. |
Other plants
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Correia et al. |
Carboniferous (Gzhelian) |
Portugal |
||||
Blasiites huolinhensis[129] |
Sp. nov |
In press |
Li et al. |
Huolinhe Formation |
China |
A liverwort belonging to the family Blasiaceae. |
||
Botryopteris multifolia[130] |
Sp. nov |
In press |
He et al. |
Permian (Lopingian) |
Junlian Formation |
China |
A fern |
|
Birisia mandshurica[131] |
Sp. nov |
Valid |
Golovneva, Grabovskiy & Zolina |
Early Cretaceous (Albian) |
Frentsevka Formation |
A fern belonging to the family Dicksoniaceae. |
||
Sp. nov |
Valid |
Thomas |
Carboniferous (Pennsylvanian) |
United Kingdom |
||||
Catenuporella[133] |
Gen. et sp. nov |
Valid |
Zhang et al. |
Late Ordovician |
Ordos Basin |
China |
A green alga belonging to the group Dasycladales. Genus includes new species C. gigantia. |
|
Charaxis spicatus[134] |
emend. nov. |
Valid |
Pérez-Cano, Bover-Arnal et Martín-Closas in Pérez-Cano et al. |
Barremian |
Maestrat Basin |
Spain |
Thallus of Echinochara lazarii. Both taxa has been firstly found anatomically attached |
|
Chlamydomonas hanublikanus[135] |
Sp. nov |
Vršanská & Hinkelman |
Myanmar |
A species of Chlamydomonas |
||||
Circinites[46] |
Gen. et sp. nov |
In press |
Robledo & Anzótegui in Robledo et al. |
Miocene-Pliocene |
Argentina |
A fern belonging to the family Pteridaceae. Genus includes new species C. pteridoides. |
||
Clavatisporites cenomaniana[136] |
Sp. nov |
Valid |
Santamarina in Santamarina et al. |
Argentina |
Spores of a member of Filicopsida of uncertain phylogenetic placement. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020. |
|||
Clavator calcitrapus var. jiangluoensis[134] |
comb. nov |
Valid |
Pérez-Cano, Bover-Arnal et Martín-Closas in Pérez-Cano et al. |
Barremian |
Maestrat Basin |
Spain |
Clavatoracean species. |
|
Collarecodium? nezpercae[137] | Sp. nov | Valid | Bucur & Rigaud in Bucur et al. | Late Triassic (Norian) | United States ( Idaho) |
A green alga belonging to the group Bryopsidales and possibly to the family Udoteaceae. | ||
Collarisporites minor[136] |
Sp. nov |
Valid |
Santamarina in Santamarina et al. |
Argentina |
Spores of a member of Filicopsida of uncertain phylogenetic placement. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020. |
|||
Sp. nov |
Valid |
Yuan & Sun in Yuan et al. |
Middle Jurassic |
Xishanyao Formation |
China |
|||
Dimicheleodendron[139] |
Gen. et comb. nov |
Valid |
Thomas & Cleal |
Carboniferous |
United Kingdom |
A lycophyte; a new genus for "Lepidodendron" hickii. |
||
Drynaria diplosticha[140] |
Sp. nov |
Valid |
Yu & Xie in Yu et al. |
Late Miocene |
Bangmai Formation |
China |
A fern belonging to the family Polypodiaceae. |
|
Echinochara lazarii[134] |
comb. nov |
Valid |
Pérez-Cano, Bover-Arnal et MArtín-Closas in Pérez-Cano et al. |
Barremian |
Maestrat Basin |
Spain |
A member of Clavatoraceans. |
|
Equicalastrobus pusillus[141] |
Sp. nov |
Valid |
Zhang & Yan in Zhang et al. |
Baojishan Basin |
China |
A member of Equisetales. Announced in 2020; the final version of the article naming was published in 2021. |
||
Equisetum yenbaiense[142] |
Sp. nov |
Valid |
Aung et al. |
Late Miocene |
Vietnam |
A species of Equisetum |
||
Equisetum yongpingense[142] |
Sp. nov |
Valid |
Aung et al. |
Late Pliocene |
Sanying Formation |
Vietnam |
A species of Equisetum |
|
Filippoporella[143] | Gen. et sp. nov | In press | Sokač & Grgasović | Early Paleocene | Croatia | A green alga belonging to the group Dasycladales. Genus includes new species F. barattoloi. | ||
Frullania partita[144] |
Sp. nov |
Valid |
Li et al. |
Myanmar |
||||
Frullania vanae[145] |
Sp. nov |
Valid |
Mamontov et al. |
Eocene |
Ukraine |
A liverwort, a species of Frullania |
||
Gippslandites[146] |
Gen. et sp. nov |
Valid |
McSweeney, Shimeta & Buckeridge |
Australia |
A member of Zosterophyllaceae. Genus includes new species G. minutus. |
|||
Gmujij[147] | Gen. et sp. nov | Valid | Pfeiler & Tomescu | Devonian (Emsian) | Battery Point | Canada ( Quebec) |
An early euphyllophyte. Genus includes new species G. tetraxylopteroides. Announced in 2020; the final version of the article naming it was published in 2021. | |
Griphoporella minuta[137] | Sp. nov | Valid | Bucur & Peybernes in Bucur et al. | Late Triassic | Japan | A green alga belonging to the group Dasycladales and the family Triploporellaceae. | ||
Hansopteris[148] | Gen. et sp. nov | In press | Zhou et al. | Permian (Asselian) | China | An anachoropterid fern. Genus includes new species H. uncinatus. | ||
Holosporella magna[137] | Sp. nov | Valid | Bucur & Fucelli in Bucur et al. | Late Triassic (Norian) | United States ( Nevada) |
A green alga belonging to the group Dasycladales and the family Triploporellaceae. | ||
Holosporella? rossanae[137] | Sp. nov | Valid | Bucur & Del Piero in Bucur et al. | Late Triassic (Norian) | Canada ( Yukon) |
A green alga belonging to the group Dasycladales and the family Triploporellaceae. | ||
Inocladus[149] |
Gen. et comb. nov |
Valid |
LoDuca et al. |
United States |
An alga related to the group Bryopsidales. Genus includes "Buthotrephis" divaricata White (1901), "B." newlini White (1901), "B." lesquereuxi Grote & Pitt (1876) and "Chondrites" verus Ruedemann (1925). Announced in 2020; the final version of the article naming it was published in 2021. |
|||
Intermurella ordosensis[133] |
Sp. nov |
Valid |
Zhang et al. |
Late Ordovician |
Ordos Basin |
China |
A green alga belonging to the group Dasycladales. |
|
Jurafructus[150] |
Gen. et sp. nov |
Valid |
Chen et al. |
Middle−Late Jurassic |
Jiulongshan Formation |
China |
A plant of uncertain phylogenetic placement, possibly a flowering plant described on the basis of a probable fossil drupe. Genus includes new species J. daohugouensis. |
|
Keraphyton[151] |
Gen. et sp. nov |
Valid |
Champreux, Meyer-Berthaud & Decombeix |
Mandowa Mudstone Formation |
Australia |
A member of Iridopteridales of uncertain phylogenetic placement. Genus includes new species K. mawsoniae. |
||
Khasurtya[152] |
Gen. et sp. nov |
Valid |
Mamontov in Kopylov et al. |
Early Cretaceous |
Russia |
A liverwort belonging to the group Marchantiidae. Genus includes new species K. ginkgoides. |
||
Sp. nov |
Valid |
Mosseichik |
Carboniferous (Viséan) |
Russia |
||||
Lobatannularia linjiaensis[154] |
Sp. nov |
Valid |
Xu et al. |
Linjia Formation |
China |
A member of Equisetales. |
||
Lygodium sanshuiense[155] |
Sp. nov |
Valid |
Naugolnykh et al. |
Buxin Formation |
China |
A species of Lygodium. Announced in 2019; the final version of the article naming it was published in 2020. |
||
Sp. nov |
Valid |
Katagiri in Katagiri & Shinden |
Late Cretaceous (Santonian) |
Tamagawa Formation |
Japan |
A liverwort. |
||
Munieria martinclosasi[134] |
comb. nov. |
Valid |
Pérez-Cano, Bover-Arnal et Martín-Closas in Pérez-Cano et al. |
Barremian |
Lebanon |
Clavatoracean thallus. Formerly known as Charaxis martinclosasi |
||
Neoarthropitys[157] | Gen. et sp. nov | In press | Gnaedinger et al. | Middle Triassic | Quebrada de los Fósiles | Argentina | A member of Equisetales. Genus includes new species N. gondwanaensis. | |
Osmundacaulis asiatica[158] |
Sp. nov |
Valid |
Cheng et al. |
China |
A member of the family Osmundaceae |
|||
Osmundacaulis sinica[158] |
Sp. nov |
Valid |
Cheng et al. |
China |
A member of the family Osmundaceae |
|||
Ovoidites circumplicatus[159] |
Sp. nov |
Valid |
Zavattieri, Gutiérrez & Monti |
Quebrada de los Fósiles Formation |
Argentina |
A green alga belonging to the group Zygnematales. |
||
Ovoidites tripartitus[159] |
Sp. nov |
Valid |
Zavattieri, Gutiérrez & Monti |
Middle Triassic |
Quebrada de los Fósiles Formation |
Argentina |
A green alga belonging to the group Zygnematales. |
|
Palaeostachya guanglongii[160] |
Sp. nov |
In press |
Liu et al. |
Permian (Asselian) |
Taiyuan Formation |
China |
A member of the family Calamitaceae. |
|
Parazosterophyllum[146] |
Gen. et sp. nov |
Valid |
McSweeney, Shimeta & Buckeridge |
Late Silurian–early Devonian |
Australia |
A member of Zosterophyllaceae. Genus includes new species P. timsiae. |
||
Patruliuspora oregonica[137] | Sp. nov | Valid | Bucur & Rigaud in Bucur et al. | Late Triassic (Norian) | United States ( Oregon) |
A green alga belonging to the group Dasycladales and the family Polyphysaceae. | ||
Patruliuspora pacifica[137] | Sp. nov | Valid | Bucur, Del Piero & Peyrotty in Bucur et al. | Late Triassic (Norian) | Canada ( Yukon) |
A green alga belonging to the group Dasycladales and the family Polyphysaceae. | ||
Pellites hamiensis[161] | Sp. nov | Valid | Li et al. | Middle Jurassic | Xishanyao | China | A liverwort belonging to the family Pelliaceae. | |
Plenasium (Aurealcaulis) elegans[162] |
Sp. nov |
In press |
Hiller et al. |
Na Duong Formation |
Vietnam |
A member of Osmundaceae |
||
Sp. nov |
Valid |
Zhang & Wang in Zhang et al. |
Linjia |
China |
||||
Polycingulatisporites multiverrucata[136] |
Sp. nov |
Valid |
Santamarina in Santamarina et al. |
Argentina |
Spores of a member of Bryophyta of uncertain phylogenetic placement, possibly of sphagnaceous affinity. Announced in 2019; the final version of the article naming it was published in 2020. |
|||
Polypodiisporites minutiverrucatus[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pteridophyte spore. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Polysporia baetica[164] |
Sp. nov |
In press |
Álvarez-Vázquez, Bek & Drábková |
Carboniferous (Pennsylvanian) |
Peñarroya-Belmez-Espiel Coalfield |
Spain |
A member of Isoetales |
|
Polystichum pacltovae[165] |
Sp. nov |
Valid |
Kvaček in Kvaček & Teodoridis |
Czech Republic |
A fern, a species of Polystichum |
|||
Proodontosoria[166] |
Gen. et sp. nov |
Valid |
Li et al. |
Myanmar |
A fern belonging to the family Lindsaeaceae. Genus includes new species P. myanmarensis. |
|||
Proterocladus antiquus[167] |
Sp. nov |
Valid |
Tang et al. |
Mesoproterozoic |
Nanfen |
China |
An early siphonocladalean chlorophyte |
|
Psilatriletes cozzuolii[10] |
Sp. nov |
Valid |
Rabelo Leite, Ferreira da Silva-Caminha & D’Apolito |
Miocene |
Solimões Basin |
Brazil |
Pteridophyte spore. Announced in 2020; the final version of the article naming it was published in 2021. |
|
Psilochara monevaensis[168] |
Sp. nov |
Valid |
Sanjuan & Soulié-Märsche |
Middle Miocene |
Spain |
A charophyte. |
||
Qianshouia[169] |
Gen. et sp. nov |
Valid |
Huang et al. |
Late Devonian |
Wutong Formation |
China |
A plant of uncertain phylogenetic placement, possibly a lycopsid or a sphenopsid. Genus includes new species Q. mira. |
|
Scolecopteris minuta[170] |
Sp. nov |
In press |
Wan et al. |
Early Permian |
Taiyuan Formation |
China |
A fern belonging to the group Marattiales. |
|
Sp. nov |
In press |
D'Antonio, Boyce & Wang |
China |
|||||
Sp. nov |
In press |
D'Antonio, Boyce & Wang |
China |
|||||
Sphaerochara miocenica[168] |
Sp. nov |
Valid |
Sanjuan & Soulié-Märsche |
Miocene |
Lebanon |
A charophyte. |
||
Thyrsopteris cretacea[172] |
Sp. nov |
Valid |
Li et al. |
Myanmar |
A species of Thyrsopteris |
|||
Sp. nov |
Valid |
Feng in Feng et al. |
Early Triassic (Induan) |
Kayitou Formation |
China |
A member of the family Isoetaceae. |
||
Tumidopteris astra[174] |
Sp. nov |
Valid |
Naugolnykh |
Pechora coal basin |
Russia |
A fern belonging to the family Gleicheniaceae. |
||
Ufadendron elongatum[175] |
Sp. nov |
Valid |
Tang et al. |
Late Permian |
Linxi |
China |
A lycopsid belonging to the family Tomiodendraceae |
|
Uzhurodendron[176] |
Gen. et sp. nov |
Valid |
Mosseichik & Filimonov |
Carboniferous (Tournaisian) |
Bystrianskaya |
A member of Lycopodiopsida. Genus includes new species U. asiaticum. |
||
Zeilleria fosteri[177] |
Sp. nov |
Valid |
Thomas et al. |
Carboniferous (Bashkirian) |
United Kingdom |
A fern |
General research
- A study on the evolutionary history of green plants is published by Nie et al. (2020).[178]
- Description of new fossil material of Yurtusia uniformis from the Cambrian Yanjiahe Formation (China ) and a study on the phylogenetic relationships and possible life cycle of this organism is published by Shang et al. (2020), who consider Y. uniformis to be a likely green microalga.[179]
- A study on the phylogenetic relationships of extant and fossil complex thalloid liverworts (Marchantiidae) is published by Flores et al. (2020).[180]
- Evidence of development of dichotomous roots in euphyllophytes that were extant during the Devonian and Carboniferous periods is presented by Hetherington, Berry & Dolan (2020), who interpret their findings as indicating that dichotomous root branching evolved in both lycophytes and euphyllophytes.[181]
- An early land plant producing multiple spore size classes is described from the Lower Devonian Campbellton Formation (Canada ) by Bonacorsi et al. (2020).[182]
- A study on the impact of the appearance and evolution of herbivorous tetrapods on the evolution of land plants from the Carboniferous to the Early Triassic is published by Brocklehurst, Kammerer & Benson (2020).[183]
- A study on the production of periderm in Late Paleozoic arborescent lycopsids is published by D'Antonio & Boyce (2020), who argue that these lycopsids did not grow from sporelings into large trees through the production of a periderm cylinder, because physiological limitations would have prohibited the production of thick periderm.[184]
- A study on the architecture and development of the Carboniferous arborescent lycopsid Paralycopodites is published by DiMichele & Bateman (2020).[185]
- New information on the anatomy of Weichselia reticulata is presented by Blanco‐Moreno, Decombeix & Prestianni (2020).[186]
- A study on the phylogenetic placement of the extinct fern genus Coniopteris is published by Li et al. (2020).[187]
- New information on the morphology of Paleoazolla patagonica is presented by Benedetti et al. (2020), who evaluate the implications of this taxon for the knowledge of the evolution of water ferns.[188]
- A study aiming to determine which ferns were most likely to be the producers of Cyathidites spores from earliest Paleocene plant localities across western North America, and were most likely to be among the first plants in western North America to thrive in the immediate aftermath of the Cretaceous–Paleogene extinction event, is published by Berry (2020).[189]
- A study on the morphology and development of Genomosperma, and on its implications for the knowledge of the evolutionary origins of seed development, is published by Meade, Plackett & Hilton (2020).[190]
- A pollen organ resembling seed fern pollen organs Dictyothalamus and Melissiotheca is described from the Lopingian Umm Irna Formation (Jordan) by Zavialova et al. (2020), who interpret this finding as evidence of persistence of lyginopterid seed ferns until the late Permian.[191]
- Evidence of increasing atmospheric CO2 concentration at the onset of the end-Triassic extinction event, based on data from fossil leaves of the seed fern Lepidopteris ottonis from southern Sweden, is presented by Slodownik, Vajda & Steinthorsdottir (2020), who confirm L. ottonis as a valid proxy for pCO2 reconstructions.[192]
- A study on the anatomy of the seed cone scales of Krassilovia mongolica is published by Herrera et al. (2020), who argue that K. mongolica and Podozamites harrisii are the seed cones and leaves of the same extinct plant, and name a new family Krassiloviaceae within the order Voltziales.[193]
- A study on the microscopic wood anatomy of a fossil tree trunk of Agathoxylon arizonicum with the characteristic external features of a fire scar from the Upper Triassic Chinle Formation (Petrified Forest National Park, Arizona, United States) is published by Byers et al. (2020), who evaluate the implications of this specimen for the knowledge of the evolution of fire-adapted plant traits.[194]
- A putative bamboo "Chusquea" oxyphylla from the early Eocene Laguna del Hunco biota (Argentina ) is reinterpreted as a conifer by Wilf (2020), who transfers this species to the genus Retrophyllum.[195]
- A study on evolutionary history of conifers as indicated by fossil and molecular data, aiming to determine whether the rise of angiosperms drove the decline of conifers and other gymnosperms, is published by Condamine et al. (2020).[196]
- Presence of secretory tissues is reported in extinct flowers from the Cretaceous amber from Myanmar and Cenozoic Dominican amber (including specimens preserved while in the process of emitting compounds) by Poinar & Poinar (2020).[197]
- Fossil pollen of flowering plants is reported from the Aptian and Albian of Australia by Korasidis & Wagstaff (2020), who evaluate the implications of their findings for the knowledge of the timing of the appearance and diversification of the flowering plants in the high-latitude southern basins of Australia.[198]
- A study on the morphology of palm and palm-like pollen from the Eocene Yaw Formation (Myanmar), and on the implications of these fossils for the knowledge of distribution and diversity of Eocene palms across the globe, is published by Huang et al. (2020).[199]
- Fossils fruits of Illigera eocenica, representing the second fossil occurrence of Illigera worldwide and the first in Asia, are described from the Eocene Niubao Formation (central Tibetan Plateau) by Wang et al. (2020), who evaluate the implications of this finding for the knowledge of the climate in the central Tibetan Plateau during the early middle Eocene, and for the knowledge of the floristic links between Asia and North America during the Paleogene.[200]
- A study on the morphology and phylogenetic relationships of Montsechia vidalii is published by Gomez et al. (2020).[201]
- Eocene leaves of members of the family Urticaceae with stinging trichomes are described from the Okanogan Highlands (British Columbia, Canada ) by DeVore et al. (2020).[202]
- A revision of the fossil record of the family Nothofagaceae from South America is published by Pujana et al. (2020).[203]
- A study on the extinction of plants from south polar terrestrial ecosystems during the Permian–Triassic extinction event and on their recovery after this extinction event, based on data from the Sydney Basin (Australia ), is published by Mays et al. (2020).[204]
- A study on the impact of ecological disturbances around the Permian–Triassic boundary (from the Wuchiapingian to Ladinian) on land plant communities is published by Nowak, Vérard & Kustatscher (2020).[205]
- A study on the age of the Paleogene Kanaka Creek fossil flora (Huntingdon Formation; British Columbia, Canada ) and on its implications for reconstructions of the contemporaneous paleoclimate and paleoenvironment is published by Mathewes, Greenwood & Love (2020).[206]
- Evidence from Eocene plant fossils from the Bangong-Nujiang suture indicating that the Tibetan Plateau area hosted a diverse subtropical ecosystem approximately 47 million years ago and that this area was both low and humid at the time is presented by Su et al. (2020), who also report that the composition of this flora is similar to Early-Middle Eocene floras in both North America and Europe, but shows little affinity to Eocene floras from the Indian Plate.[207]
- A study aiming to estimate leaf dry mass per area in fossil plants from 22 western North American sites spanning the Eocene–Oligocene transition is published online by Butrim & Royer (2020), who evaluate the implications of their findings for the knowledge of the impact of the environmental changes occurring during the Eocene–Oligocene transition on leaf‐economic strategies of plants.[208]
- A study on the Neogene paleobotanical record and climate in the northernmost part of the Central Andean Plateau, based on data from the Descanso Formation (Peru), is published by Martínez et al. (2020), who report the earliest evidence of a puna-like ecosystem in the Pliocene and a montane ecosystem without modern analogs in the Miocene.[209]
- Fossil fruits (mericarps) of the neoendemic Apiaceae Melanoselinum (≡ Daucus) decipiens were reported from the lacustrine and fluvial sediments of Porto da Cruz, Madeira, dated 1.3 Ma, by Góis-Marques et al. 2020.[210] This paper not only reports the oldest Daucus s.l. fossil known to date but also the first fossil evidence of a plant with insular woodiness (see Island gigantism).
- The leaf fossil Mesodescolea plicata from the Early Cretaceous of Patagonia, first interpreted as a cycad with affinities with extant Stangeria, is reinterpreted as an angiosperm leaf with affinities with Austrobaileyales or Chloranthales by Coiro et al. 2020,[211] with implications for the evolution of leaf shape in the early radiation of the angiosperms.
- A study on the phylogenetic relationships of 10 Cretaceous flower taxa (Chloranthistemon endressii, Dakotanthus cordiformis, Kajanthus lusitanicus, Mauldinia mirabilis, Microvictoria svitkoana, Paleoclusia chevalieri, Paradinandra suecica, Spanomera mauldiniensis, Tylerianthus crossmanensis and Virginianthus calycanthoides) is published by Schönenberger et al. (2020).[212]
References
- ↑ Shook Ling Low; Tao Su; Teresa E. V. Spicer; Fei-Xiang Wu; Tao Deng; Yao-Wu Xing; Zhe-Kun Zhou (2020). "Oligocene Limnobiophyllum (Araceae) from the central Tibetan Plateau and its evolutionary and palaeoenvironmental implications". Journal of Systematic Palaeontology 18 (5): 415–431. doi:10.1080/14772019.2019.1611673. Bibcode: 2020JSPal..18..415L.
- ↑ 2.0 2.1 Yuling Na; Jane Blanchard; Hongshan Wang (2020). "Fruits, seeds and flowers from the Puryear clay pit (middle Eocene Cockfield Formation), western Tennessee, USA". Palaeontologia Electronica 23 (3): Article number 23(3):a49. doi:10.26879/1045.
- ↑ 3.0 3.1 3.2 3.3 3.4 Vann Smith; Sophie Warny; David M. Jarzen; Thomas Demchuk; Vivi Vajda; Sean P.S. Gulick (2020). "Paleocene–Eocene palynomorphs from the Chicxulub impact crater, Mexico. Part 2: angiosperm pollen". Palynology 44 (3): 489–519. doi:10.1080/01916122.2019.1705417. Bibcode: 2020Paly...44..489S. http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-4105.
- ↑ Mahasin Ali Khan; Manoshi Hazra; Sumana Mahato; Robert A. Spicer; Kaustav Roy; Taposhi Hazra; Manosij Bandopadhaya; Teresa E.V. Spicer et al. (2020). "A Cretaceous Gondwana origin of the wax palm subfamily (Ceroxyloideae: Arecaceae) and its paleobiogeographic context". Review of Palaeobotany and Palynology 283: Article 104318. doi:10.1016/j.revpalbo.2020.104318. Bibcode: 2020RPaPa.28304318K.
- ↑ Mahasin Ali Khan; Kaustav Roy; Taposhi Hazra; Sumana Mahato; Subir Bera (2020). "A new coryphoid palm from the Maastrichtian-Danian sediments of Madhya Pradesh and its palaeoenvironmental implications". Journal of the Geological Society of India 95 (1): 75–83. doi:10.1007/s12594-020-1388-1. Bibcode: 2020JGSI...95...75K.
- ↑ David Robert Greenwood; John G. Conran (2020). "Fossil coryphoid palms from the Eocene of Vancouver, British Columbia, Canada". International Journal of Plant Sciences 181 (2): 224–240. doi:10.1086/706450.
- ↑ Kaustav Roy; Taposhi Hazra; Manoshi Hazra; Sumana Mahato; Subir Bera; Mahasin Ali Khan (2020). "A new coryphoid costapalmate palm leaf from the Maastrichtian-Danian of India". Botany Letters 168 (2): 155–166. doi:10.1080/23818107.2020.1845974.
- ↑ Patricia Vallati; Andrea De Sosa Tomas; Gabriel Casal (2020). "A Maastrichtian terrestrial palaeoenvironment close to the K/Pg boundary in the Golfo San Jorge basin, Patagonia, Argentina". Journal of South American Earth Sciences 97: Article 102401. doi:10.1016/j.jsames.2019.102401. Bibcode: 2020JSAES..9702401V.
- ↑ 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 Zlatko Kvaček; Vasilis Teodoridis; Thomas Denk (2020). "The Pliocene flora of Frankfurt am Main, Germany: taxonomy, palaeoenvironments and biogeographic affinities". Palaeobiodiversity and Palaeoenvironments 100 (3): 647–703. doi:10.1007/s12549-019-00391-6. Bibcode: 2020PdPe..100..647K.
- ↑ 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 10.12 10.13 10.14 10.15 10.16 10.17 10.18 10.19 10.20 10.21 10.22 10.23 10.24 10.25 10.26 10.27 10.28 10.29 10.30 10.31 10.32 10.33 10.34 10.35 Fátima Praxedes Rabelo Leite; Silane Aparecida Ferreira da Silva-Caminha; Carlos D’Apolito (2020). "New Neogene index pollen and spore taxa from the Solimões Basin (Western Amazonia), Brazil". Palynology 45 (1): 115–141. doi:10.1080/01916122.2020.1758971.
- ↑ M. Laura Pipo; Ari Iglesias; Josefina Bodnar (2020). "A new vesselless angiosperm stem with a cambial variant from the Upper Cretaceous of Antarctica". Acta Palaeontologica Polonica 65 (2): 261–272. doi:10.4202/app.00697.2019.
- ↑ 12.0 12.1 12.2 12.3 Indah B. Huegele; Steven R. Manchester (2020). "An early Paleocene carpoflora from the Denver Basin of Colorado, USA, and its implications for plant-animal interactions and fruit size evolution". International Journal of Plant Sciences 181 (6): 646–665. doi:10.1086/707727.
- ↑ 13.0 13.1 13.2 13.3 Lilla Hably (2020). "The Karpatian (late early Miocene) flora of the Mecsek area". Acta Palaeobotanica 60 (1): 51–122. doi:10.35535/acpa-2020-0003.
- ↑ Thomas Denk; Johannes Martin Bouchal; Pavel Smirnov; Yaroslav Trubin (2020). "Late Oligocene leaf and pollen flora of Southwestern Siberia: taxonomy, biogeography and palaeoenvironments". Historical Biology: An International Journal of Paleobiology 33 (11): 2951–2976. doi:10.1080/08912963.2020.1839064. https://figshare.com/articles/dataset/Late_Oligocene_leaf_and_pollen_flora_of_Southwestern_Siberia_taxonomy_biogeography_and_palaeoenvironments/13365394.
- ↑ Hai Zhu; Steven R. Manchester (2020). "Fruit of Staphylea (Staphyleaceae) from the Oligocene of Montana, USA". Review of Palaeobotany and Palynology 280: Article 104275. doi:10.1016/j.revpalbo.2020.104275. Bibcode: 2020RPaPa.28004275Z.
- ↑ Susanne S. Renner; Viviana D. Barreda; María Cristina Tellería; Luis Palazzesi; Tanja M. Schuster (2020). "Early evolution of Coriariaceae (Cucurbitales) in light of a new early Campanian (ca. 82 Mya) pollen record from Antarctica". Taxon 69 (1): 87–99. doi:10.1002/tax.12203.
- ↑ MacKenzie Allan Smith; Steven R. Manchester (2020). "CT-scans of capsules from the Clarno Formation (Oregon, USA) reveal an extinct Eocene theaceous taxon". Acta Palaeobotanica 60 (2): 251–258. doi:10.35535/acpa-2020-0013.
- ↑ Xiang‐Chuan Li; Steven R. Manchester; Qin Wang; Liang Xiao; Tian‐Long Qi; Yun‐Zhi Yao; Dong Ren; Qiang Yang (2020). "A unique record of Cercis from the late early Miocene of interior Asia and its significance for paleoenvironment and paleophytogeography". Journal of Systematics and Evolution 59 (6): 1321–1338. doi:10.1111/jse.12640.
- ↑ 19.0 19.1 Johanna Baez; Alexandra Crisafulli (2020). "Novelties in the xylotaphoflora from Chiquimil Formation (Miocene), Catamarca-Argentina". Journal of South American Earth Sciences 107: Article 102943. doi:10.1016/j.jsames.2020.102943.
- ↑ 20.0 20.1 Oris J. Rodríguez-Reyes; Emilio Estrada-Ruiz (2020). "Two new reports of ancient rainforest trees from the Azuero Peninsula, Panama". Ameghiniana 57 (3): 209–218. doi:10.5710/AMGH.22.02.2020.3299.
- ↑ 21.0 21.1 21.2 A.L. Averyanova; Yaowu Xing (2020). "New Paleogene angiosperm species of Zaissan Depression (eastern Kazakhstan)". Botanicheskii Zhurnal 105 (1): 46–57. doi:10.31857/S0006813620010044.
- ↑ 22.0 22.1 22.2 22.3 22.4 22.5 22.6 22.7 Xiaoyan Liu; Hanzhang Song; Jianhua Jin (2020). "Diversity of Fagaceae on Hainan Island of South China during the middle Eocene: implications for phytogeography and paleoecology". Frontiers in Ecology and Evolution 8: Article 255. doi:10.3389/fevo.2020.00255.
- ↑ 23.0 23.1 Li Xue; Linbo Jia; Gi-soo Nam; Yongjiang Huang; Shitao Zhang; Yuqing Wang; Zhuo Zhou; Yongsheng Chen (2020). "Involucre fossils of Carpinus, a northern temperate element, from the Miocene of China and the evolution of its species diversity in East Asia". Plant Diversity 42 (3): 155–167. doi:10.1016/j.pld.2020.01.001. PMID 32695948.
- ↑ Anthony L. Swinehart; James O. Farlow (2020). "Plant and invertebrate macrofossils from the Pipe Creek Sinkhole (Late Neogene), Grant County, Indiana". Historical Biology: An International Journal of Paleobiology 33 (11): 3111–3140. doi:10.1080/08912963.2020.1851686.
- ↑ Dimitra Mantzouka; Miroslav Ivanov; Vladimir Bozukov (2020). "The first report of an 'evergreen Castanopsis type' wood (Fagaceae) for the Late Miocene–Early Pliocene of Europe (Bulgaria, Blagoevgrad Graben)". Geological Journal 56 (2): 786–803. doi:10.1002/gj.3919.
- ↑ Cédric Del Rio; Teng‐Xiang Wang; Jia Liu; Shui‐Qing Liang; Robert A. Spicer; Fei‐Xiang Wu; Zhe‐Kun Zhou; Tao Su (2020). "Asclepiadospermum gen. nov., the earliest fossil record of Asclepiadoideae (Apocynaceae) from the early Eocene of central Qinghai‐Tibetan Plateau, and its biogeographic implications". American Journal of Botany 107 (1): 126–138. doi:10.1002/ajb2.1418. PMID 31944266.
- ↑ Cédric Del Rio; Jian Huang; Gregory W. Stull; Rémi Allemand; Zhe‐Kun Zhou; Tao Su (2020). "First macrofossil record of Icacinaceae in East Asia (early Oligocene, Wenshan Basin) and its ecological implications". Journal of Systematics and Evolution 60 (2): 445–455. doi:10.1111/jse.12700.
- ↑ Cédric Del Rio; Dario De Franceschi (2020). "Icacinaceae fossil fruits from three sites of the Paris Basin (early Eocene, France): local diversity and global biogeographic implications". Geodiversitas 42 (2): 17–28. doi:10.5252/geodiversitas2020v42a2. http://sciencepress.mnhn.fr/en/periodiques/geodiversitas/42/fasc1/fruits-fossiles-d-icacinaceae-provenant-de-trois-sites-du-bassin-parisien-debut-eocene-france-diversite-locale-et-implications-biogeographiques.[yes|permanent dead link|dead link}}]
- ↑ Andrew C. Rozefelds; Gregory Stull; Peta Hayes; David R. Greenwood (2020). "The fossil record of Icacinaceae in Australia supports long-standing Palaeo-Antarctic rainforest connections in southern high latitudes". Historical Biology: An International Journal of Paleobiology 33 (11): 2854–2864. doi:10.1080/08912963.2020.1832089.
- ↑ Gregory Stull; Bruce H. Tiffney; Steven R. Manchester; Cédric Del Rio; Scott L. Wing (2020). "Endocarps of Pyrenacantha (Icacinaceae) from the early Oligocene of Egypt". International Journal of Plant Sciences 181 (4): 432–442. doi:10.1086/706854.
- ↑ Ünal Akkemik; Dimitra Mantzouka; Umut Tunç; Fikret Koçbulut (2020). "The first paleoxylotomical evidence from the Mid-Eocene Climate Optimum from Turkey". Review of Palaeobotany and Palynology 285: Article 104356. doi:10.1016/j.revpalbo.2020.104356.
- ↑ 32.0 32.1 32.2 Daniela P. Ruiz; M. Sol Raigemborn; Mariana Brea; Roberto R. Pujana (2020). "Paleocene Las Violetas Fossil Forest: Wood anatomy and paleoclimatology". Journal of South American Earth Sciences 98: Article 102414. doi:10.1016/j.jsames.2019.102414. Bibcode: 2020JSAES..9802414R.
- ↑ Kenton L. Chambers; George O. Poinar, Jr (2020). "Thymolepis toxandra gen. et sp. nov., a mid-Cretaceous fossil flower with horseshoe-shaped anthers". Journal of the Botanical Research Institute of Texas 14 (1): 57–64. doi:10.17348/jbrit.v14.i1.896.
- ↑ George O. Poinar, Jr; Kenton L. Chambers; Urszula T. Iwaniec; Fernando E. Vega (2020). "Valviloculus pleristaminis gen. et sp. nov., a Lauralean fossil flower with valvate anthers from mid-Cretaceous Myanmar amber". Journal of the Botanical Research Institute of Texas 14 (2): 359–366. doi:10.17348/jbrit.v14.i2.1014.
- ↑ 35.0 35.1 Jun‐Ling Dong; Bai‐Nian Sun; Ai‐Jing Li; Hui Chen (2020). "The diversity of Smilax (Smilacaceae) leaves from the Middle Miocene in southeastern China". Geological Journal 56 (2): 744–757. doi:10.1002/gj.3882.
- ↑ Lu‐Liang Huang; Jian‐Hua Jin; Cheng Quan; Alexei A. Oskolski (2020). "Mummified Magnoliaceae woods from the upper Oligocene of South China, with biogeography, paleoecology, and wood trait evolution implications". Journal of Systematics and Evolution 58 (1): 89–100. doi:10.1111/jse.12480.
- ↑ Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2020). "Melloniflora, a new extinct multiparted flower from the Early Cretaceous of Virginia, USA". International Journal of Plant Sciences 181 (9): 887–897. doi:10.1086/710490.
- ↑ Atsufumi Narita; Atsushi Yabe; Kazuhiko Uemura; Midori Matsumoto (2020). "Late middle Miocene Konan flora from northern Hokkaido, Japan". Acta Palaeobotanica 60 (2): 259–295. doi:10.35535/acpa-2020-0012.
- ↑ Mahasin Ali Khan; Robert A. Spicer; Teresa E. V. Spicer; Kaustav Roy; Manoshi Hazra; Taposhi Hazra; Sumana Mahato; Sanchita Kumar et al. (2020). "Dipterocarpus (Dipterocarpaceae) leaves from the K-Pg of India: a Cretaceous Gondwana presence of the Dipterocarpaceae". Plant Systematics and Evolution 306 (6): Article 90. doi:10.1007/s00606-020-01718-z. Bibcode: 2020PSyEv.306...90K.
- ↑ Maria C. Zamaloa; Maria A. Gandolfo; Kevin C. Nixon (2020). "52 million years old Eucalyptus flower sheds more than pollen grains". American Journal of Botany 107 (12): 1763–1771. doi:10.1002/ajb2.1569. PMID 33274448.
- ↑ Eliana Moya; Mariana Brea (2020). "Combretaceous fossil wood from Ituzaingó Formation (Late Miocene?), Argentina, indicate a coastal marine environment". Review of Palaeobotany and Palynology 281: Article 104270. doi:10.1016/j.revpalbo.2020.104270. Bibcode: 2020RPaPa.28104270M.
- ↑ Ya Li; Yi-Ming Cui; Carole T. Gee; Xiao-Qing Liang; Cheng-Sen Li (2020). "Primotrapa gen. nov., an extinct transitional genus bridging the evolutionary gap between Lythraceae and Trapoideae, from the early Miocene of North China". BMC Evolutionary Biology 20 (1): 150. doi:10.1186/s12862-020-01697-2. PMID 33183234. Bibcode: 2020BMCEE..20..150L.
- ↑ David Peris; Conrad C. Labandeira; Eduardo Barrón; Xavier Delclòs; Jes Rust; Bo Wang (2020). "Generalist pollen-feeding beetles during the mid-Cretaceous". iScience 23 (3): Article 100913. doi:10.1016/j.isci.2020.100913. PMID 32191877. Bibcode: 2020iSci...23j0913P.
- ↑ Nathan A. Jud; Maria A. Gandolfo (2020). "Fossil evidence from South America for the diversification of Cunoniaceae by the earliest Palaeocene". Annals of Botany 127 (3): 305–315. doi:10.1093/aob/mcaa154. PMID 32860407.
- ↑ 45.0 45.1 45.2 45.3 45.4 45.5 Xiao‐Yan Liu; Steven R. Manchester; Andrew C. Rozefelds; Cheng Quan; Jian‐Hua Jin (2020). "First fossil fruits of Elaeocarpus (Elaeocarpaceae) in East Asia: implications for phytogeography and paleoecology". Journal of Systematics and Evolution 60 (2): 456–471. doi:10.1111/jse.12684.
- ↑ 46.0 46.1 Juan M. Robledo; Luisa M. Anzótegui; Olga G. Martínez; Ricardo N. Alonso (2020). "Flora and insect trace fossils from the Mio-Pliocene Quebrada del Toro locality (Gobernador Solá, Salta, Argentina)". Journal of South American Earth Sciences 100: Article 102544. doi:10.1016/j.jsames.2020.102544. Bibcode: 2020JSAES.10002544R.
- ↑ 47.0 47.1 Raymond J. Carpenter; Lynne A. Milne (2020). "New species of xeromorphic Banksia (Proteaceae) foliage and Banksia-like pollen from the late Eocene of Western Australia". Australian Journal of Botany 68 (3): 165–178. doi:10.1071/BT19110.
- ↑ Indah Badriyyah Huegele; Robert J. Spielbauer; Steven R. Manchester (2020). "Morphology and systematic affinities of Platanus dissecta Lesquereux (Platanaceae) from the Miocene of western North America". International Journal of Plant Sciences 181 (3): 324–341. doi:10.1086/706453.
- ↑ 49.0 49.1 49.2 49.3 49.4 49.5 Cédric Del Rio; Jian Huang; Ping Liu; Wei‐Yu‐Dong Deng; Teresa E.V. Spicer; Fei‐Xiang Wu; Zhe‐Kun Zhou; Tao Su (2020). "New Eocene fossil fruits and leaves of Menispermaceae from the central Tibetan Plateau and their biogeographic implications". Journal of Systematics and Evolution 59 (6): 1287–1306. doi:10.1111/jse.12701.
- ↑ Hui Jia; David K. Ferguson; Bainian Sun; Xiangning Meng; Yifan Hua (2020). "Phytogeographic implications of a fossil endocarp of Diploclisia (Menispermaceae) from the Miocene of eastern China". Geological Journal 56 (2): 758–767. doi:10.1002/gj.3867.
- ↑ 51.0 51.1 51.2 Meng Han; Xin‐Kai Wu; Ming Tu; Tatiana M. Kodrul; Jian‐Hua Jin (2020). "Diversity of Menispermaceae from the Paleocene and Eocene of South China". Journal of Systematics and Evolution 58 (3): 354–366. doi:10.1111/jse.12499.
- ↑ Zhekun Zhou; Tengxiang Wang; Jian Huang; Jia Liu; Weiyudong Deng; Shihu Li; Chenglong Deng; Tao Su (2020). "Fossil leaves of Berhamniphyllum (Rhamnaceae) from Markam, Tibet and their biogeographic implications". Science China Earth Sciences 63 (2): 224–234. doi:10.1007/s11430-019-9477-8. Bibcode: 2020ScChD..63..224Z.
- ↑ Zixi Wang; Fabiany Herrera; Junwu Shu; Suxin Yin; Gongle Shi (2020). "A new Choerospondias (Anacardiaceae) endocarp from the middle Miocene of Southeast China and its paleoecological implications". Review of Palaeobotany and Palynology 283: Article 104312. doi:10.1016/j.revpalbo.2020.104312. Bibcode: 2020RPaPa.28304312W.
- ↑ Oris Rodríguez-Reyes; Emilio Estrada-Ruiz; Peter Gasson (2020). "Evidence of large Anacardiaceae trees from the Oligocene–early Miocene Santiago Formation, Azuero, Panama". Boletín de la Sociedad Geológica Mexicana 72 (2): Article A300719. doi:10.18268/BSGM2020v72n2a300719. http://boletinsgm.igeolcu.unam.mx/bsgm/index.php/component/content/article/381-sitio/resumenes/cuarta-epoca/7206/2212-7202-A300719_Rodriguez-Reyes.
- ↑ Brian A. Atkinson (2020). "Fossil evidence for a Cretaceous rise of the mahogany family". American Journal of Botany 107 (1): 139–147. doi:10.1002/ajb2.1416. PMID 31903551.
- ↑ M. Jimena Franco; Eliana Moya; Mariana Brea; Camila Martínez Martínez (2020). "Astroniumxylon, Schinopsixylon, and Parametopioxylon n. gen. fossil woods from upper Cenozoic of Argentina: taxonomic revision, new taxon and new records". Journal of Paleontology 94 (2): 185–201. doi:10.1017/jpa.2019.97. Bibcode: 2020JPal...94..185F. https://zenodo.org/record/4961184.
- ↑ Steven R. Manchester; Kory A. Disney; Kasey K. Pham (2020). "Winged fruits of rutaceous affinity from the Eocene of western North America". Fossil Imprint 76 (2): 211–216. doi:10.37520/fi.2020.018.
- ↑ Zack J. Quirk; Elizabeth J. Hermsen (2020). "Neogene Corylopsis Seeds from Eastern Tennessee". Journal of Systematics and Evolution 59 (3): 611–621. doi:10.1111/jse.12571.
- ↑ Yi-Min Tian; Jian Huang; Tao Su; Shi-Tao Zhang (2020). "Early Oligocene Itea (Iteaceae) leaves from East Asia and their biogeographic implications". Plant Diversity 43 (2): 142–151. doi:10.1016/j.pld.2020.09.006. PMID 33997547.
- ↑ Alex R. Scharfstein; Ruth A. Stockey; Gar W. Rothwell (2020). "Evolution and phylogeny of Altingiaceae: anatomically preserved infructescences from Late Cretaceous deposits of Vancouver Island, British Columbia, Canada". International Journal of Plant Sciences 181 (4): 452–463. doi:10.1086/707107.
- ↑ Rocío Deanna; Peter Wilf; Maria A. Gandolfo (2020). "New physaloid fruit‐fossil species from early Eocene South America". American Journal of Botany 107 (12): 1749–1762. doi:10.1002/ajb2.1565. PMID 33247843.
- ↑ 62.0 62.1 62.2 Steven R. Manchester; Zlatko Kvaček; Walter S. Judd (2020). "Morphology, anatomy, phylogenetics and distribution of fossil and extant Trochodendraceae in the Northern Hemisphere". Botanical Journal of the Linnean Society 195 (3): 467–484. doi:10.1093/botlinnean/boaa046.
- ↑ Wen-Long He; Xiao-Jing Wang (2020). "A Miocene flora from the Toupi Formation in Jiangxi Province, southeastern China". Palaeoworld 30 (4): 757–769. doi:10.1016/j.palwor.2020.12.006.
- ↑ Ezequiel Ignacio Vera; Valeria S. Perez Loinaze; Magdalena Llorens; Mauro Gabriel Passalia (2020). "The fossil genus Aextoxicoxylon (Magnoliopsida) in the Upper Cretaceous Puntudo Chico Formation, Chubut Province, Argentina". Cretaceous Research 107: Article 104315. doi:10.1016/j.cretres.2019.104315. Bibcode: 2020CrRes.10704315V.
- ↑ 65.0 65.1 65.2 Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2020). "Multiparted, apocarpous flowers from the Early Cretaceous of eastern North America and Portugal". Fossil Imprint 76 (2): 279–296. doi:10.37520/fi.2020.023.
- ↑ Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2020). "Catanthus, An Extinct Magnoliid Flower From The Early Cretaceous Of Portugal". International Journal of Plant Sciences 182 (1): 28–45. doi:10.1086/711081.
- ↑ Caroline Siegert; Elizabeth J. Hermsen (2020). "Cavilignum pratchettii gen. et sp. nov., a novel type of fossil endocarp with open locules from the Neogene Gray Fossil Site, Tennessee, USA". Review of Palaeobotany and Palynology 275: Article 104174. doi:10.1016/j.revpalbo.2020.104174. Bibcode: 2020RPaPa.27504174S.
- ↑ George O. Poinar, Jr; Kenton L. Chambers (2020). "Chainandra zeugostylus gen. et sp. nov., a mid-Cretaceous amber fossil with sagittate anthers opening widely at maturity". Journal of the Botanical Research Institute of Texas 14 (2): 367–372. doi:10.17348/jbrit.v14.i2.1015.
- ↑ George O. Poinar, Jr; Kenton L. Chambers (2020). "Cyathitepala papillosa gen. et sp. nov., a mid-Cretaceous fossil flower from Myanmar amber with valvate anthers". Journal of the Botanical Research Institute of Texas 14 (2): 351–358. doi:10.17348/jbrit.v14.i2.1013.
- ↑ George O. Poinar, Jr; Kenton L. Chambers (2020). "Dasykothon leptomiscus gen. et sp. nov., a fossil flower of possible Lauralean affinity from Myanmar amber". Journal of the Botanical Research Institute of Texas 14 (1): 65–71. doi:10.17348/jbrit.v14.i1.897.
- ↑ Xue-Die Liu; José Bienvenido Diez; Yong Fan; Zhong-Jian Liu; Xin Wang (2020). "A unique flower in Miocene amber sheds new light on the evolution of flowers". Palaeoentomology 3 (4): 423–432. doi:10.11646/palaeoentomology.3.4.15.
- ↑ Gang Han; Xin Wang (2020). "A New Infructescence of Angiosperms from the Early Cretaceous of China". Acta Geologica Sinica (English Edition) 94 (5): 1711–1713. doi:10.1111/1755-6724.14591. Bibcode: 2020AcGlS..94.1711H. http://www.geojournals.cn/dzxben/ch/reader/view_abstract.aspx?file_no=2020endzxb05026&flag=1.
- ↑ Dieter Uhl; Khum N. Paudayal; Sophie Hervet; Haytham El Atfy (2020). "Menatanthus mosbruggeri gen. nov. et sp. nov. – A flower with in situ pollen tetrads from the Paleocene maar lake of Menat (Puy-de-Dôme, France)". Palaeobiodiversity and Palaeoenvironments 101 (1): 51–58. doi:10.1007/s12549-020-00453-0.
- ↑ George O. Poinar, Jr; Kenton L. Chambers (2020). "Phantophlebia dicycla gen. et sp. nov., a five-merous fossil flower in mid-Cretaceous Myanmar amber". Journal of the Botanical Research Institute of Texas 14 (1): 73–80. doi:10.17348/jbrit.v14.i1.898.
- ↑ Adam T. Halamski; Jiří Kvaček; Marcela Svobodová; Ewa Durska; Zuzana Heřmanová (2020). "Late Cretaceous mega-, meso-, and microfloras from Lower Silesia". Acta Palaeontologica Polonica 65 (4): 811–878. doi:10.4202/app.00744.2020.
- ↑ Lida Xing; Lei Gu (2020). "The possible earliest epizoochorous fruit preserved in mid-Cretaceous Burmese amber". Cretaceous Research 114: Article 104498. doi:10.1016/j.cretres.2020.104498. Bibcode: 2020CrRes.11404498X.
- ↑ Deepak D. Ramteke; Steven R. Manchester; Vaishali D. Nagrale; Selena Y. Smith (2020). "Singpuria, a new genus of Eudicot flower from the latest Cretaceous Deccan Intertrappean Beds of India". Acta Palaeobotanica 60 (2): 323–332. doi:10.35535/acpa-2020-0017.
- ↑ Zhong-Jian Liu; Li-Jun Chen; Xin Wang (2020). "A whole-plant monocot from the Lower Cretaceous". Palaeoworld 30 (1): 169–175. doi:10.1016/j.palwor.2020.03.008.
- ↑ Xuedie Liu; Liang Ma; Bin Liu; Zhong-Jian Liu; Xin Wang (2020). "A novel angiosperm including various parts from the Early Cretaceous sheds new light on flower evolution". Historical Biology: An International Journal of Paleobiology 33 (11): 2706–2714. doi:10.1080/08912963.2020.1825411.
- ↑ Xiaoqing Zhang; Yongdong Wang; David L. Dilcher; Steven R. Manchester (2020). "Wireroadia, a new genus of winged fruit from the Cretaceous of Alabama and New England, USA". International Journal of Plant Sciences 181 (9): 898–910. doi:10.1086/710492.
- ↑ Alexei A. Oskolski; Luliang Huang; Anna V. Stepanova; Jianhua Jin (2020). "Araucarioid wood from the late Oligocene–early Miocene of Hainan Island: first fossil evidence for the genus Agathis in the Northern Hemisphere". Journal of Plant Research 133 (2): 157–173. doi:10.1007/s10265-019-01165-z. PMID 31915952. Bibcode: 2020JPlR..133..157O.
- ↑ 82.0 82.1 Silvia C. Gnaedinger; Ana María Zavattieri (2020). "Coniferous woods from the Upper Triassic of southwestern Gondwana, Tronquimalal Group, Neuquén Basin, Mendoza Province, Argentina". Journal of Paleontology 94 (3): 387–416. doi:10.1017/jpa.2020.1. Bibcode: 2020JPal...94..387G.
- ↑ 83.0 83.1 Robert Noll; Lutz Kunzmann (2020). "Diversity in fossil Araucaria Juss.: new species from the Middle Jurassic Jaramillo Petrified Forests in Santa Cruz province, Argentina". Palaeontographica Abteilung B 301 (1–3): 3–75. doi:10.1127/palb/2020/0070. Bibcode: 2020PalAB.301....3N.
- ↑ Ruth A. Stockey; Gar W. Rothwell (2020). "Diversification of crown group Araucaria: the role of Araucaria famii sp. nov. in the mid‐Cretaceous (Campanian) radiation of Araucariaceae in the Northern Hemisphere". American Journal of Botany 107 (7): 1072–1093. doi:10.1002/ajb2.1505. PMID 32705687.
- ↑ Gongle Shi; Haomin Li; Andrew B. Leslie; Zhiyan Zhou (2020). "Araucaria bract-scale complex and associated foliage from the early-middle Eocene of Antarctica and their implications for Gondwanan biogeography". Historical Biology: An International Journal of Paleobiology 32 (2): 164–173. doi:10.1080/08912963.2018.1472255. Bibcode: 2020HBio...32..164S.
- ↑ Gabriella Rossetto‐Harris; Peter Wilf; Ignacio H. Escapa; Ana Andruchow‐Colombo (2020). "Eocene Araucaria Sect. Eutacta from Patagonia and floristic turnover during the initial isolation of South America". American Journal of Botany 107 (5): 806–832. doi:10.1002/ajb2.1467. PMID 32388874.
- ↑ L.C.A. Martínez; E. Pacheco Huacallo; R.R. Pujana; H. Padula (2020). "A new megaflora (leaves and reproductive structures) from the Huancané Formation (Lower Cretaceous), Peru". Cretaceous Research 110: Article number 104426. doi:10.1016/j.cretres.2020.104426. Bibcode: 2020CrRes.11004426M.
- ↑ Zikun Jiang; Hao Wu; Ning Tian; Yongdong Wang; Aowei Xie (2020). "A new species of conifer wood Brachyoxylon from the Cretaceous of Eastern China and its paleoclimate significance". Historical Biology: An International Journal of Paleobiology 33 (10): 1989–1995. doi:10.1080/08912963.2020.1755282.
- ↑ Maria Edenilce P. Batista; Lutz Kunzman; Artur A. A. Sá; Antônio Álamo F. Saraiva; Maria Iracema B. Loiola (2020). "A new species of Brachyphyllum from the Crato Formation (Lower Cretaceous), Araripe Basin, Brazil". Ameghiniana 57 (6): 519–533. doi:10.5710/AMGH.23.06.2020.3333.
- ↑ Jiří Kvaček; Mário Miguel Mendes (2020). "Callialastrobus sousai gen. et sp. nov., a new araucariaceous pollen cone from the Early Cretaceous of Catefica (Lusitanian Basin, western Portugal) bearing Callialasporites and Araucariacites pollen". Review of Palaeobotany and Palynology 283: Article 104313. doi:10.1016/j.revpalbo.2020.104313. Bibcode: 2020RPaPa.28304313K.
- ↑ Ünal Akkemik (2020). "A new fossil Cedrus species from the early Miocene of northwestern Turkey and its possible affinities". Palaeoworld 30 (4): 746–756. doi:10.1016/j.palwor.2020.12.003.
- ↑ Guoqing Xia; Ning Tian; Marc Philippe; Haisheng Yi; Chihua Wu; Gaojie Li; Zhiqiang Shi (2020). "Oldest Jurassic wood with Gondwanan affinities from the Middle Jurassic of Tibetan Plateau and its paleoclimatological and paleoecological significance". Review of Palaeobotany and Palynology 281: Article 104283. doi:10.1016/j.revpalbo.2020.104283. Bibcode: 2020RPaPa.28104283X.
- ↑ Ruth A. Stockey; Gar W. Rothwell; Brian A. Atkinson (2020). "Late Cretaceous diversification of cupressaceous conifers: a taiwanioid seed cone from the Eden Main, Vancouver Island, British Columbia, Canada". International Journal of Plant Sciences 181 (5): 529–541. doi:10.1086/708383.
- ↑ Nadezhda I. Blokhina (2020). "Cupressinoxylon klimovii Blokhina, nom. nov. ‒ a new species name replacing Cupressinoxylon biotoides Blokhina, 1989 (Cupressaceae)". Botanica Pacifica 9 (2): 196. doi:10.17581/bp.2020.09218.
- ↑ César Ríos-Santos; Sergio R.S. Cevallos-Ferriz; R.R. Pujana (2020). "Cupressaceous woods in the Upper Cretaceous Cabullona Group in Fronteras, Sonora, Mexico". Journal of South American Earth Sciences 104: Article 102756. doi:10.1016/j.jsames.2020.102756. Bibcode: 2020JSAES.10402756R.
- ↑ Xu-Dong Gou; Sui Wan; Fu-Guang Zhao; Xin-Shi Cheng; Hai-Bo Wei; Yun Guo; Shi-Ling Yang; Zhuo Feng (2020). "A new conifer stem, Ductoagathoxylon wangii from the Middle Jurassic of the Santanghu Basin, Xinjiang, Northwest China". Review of Palaeobotany and Palynology 285: Article 104357. doi:10.1016/j.revpalbo.2020.104357.
- ↑ Mário Miguel Mendes; Jiří Kvaček (2020). "Friisia lusitanica gen. et sp. nov., a new podocarpaceous ovuliferous cone from the Lower Cretaceous of Lusitanian Basin, western Portugal". Cretaceous Research 108: Article 104352. doi:10.1016/j.cretres.2019.104352. Bibcode: 2020CrRes.10804352M.
- ↑ Ünal Akkemik (2020). "A new species of Juniperoxylon from the early Miocene of northwestern Turkey". Acta Palaeontologica Romaniae 17 (1): 15–26. doi:10.35463/j.apr.2021.01.02.
- ↑ Ünal Akkemik; Dimitra Mantzouka; Demet Kıran Yıldırım (2020). "The first report of Lesbosoxylon Süss & Velitzelos from the early-middle Miocene of eastern Anatolia". Geodiversitas 42 (23): 427–441. doi:10.5252/geodiversitas2020v42a23. http://sciencepress.mnhn.fr/en/periodiques/geodiversitas/42/23.
- ↑ Andrey O. Frolov; Irina M. Mashchuk (2020). "Discovery of isolated leaves of Marskea (Taxaceae) in the Middle Jurassic sediments of Irkutsk Basin (East Siberia, Russia)". Phytotaxa 449 (2): 164–172. doi:10.11646/phytotaxa.449.2.4.
- ↑ Ruth A. Stockey; Harufumi Nishida; Gar W. Rothwell (2020). "Evolutionary diversification of taiwanioid conifers: evidence from a new Upper Cretaceous seed cone from Hokkaido, Japan". Journal of Plant Research 133 (5): 681–692. doi:10.1007/s10265-020-01214-y. PMID 32686035. Bibcode: 2020JPlR..133..681S.
- ↑ 102.0 102.1 Ling-Qi Zhou; Cuo Peng; Peng Deng; Xiao-Qin Zhang; Guo-Lin Yang; Wen-Xiu Ren; Jun Wang; Xiao-Qiang Li et al. (2020). "New records of Early Cretaceous petrified wood in Yumen, northwestern Gansu Province, China and their palaeoclimatic implications". Palaeoworld 30 (3): 503–514. doi:10.1016/j.palwor.2020.08.002.
- ↑ Martina Dolezych; Lutz Reinhardt (2020). "First evidence for the conifer Pinus, as Pinuxylon selmeierianum sp. nov., during the Paleogene on Wootton Peninsula, northern Ellesmere Island, Nunavut, Canada". Canadian Journal of Earth Sciences 57 (1): 25–39. doi:10.1139/cjes-2018-0163. Bibcode: 2020CaJES..57...25D.
- ↑ Meng-Xiao Wu; Jian Huang; Tao Su; Qin Leng; Zhe-Kun Zhou (2020). "Tsuga seed cones from the late Paleogene of southwestern China and their biogeographical and paleoenvironmental implications". Palaeoworld 29 (3): 617–628. doi:10.1016/j.palwor.2019.07.005.
- ↑ Xiao Shi; Jianxin Yu; Yuewu Sun (2020). "Tyloses in the Lopingian cordaitalean root from Xinjiang, Northwest China". Review of Palaeobotany and Palynology 273: Article 104134. doi:10.1016/j.revpalbo.2019.104134. Bibcode: 2020RPaPa.27304134S.
- ↑ Josefina Bodnar; Eduardo M. Morel; Eliana P. Coturel; Daniel G. Ganuza (2020). "New plant fossil records and biostratigraphic analysis from the Uspallata Group (Late Triassic) at Cacheuta Hill, Cuyo Basin, west-central Argentina". Geobios 60: 3–27. doi:10.1016/j.geobios.2020.04.002. Bibcode: 2020Geobi..60....3B.
- ↑ Leyla J. Seyfullah; Emily A. Roberts; Alexander R. Schmidt; Eugenio Ragazzi; Ken B. Anderson; Daniel Rodrigues do Nascimento Jr.; Wellington Ferreira da Silva Filho; Lutz Kunzmann (2020). "Revealing the diversity of amber source plants from the Early Cretaceous Crato Formation, Brazil". BMC Evolutionary Biology 20 (1): 107. doi:10.1186/s12862-020-01651-2. PMID 32819273. Bibcode: 2020BMCEE..20..107S.
- ↑ Serge V. Naugolnykh (2020). "Archaeopetalanthus progressus gen. et sp. nov. – a new representative of the vojnovskyopsid gymnosperms from the Carboniferous of Siberia (Russia)". Wulfenia 27: 97–113. https://www.researchgate.net/publication/345140733.
- ↑ Mário Miguel Mendes; Kaj Raunsgaard Pedersen; Else Marie Friis (2020). "Battenispermum hirsutum gen. et sp. nov., a new Early Cretaceous seed from Portugal with chlamydospermous organisation". Cretaceous Research 109: Article 104376. doi:10.1016/j.cretres.2020.104376. Bibcode: 2020CrRes.10904376M.
- ↑ María A. Gómez; Gabriela G. Puebla; Mercedes B. Prámparo; Andrea B. Arcucci (2020). "Fossil seeds from the La Cantera Formation, Early Cretaceous, San Luis Province, Argentina". Acta Palaeobotanica 60 (1): 181–198. doi:10.35535/acpa-2020-0008.
- ↑ 111.0 111.1 Domingas Maria da Conceição; Luiz Saturnino de Andrade; Rodrigo Neregato; Roberto Iannuzzi; Alexandra Crisafulli; Juan Carlos Cisneros (2020). "New petrified gymnosperms from the Permian of Maranhão (Pedra de Fogo Formation), Brazil: Ductolobatopitys nov. gen. and Kaokoxylon". Geobios 60: 47–59. doi:10.1016/j.geobios.2020.04.003. Bibcode: 2020Geobi..60...47C.
- ↑ Wei-Ming Zhou; Bi-Yun Chen; Wei Sun; Xue-Zhi He; Jason Hilton; Jun Wang (2020). "A new gigantopterid genus from the late Permian of the Daha Coalfield, Tibetan Plateau and its implication on plant-insect interactions". Historical Biology: An International Journal of Paleobiology 33 (12): 3228–3240. doi:10.1080/08912963.2020.1860033. https://research.birmingham.ac.uk/portal/en/publications/a-new-gigantopterid-genus-from-the-late-permian-of-the-daha-coalfield-tibetan-plateau-and-its-implication-on-plantinsect-interactions(6522a667-5362-4c9c-bab2-e7eadfa592e6).html.
- ↑ Sheng-Hui Deng; Xiao-Ju Yang; Zhi-Yan Zhou (2020). "A new Ginkgo from the Lower Cretaceous of Liaoning, Northeast China and its evolutionary implications". Review of Palaeobotany and Palynology 283: Article 104315. doi:10.1016/j.revpalbo.2020.104315. Bibcode: 2020RPaPa.28304315D.
- ↑ Yong Yang; Yingwei Wang; David Kay Ferguson (2020). "A new macrofossil ephedroid plant with unusual bract morphology from the Lower Cretaceous Jiufotang Formation of northeastern China". BMC Evolutionary Biology 20 (1): Article number 19. doi:10.1186/s12862-019-1569-y. PMID 32019502. Bibcode: 2020BMCEE..20...19Y.
- ↑ 115.0 115.1 115.2 Cindy V. Looy; Ivo A. P. Duijnstee (2020). "Voltzian conifers of the South Ash Pasture flora (Guadalupian, Texas): Johniphyllum multinerve gen. et sp. nov., Pseudovoltzia sapflorensis sp. nov., and Wantus acaulis gen. et sp. nov.". International Journal of Plant Sciences 181 (3): 363–385. doi:10.1086/706853.
- ↑ Heidi M. Anderson; Maria Barbacka; Marion K. Bamford; W. B. Keith Holmes; John M. Anderson (2020). "Dicroidium (foliage) and affiliated wood Part 3 of a reassessment of Gondwana Triassic plant genera and a reclassification of some previously attributed". Alcheringa: An Australasian Journal of Palaeontology 44 (1): 64–92. doi:10.1080/03115518.2019.1622779. Bibcode: 2020Alch...44...64A.
- ↑ Jana Čepičková; Jiří Kvaček (2020). "Two cycads Nilssonia mirovanae sp. nov. and Pseudoctenis babinensis J.Kvaček from the Cenomanian of the Bohemian Cretaceous Basin (the Czech Republic) as indicators of water stress in the palaeoenvironment". Fossil Imprint 76 (2): 315–324. doi:10.37520/fi.2020.025.
- ↑ 118.0 118.1 Domingas Maria da Conceição; Alexandra Crisafulli; Roberto Iannuzzi; Rodrigo Neregato; Juan Carlos Cisneros; Luiz Saturnino de Andrade (2020). "New petrified gymnosperms from the Permian of Maranhão (Pedra de Fogo Formation), Brazil: Novaiorquepitys and Yvyrapitys". Review of Palaeobotany and Palynology 276: Article 104177. doi:10.1016/j.revpalbo.2020.104177. Bibcode: 2020RPaPa.27604177D.
- ↑ Sergey V. Naugolnykh; Valeryi V. Linkevich (2020). "Artinskian flora (Lower Permian) of the stratotypic area (the Middle Cis-Urals)". Socialno-ecologicheskie Technologii 10 (2): 133–150. doi:10.31862/2500-2961-2020-10-2-133-150.
- ↑ Ming-Li Wan; Wan Yang; Jun Wang (2020). "Palaeocupressinoxylon uniseriale n. gen. n. sp., a gymnospermous wood from the upper Permian of Central Taodonggou, southern Bogda Mountains, northwestern China". Palaeoworld 29 (1): 117–125. doi:10.1016/j.palwor.2019.06.002.
- ↑ Anastasia Zolina; Lina Golovneva; Natalya Nosova; Alexander Grabovskiy (2020). "A new species of Phoenicopsis (Leptostrobales) from the Maastrichtian–Danian of Chukotka, Russia". Geobios 63: 67–75. doi:10.1016/j.geobios.2020.09.002. Bibcode: 2020Geobi..63...67Z.
- ↑ John G. Conran; Jennifer M. Bannister; Uwe Kaulfuss; Daphne E. Lee (2020). "Pterostoma neehoffii (cf. Zamiaceae): a new species of extinct cycad from the middle Miocene of New Zealand and an overview of fossil New Zealand cycads". New Zealand Journal of Botany 58 (1): 30–47. doi:10.1080/0028825X.2019.1653939. Bibcode: 2020NZJB...58...30C.
- ↑ 123.0 123.1 123.2 Patrick Blomenkemper; Hans Kerp; Abdalla Abu Hamad; Benjamin Bomfleur (2020). "Contributions towards whole-plant reconstructions of Dicroidium plants (Umkomasiaceae) from the Permian of Jordan". Review of Palaeobotany and Palynology 278: Article 104210. doi:10.1016/j.revpalbo.2020.104210. Bibcode: 2020RPaPa.27804210B.
- ↑ Yifan Hua; Xuelian Wang; Junlin Dong; Yanzhao Ji; Bainian Sun (2020). "A number of new seed fossils from the lower Permian of Gansu, Northwest China: implication for research on arils". Historical Biology: An International Journal of Paleobiology 32 (8): 1098–1107. doi:10.1080/08912963.2019.1566323. Bibcode: 2020HBio...32.1098H.
- ↑ 125.0 125.1 Natalya Nosova (2020). "Female reproductive structures of Umaltolepis Krassilov and associated short shoots, buds and leaves of Pseudotorellia Florin from the Middle Jurassic of Angren, Uzbekistan". Review of Palaeobotany and Palynology 281: Article 104266. doi:10.1016/j.revpalbo.2020.104266. Bibcode: 2020RPaPa.28104266N.
- ↑ Josef Pšenička; Jun Wang; Jason Hilton; Weiming Zhou; Jiří Bek; Stanislav Opluštil; Jana Votočková Frojdová (2020). "A small heterophyllous vine climbing on Psaronius and Cordaites trees in the earliest Permian forests of North China". International Journal of Plant Sciences 181 (6): 616–645. doi:10.1086/708814. http://pure-oai.bham.ac.uk/ws/files/98939556/708814.pdf.
- ↑ Weiming Zhou; Shan Wan; Mingli Wan; Jason Hilton; Josef Pšenička; Jun Wang (2020). "Yangopteris ascendens (Halle) gen. et comb. nov., a climbing alethopterid pteridosperm from the Asselian (earliest Permian) Wuda Tuff Flora". Review of Palaeobotany and Palynology 294: Article 104282. doi:10.1016/j.revpalbo.2020.104282. https://research.birmingham.ac.uk/portal/en/publications/yangopteris-ascendens-halle-gen-et-comb-nov-a-climbing-alethopterid-pteridosperm-from-the-asselian-earliest-permian-wuda-tuff-flora(7618b969-88c1-44a5-a3e1-2d1c5a3880bf).html.
- ↑ Pedro Correia; Arden R. Bashforth; Zbynĕk Šimůnek; Christopher J. Cleal; Artur A. Sá; Conrad C. Labandeira (2020). "The history of herbivory on sphenophytes: a new calamitalean with an insect gall from the Upper Pennsylvanian of Portugal and a review of arthropod herbivory on an ancient lineage". International Journal of Plant Sciences 181 (4): 387–418. doi:10.1086/707105.
- ↑ Ruiyun Li; Xiaoqiang Li; Xuelian Wang; Bainian Sun (2020). "First fossil liverwort with in situ flask-shaped receptacles from the Lower Cretaceous of Inner Mongolia, China". Cretaceous Research 119: Article 104684. doi:10.1016/j.cretres.2020.104684. ISSN 0195-6671.
- ↑ Xiao-Yuan He; Shi-Jun Wang; Jason Hilton; Jean Galtier; Hong-Guan Jiang (2020). "An advanced species of the fern Botryopteris Renault from the Permian of southwestern China". Review of Palaeobotany and Palynology 273: Article 104136. doi:10.1016/j.revpalbo.2019.104136. Bibcode: 2020RPaPa.27304136H. http://pure-oai.bham.ac.uk/ws/files/82924629/Revised_Botryo_multif_manuscript_NO_CHANGES_MARKED.pdf.
- ↑ L. B. Golovneva; A. A. Grabovskiy; A. A. Zolina (2020). "A new species of the genus Birisia (Dicksoniaceae) from the lower–middle Albian deposits of Southern Primorye, Far East of Russia". Palaeobotany 11: 74–95. doi:10.31111/palaeobotany/2020.11.74. https://cyberleninka.ru/article/n/a-new-species-of-the-genus-birisia-dicksoniaceae-from-the-lower-middle-albian-deposits-of-southern-primorye-far-east-of-russia.
- ↑ Barry A. Thomas (2020). "A new species of leafy calamite stem from the Pennsylvanian (Bolsovian) of the South Wales Coalfield". Acta Palaeobotanica 60 (1): 207–211. doi:10.35535/acpa-2020-0010.
- ↑ 133.0 133.1 Yueyang Zhang; Hongxia Jiang; Yasheng Wu; Hongping Bao; Junfeng Ren; Zhengliang Huang (2020). "Calcified dasycladaleans from the Upper Ordovician in the Ordos Basin, China". Acta Micropalaeontologica Sinica 37 (3): 228–237. doi:10.16087/j.cnki.1000-0674.2020.03.003.
- ↑ 134.0 134.1 134.2 134.3 Jordi Pérez-Cano; Telm Bover-Arnal; Carles Martín-Closas (2020). "Barremian charophytes from the Maestrat Basin". Cretaceous Research 115. doi:10.1016/j.cretres.2020.104544.
- ↑ Jan Hinkelman; Lucia Vršanská (2020). "A Myanmar amber cockroach with protruding feces contains pollen and a rich microcenosis". The Science of Nature 107 (2): Article number 13. doi:10.1007/s00114-020-1669-y. PMID 32125545. Bibcode: 2020SciNa.107...13H.
- ↑ 136.0 136.1 136.2 Patricio Emmanuel Santamarina; Viviana Dora Barreda; Ari Iglesias; Augusto Nicolás Varela (2020). "Palynology from the Cenomanian Mata Amarilla Formation, southern Patagonia, Argentina". Cretaceous Research 109: Article 104354. doi:10.1016/j.cretres.2019.104354. Bibcode: 2020CrRes.10904354S.
- ↑ 137.0 137.1 137.2 137.3 137.4 137.5 Ioan I. Bucur; Sylvain Rigaud; Nicolò Del Piero; Andrea Fucelli; Eric Heerwagen; Camille Peybernes; Giovan Peyrotty; Christian Verard et al. (2020). "Upper Triassic calcareous algae from the Panthalassa Ocean". Rivista Italiana di Paleontologia e Stratigrafia 126 (2): 499–540. doi:10.13130/2039-4942/13681.
- ↑ Xiu-Cai Yuan; Cong-Hui Xiong; Fan-Kai Sun; Zi-Xi Wang; Teng Mao; Yi-Jie Li; Chun-Hui Liu; Ming-Xuan Sun et al. (2020). "The geological significance of a new species of Coniopteris from the Middle Jurassic of northwestern China". Historical Biology: An International Journal of Paleobiology 32 (2): 267–280. doi:10.1080/08912963.2018.1488251. Bibcode: 2020HBio...32..267Y.
- ↑ Barry A. Thomas; Christopher J. Cleal (2020). "The nomenclature of fossil‐taxa representing different preservational states: Lepidodendron as a case‐study". Taxon 69 (5): 1052–1061. doi:10.1002/tax.12291.
- ↑ Yang Yu; San-Ping Xie; John Devaney; Si-Hang Zhang; Tian-Yu Chen; Xu Zeng; Bing Wang; Yu Zhang (2020). "A new species of Drynaria (Polypodiaceae) from the late Miocene of Yunnan, Southwest China and implications on the genus evolution". Palaeobiodiversity and Palaeoenvironments 100 (4): 939–949. doi:10.1007/s12549-020-00429-0. Bibcode: 2020PdPe..100..939Y. https://mural.maynoothuniversity.ie/16135/1/Yu2020_Article_ANewSpeciesOfDrynariaPolypodia.pdf.
- ↑ Li Zhang; Yong Wang; Hong-Yu Chen; Lei Han; Yu-Xin Zhang; Wen-Jia Li; Tao Yang; Hao-Jian Wang et al. (2020). "New fossil material of Equicalastrobus (Equisetales) and associated leaves from the Late Triassic of Baojishan basin, Gansu Province, China". Historical Biology: An International Journal of Paleobiology 33 (9): 1522–1533. doi:10.1080/08912963.2020.1716747.
- ↑ 142.0 142.1 Aye Thida Aung; Jian Huang; Truong Van Do; Ai Song; Jia Liu; Zhe-Kun Zhou; Tao Su (2020). "Three new fossil records of Equisetum (Equisetaceae) from the Neogene of south-western China and northern Vietnam". PhytoKeys (138): 3–15. doi:10.3897/phytokeys.138.38674. PMID 31988601.
- ↑ Branko Sokač; Tonći Grgasović (2020). "New dasycladalean alga with unusual two types of laterals from the Palaocene deposits of Konavle, SE of Dubrovnik (Dinarides, Croatia)". Revue de Micropaléontologie 69: Article 100464. doi:10.1016/j.revmic.2020.100464. Bibcode: 2020RvMic..6900464S.
- ↑ Ya Li; Yong-Dong Wang; Harald Schnerder; Peng-Cheng Wu (2020). "Frullania partita sp. nov. (Frullaniaceae, Porellales), a new leafy liverwort from the mid-Cretaceous of Myanmar". Cretaceous Research 108: Article 104341. doi:10.1016/j.cretres.2019.104341. Bibcode: 2020CrRes.10804341L.
- ↑ Yuriy S. Mamontov; John J. Atwood; Evgeny E. Perkovsky; Michael S. Ignatov (2020). "Hepatics from Rovno amber (Ukraine): Frullania pycnoclada and a new species, F. vanae". The Bryologist 123 (3): 421–430. doi:10.1639/0007-2745-123.3.421.
- ↑ 146.0 146.1 Fearghus R. McSweeney; Jeff Shimeta; John St. J. S. Buckeridge (2020). "Two new genera of early Tracheophyta (Zosterophyllaceae) from the upper Silurian–Lower Devonian of Victoria, Australia". Alcheringa: An Australasian Journal of Palaeontology 44 (3): 379–396. doi:10.1080/03115518.2020.1744725. Bibcode: 2020Alch...44..379M.
- ↑ Kelly C. Pfeiler; Alexandru M. F. Tomescu (2020). "An Early Devonian actinostelic euphyllophyte with secondary growth from the Emsian of Gaspé (Canada) and the importance of tracheid wall thickening patterns in early euphyllophyte systematics". Papers in Palaeontology 7 (2): 1081–1095. doi:10.1002/spp2.1335.
- ↑ Weiming Zhou; Josef Pšenička; Jiří Bek; Mingli Wan; C. Kevin Boyce; Jun Wang (2020). "A new anachoropterid fern from the Asselian (Cisuralian) Wuda Tuff Flora". Review of Palaeobotany and Palynology 294: Article 104346. doi:10.1016/j.revpalbo.2020.104346.
- ↑ Steven T. LoDuca; Anthony L. Swinehart; Matthew A. LeRoy; Denis K. Tetreault; Shawn Steckenfinger (2020). "Codium-like taxa from the Silurian of North America: morphology, taxonomy, paleoecology, and phylogenetic affinity". Journal of Paleontology 95 (2): 207–235. doi:10.1017/jpa.2020.85.
- ↑ Li-jun Chen; Ye-mao Hou; Peng-fei Yin; Xin Wang (2020). "An edible fruit from the Jurassic of China". China Geology 3 (1): 8–15. doi:10.31035/cg2020010. Bibcode: 2020CGeo....3....8C.
- ↑ Antoine Champreux; Brigitte Meyer-Berthaud; Anne-Laure Decombeix (2020). "Keraphyton gen. nov., a new Late Devonian fern-like plant from Australia". PeerJ 8: e9321. doi:10.7717/peerj.9321. PMID 32587800.
- ↑ D. S. Kopylov; A. P. Rasnitsyn; D. S. Aristov; A. S. Bashkuev; N. V. Bazhenova; V. Yu. Dmitriev; A. V. Gorochov; M. S. Ignatov et al. (2020). "The Khasurty Fossil Insect Lagerstätte". Paleontological Journal 54 (11): 1221–1394. doi:10.1134/S0031030120110027. Bibcode: 2020PalJ...54.1221K.
- ↑ Yu.V. Mosseichik (2020). "Lepidodendron species from the Viséan of the Moscow Basin". Lethaea Rossica 20: 19–33. http://paleobot.ru/pdf/02_2020_20.pdf.
- ↑ Yi-zhi Xu; Ning Yue; Shi Liu; Yi Zhang; Shao-lin Zheng; Yong-dong Wang; Xin-ran Huo (2020). "Lobatannularia linjiaensis sp. nov. from the Middle Triassic of Benxi, Liaoning". Acta Palaeontologica Sinica 59 (3): 329–344. doi:10.19800/j.cnki.aps.2019.024. http://gswxb.cnjournals.cn/gswxb/article/abstract/20200305.
- ↑ Sergey V. Naugolnykh; Ming Tu; Xiao-Yan Liu; Jian-Hua Jin (2020). "A new species of Lygodium (Schizaeaceae) from the Buxin Formation (Paleocene), Sanshui Basin, South China". Palaeoworld 29 (3): 606–616. doi:10.1016/j.palwor.2019.07.003.
- ↑ Tomoyuki Katagiri; Hisao Shinden (2020). "Discovery of a simple thalloid liverwort Metzgeriites kujiensis (Metzgeriaceae), a new species from Late Cretaceous Japanese amber". Hattoria 11: 13–21. doi:10.18968/hattoria.11.0_13.
- ↑ Silvia Gnaedinger; Bárbara Cariglino; Ana María Zavattieri; Mariana Monti; Pedro R. Gutiérrez (2020). "Neoarthropitys gondwanaensis gen. et sp. nov. from the Middle Triassic of Gondwana: An intermediate stage in the anatomical trend of Equisetalean stems". Review of Palaeobotany and Palynology 282: Article 104298. doi:10.1016/j.revpalbo.2020.104298. Bibcode: 2020RPaPa.28204298G.
- ↑ 158.0 158.1 Yeming Cheng; Fengxiang Liu; Xiaonan Yang; Tongxing Sun (2020). "Two new species of Mesozoic tree ferns (Osmundaceae: Osmundacaulis) in Eurasia as evidence of long-term geographic isolation". Geoscience Frontiers 11 (5): 1875–1888. doi:10.1016/j.gsf.2020.01.019. Bibcode: 2020GeoFr..11.1875C.
- ↑ 159.0 159.1 Ana M. Zavattieri; Pedro R. Gutiérrez; Mariana Monti (2020). "Middle Triassic freshwater green algae and fungi of the Puesto Viejo Basin, central-western Argentina: palaeoenvironmental implications". Alcheringa: An Australasian Journal of Palaeontology 44 (3): 430–459. doi:10.1080/03115518.2020.1749302. Bibcode: 2020Alch...44..430Z.
- ↑ Li Liu; Josef Pšenička; Jiří Bek; Mingli Wan; Hermann W. Pfefferkorn; Jun Wang (2020). "A whole calamitacean plant Palaeostachya guanglongii from the Asselian (Permian) Taiyuan Formation in the Wuda Coalfield, Inner Mongolia, China". Review of Palaeobotany and Palynology 294: Article 104245. doi:10.1016/j.revpalbo.2020.104245.
- ↑ Ruiyun Li; Xiaoqiang Li; Shenghui Deng; Bainian Sun (2020). "Morphology and microstructure of Pellites hamiensis nov. sp., a Middle Jurassic liverwort from northwestern China and its evolutionary significance". Geobios 62: 23–29. doi:10.1016/j.geobios.2020.07.003. Bibcode: 2020Geobi..62...23L.
- ↑ P. Hiller; M. Böhme; S. Schneider; J. Prieto; B. Bomfleur (2020). "Plenasium (Aurealcaulis) elegans sp. nov. from the Eocene of Vietnam – a connecting link in the evolution of modern Royal Ferns (Osmundeae, Osmundaceae)". Journal of Systematic Palaeontology 18 (8): 703–715. doi:10.1080/14772019.2019.1683771. Bibcode: 2020JSPal..18..703H.
- ↑ Yi Zhang; Yong-Dong Wang; Yue Hong; Liu Cao; Fu-liang Gao (2020). "Pleuromeia discovered from the Middle Triassic Linjia Formation of Benxi, Northeast China". Palaeoworld 29 (4): 706–714. doi:10.1016/j.palwor.2020.02.004.
- ↑ Carmen Álvarez-Vázquez; Jiří Bek; Jana Drábková (2020). "Polysporia baetica sp. nov., a new heterosporous sub-arborescent isoetalean from lower Bolsovian (Middle Pennsylvanian) strata of the Peñarroya-Belmez-Espiel Coalfield (Córdoba, SW Spain)". Review of Palaeobotany and Palynology 272: Article 104115. doi:10.1016/j.revpalbo.2019.104115. Bibcode: 2020RPaPa.27204115A.
- ↑ Zlatko Kvaček; Vasilis Teodoridis (2020). "A new Oligocene fern of Dryopteridaceae from the Českéstředohoří Mts (Czech Republic)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 295 (1): 9–16. doi:10.1127/njgpa/2020/0864.
- ↑ Chunxiang Li; Robbin C. Moran; Junye Ma; Bo Wang; Jiasheng Hao (2020). "A new fossil record of Lindsaeaceae (Polypodiales) from the mid-Cretaceous amber of Myanmar". Cretaceous Research 105: Article 104040. doi:10.1016/j.cretres.2018.12.010. Bibcode: 2020CrRes.10504040L.
- ↑ Qing Tang; Ke Pang; Xunlai Yuan; Shuhai Xiao (2020). "A one-billion-year-old multicellular chlorophyte". Nature Ecology & Evolution 4 (4): 543–549. doi:10.1038/s41559-020-1122-9. PMID 32094536. Bibcode: 2020NatEE...4..543T.
- ↑ 168.0 168.1 Josep Sanjuan; Ingeborg Soulié-Märsche (2020). "New charophyte assemblage from middle Miocene lacustrine deposits of Moneva (Ebro Basin, Spain)". Geobios 59: 79–90. doi:10.1016/j.geobios.2020.03.001. Bibcode: 2020Geobi..59...79S.
- ↑ Pu Huang; Le Liu; Lu Liu; Min Qin; De-Ming Wang; Jin-Zhuang Xue (2020). "A new plant with novel leaves from the Upper Devonian of Zhejiang Province, China". Palaeoworld 29 (4): 695–705. doi:10.1016/j.palwor.2020.03.003.
- ↑ Mingli Wan; Wenjun Sun; Jiří Bek; Feng Liu; Christopher Hill; Jun Wang (2020). "Scolecopteris minuta sp. nov., a marattialean fern from the early Permian Wuda Tuff Flora of Inner Mongolia, China". Review of Palaeobotany and Palynology 294: Article 104246. doi:10.1016/j.revpalbo.2020.104246.
- ↑ 171.0 171.1 Michael P. D'Antonio; C. Kevin Boyce; Jun Wang (2020). "Two new species of Sigillaria Brongniart from the Wuda Tuff (Asselian: Inner Mongolia, China) and their implications for lepidodendrid life history reconstruction". Review of Palaeobotany and Palynology 294: Article 104203. doi:10.1016/j.revpalbo.2020.104203.
- ↑ Chunxiang Li; Robbin C. Moran; Junye Ma; Bo Wang; Jiasheng Hao; Qun Yang (2020). "A mid-Cretaceous tree fern of Thyrsopteridaceae (Cyatheales) preserved in Myanmar amber". Cretaceous Research 105: Article 104050. doi:10.1016/j.cretres.2019.01.002. Bibcode: 2020CrRes.10504050L.
- ↑ Zhuo Feng; Hai-Bo Wei; Yun Guo; Xiao-Yuan He; Qun Sui; Yu Zhou; Hang-Yu Liu; Xu-Dong Gou et al. (2020). "From rainforest to herbland: New insights into land plant responses to the end-Permian mass extinction". Earth-Science Reviews 204: Article 103153. doi:10.1016/j.earscirev.2020.103153. Bibcode: 2020ESRv..20403153F.
- ↑ Serge V. Naugolnykh (2020). "A new species of the genus Tumidopteris Naugolnykh from the Permian of the Pechora Cis-Urals, Russia". Fossil Imprint 76 (2): 270–278. doi:10.37520/fi.2020.022.
- ↑ Zhen Tang; Yi Zhang; Serge V. Naugolnykh; Changqing Zheng; Lu Shi; Tao Qin; Junhao Huang (2020). "Ufadendron elongatum sp. nov., an Angaran lycopsid from the Upper Permian of Inner Mongolia, China". Journal of Earth Science 31 (1): 1–8. doi:10.1007/s12583-019-1230-0. Bibcode: 2020JEaSc..31....1T.
- ↑ Yu.V. Mosseichik; A.N. Filimonov (2020). "A new interpretation of Cyclostigma-like lepidophytes from the lower Tournaisian of the Minusinsk Basin (Southern Siberia)". Lethaea Rossica 20: 1–18. http://paleobot.ru/pdf/01_2020_20.pdf.
- ↑ Barry A. Thomas; Peter Appleton; Christopher J. Cleal; Leyla J. Seyfullah (2020). "The distribution of plant fossils and their palaeoecology in Duckmantian (Bashkirian, Lower Pennsylvanian) strata at Brymbo, North Wales, UK". Geological Journal 55 (4): 3179–3207. doi:10.1002/gj.3529. Bibcode: 2020GeolJ..55.3179T.
- ↑ Yuan Nie; Charles S. P. Foster; Tianqi Zhu; Ru Yao; David A. Duchêne; Simon Y. W. Ho; Bojian Zhong (2020). "Accounting for uncertainty in the evolutionary timescale of green plants through clock-partitioning and fossil calibration strategies". Systematic Biology 69 (1): 1–16. doi:10.1093/sysbio/syz032. PMID 31058981.
- ↑ Xiaodong Shang; Pengju Liu; Małgorzata Moczydłowska; Ben Yang (2020). "Algal affinity and possible life cycle of the early Cambrian acritarch Yurtusia uniformis from South China". Palaeontology 63 (6): 903–917. doi:10.1111/pala.12491. Bibcode: 2020Palgy..63..903S.
- ↑ Jorge R. Flores; Alexander C. Bippus; Guillermo M. Suárez; Jaakko Hyvönen (2020). "Defying death: incorporating fossils into the phylogeny of the complex thalloid liverworts (Marchantiidae, Marchantiophyta) confirms high order clades but reveals discrepancies in family‐level relationships". Cladistics 37 (3): 231–247. doi:10.1111/cla.12442. PMID 34478198.
- ↑ Alexander J. Hetherington; Christopher M. Berry; Liam Dolan (2020). "Multiple origins of dichotomous and lateral branching during root evolution". Nature Plants 6 (5): 454–459. doi:10.1038/s41477-020-0646-y. PMID 32366983. http://orca.cf.ac.uk/131851/1/Berry.pdf.
- ↑ Nikole K. Bonacorsi; Patricia G. Gensel; Francis M. Hueber; Charles H. Wellman; Andrew B. Leslie (2020). "A novel reproductive strategy in an Early Devonian plant". Current Biology 30 (9): R388–R389. doi:10.1016/j.cub.2020.03.040. PMID 32369746.
- ↑ Neil Brocklehurst; Christian F. Kammerer; Roger J. Benson (2020). "The origin of tetrapod herbivory: effects on local plant diversity". Proceedings of the Royal Society B: Biological Sciences 287 (1928): Article ID 20200124. doi:10.1098/rspb.2020.0124. PMID 32517628.
- ↑ Michael P. D'Antonio; C. Kevin Boyce (2020). "Arborescent lycopsid periderm production was limited". New Phytologist 228 (2): 741–751. doi:10.1111/nph.16727. PMID 32506426.
- ↑ William A. DiMichele; Richard M. Bateman (2020). "Better together: Joint consideration of anatomy and morphology illuminates the architecture and life history of the Carboniferous arborescent lycopsid Paralycopodites". Journal of Systematics and Evolution 58 (6): 783–804. doi:10.1111/jse.12662.
- ↑ Candela Blanco‐Moreno; Anne‐Laure Decombeix; Cyrille Prestianni (2020). "New insights into the affinities, autoecology, and habit of the Mesozoic fern Weichselia reticulata based on the revision of stems from Bernissart (Mons Basin, Belgium)". Papers in Palaeontology 7 (3): 1351–1372. doi:10.1002/spp2.1344. https://hal.umontpellier.fr/hal-03038289/file/BlancoMoreno%20et%20al%202021%20postprint%20for%20HAL.pdf.
- ↑ Chunxiang Li; Xinyuan Miao; Li-Bing Zhang; Junye Ma; Jiasheng Hao (2020). "Re-evaluation of the systematic position of the Jurassic–Early Cretaceous fern genus Coniopteris". Cretaceous Research 105: Article 104136. doi:10.1016/j.cretres.2019.04.007. Bibcode: 2020CrRes.10504136L.
- ↑ Facundo De Benedetti; María del C. Zamaloa; María A. Gandolfo; Néstor R. Cúneo (2020). "Reinterpretation of Paleoazolla: a heterosporous water fern from the Late Cretaceous of Patagonia, Argentina". American Journal of Botany 107 (7): 1054–1071. doi:10.1002/ajb2.1501. PMID 32596837.
- ↑ Keith Berry (2020). "The first plants to recolonize western North America following the Cretaceous-Paleogene mass extinction event". International Journal of Plant Sciences 182 (1): 19–27. doi:10.1086/711847.
- ↑ Luke E. Meade; Andrew R.G. Plackett; Jason Hilton (2020). "Reconstructing development of the earliest seed integuments raises a new hypothesis for the evolution of ancestral seed‐bearing structures". New Phytologist 229 (3): 1782–1794. doi:10.1111/nph.16792. PMID 32639670.
- ↑ Natalia Zavialova; Patrick Blomenkemper; Hans Kerp; Abdalla Abu Hamad; Benjamin Bomfleur (2020). "A lyginopterid pollen organ from the upper Permian of the Dead Sea region". Grana 60 (2): 81–96. doi:10.1080/00173134.2020.1772360.
- ↑ Miriam Slodownik; Vivi Vajda; Margret Steinthorsdottir (2020). "Fossil seed fern Lepidopteris ottonis from Sweden records increasing CO2 concentration during the end-Triassic extinction event". Palaeogeography, Palaeoclimatology, Palaeoecology 564: Article 110157. doi:10.1016/j.palaeo.2020.110157.
- ↑ Fabiany Herrera; Gongle Shi; Chris Mays; Niiden Ichinnorov; Masamichi Takahashi; Joseph J. Bevitt; Patrick S. Herendeen; Peter R. Crane (2020). "Reconstructing Krassilovia mongolica supports recognition of a new and unusual group of Mesozoic conifers". PLOS ONE 15 (1): e0226779. doi:10.1371/journal.pone.0226779. PMID 31940374. Bibcode: 2020PLoSO..1526779H.
- ↑ Bruce A. Byers; Lucía DeSoto; Dan Chaney; Sidney R. Ash; Anya B. Byers; Jonathan B. Byers; Markus Stoffel (2020). "Fire-scarred fossil tree from the Late Triassic shows a pre-fire drought signal". Scientific Reports 10 (1): Article number 20104. doi:10.1038/s41598-020-77018-w. PMID 33208853.
- ↑ Peter Wilf (2020). "Eocene "Chusquea" fossil from Patagonia is a conifer, not a bamboo". PhytoKeys (139): 77–89. doi:10.3897/phytokeys.139.48717. PMID 32076379.
- ↑ Fabien L. Condamine; Daniele Silvestro; Eva B. Koppelhus; Alexandre Antonelli (2020). "The rise of angiosperms pushed conifers to decline during global cooling". Proceedings of the National Academy of Sciences of the United States of America 117 (46): 28867–28875. doi:10.1073/pnas.2005571117. PMID 33139543. Bibcode: 2020PNAS..11728867C.
- ↑ George Poinar; Greg Poinar (2020). "The antiquity of floral secretory tissues that provide today's fragrances". Historical Biology: An International Journal of Paleobiology 32 (4): 494–499. doi:10.1080/08912963.2018.1502288. Bibcode: 2020HBio...32..494P.
- ↑ Vera A. Korasidis; Barbara E. Wagstaff (2020). "The rise of flowering plants in the high southern latitudes of Australia". Review of Palaeobotany and Palynology 272: Article 104126. doi:10.1016/j.revpalbo.2019.104126. Bibcode: 2020RPaPa.27204126K.
- ↑ Huasheng Huang; Robert Morley; Alexis Licht; Guillaume Dupont-Nivet; Friðgeir Grímsson; Reinhard Zetter; Jan Westerweel; Zaw Win et al. (2020). "Eocene palms from central Myanmar in a South-East Asian and global perspective: evidence from the palynological record". Botanical Journal of the Linnean Society 194 (2): 177–206. doi:10.1093/botlinnean/boaa038.
- ↑ Teng‐Xiang Wang; Cédric Del Rio; Steven R. Manchester; Jia Liu; Fei‐Xiang Wu; Wei‐Yu‐Dong Deng; Tao Su; Zhe‐Kun Zhou (2020). "Fossil fruits of Illigera (Hernandiaceae) from the Eocene of central Tibetan Plateau". Journal of Systematics and Evolution 59 (6): 1276–1286. doi:10.1111/jse.12687.
- ↑ Bernard Gomez; Véronique Daviero‐Gomez; Clément Coiffard; Abel Barral; Carles Martín‐Closas; David L. Dilcher (2020). "Montsechia vidalii from the Barremian of Spain, the earliest known submerged aquatic angiosperm, and its systematic relationship to Ceratophyllum". Taxon 69 (6): 1273–1292. doi:10.1002/tax.12409.
- ↑ Melanie L. DeVore; Alphonse Nyandwi; Winnie Eckardt; Elias Bizuru; Myriam Mujawamariya; Kathleen B. Pigg (2020). "Urticaceae leaves with stinging trichomes were already present in latest early Eocene Okanogan Highlands, British Columbia, Canada". American Journal of Botany 107 (10): 1449–1456. doi:10.1002/ajb2.1548. PMID 33091153.
- ↑ Roberto R. Pujana; Damián A. Fernández; Carolina Panti; Nicolás Caviglia (2020). "The micro- and megafossil record of Nothofagaceae from South America". Botanical Journal of the Linnean Society 196: 1–20. doi:10.1093/botlinnean/boaa097. ISSN 0024-4074.
- ↑ Chris Mays; Vivi Vajda; Tracy D. Frank; Christopher R. Fielding; Robert S. Nicoll; Allen P. Tevyaw; Stephen McLoughlin (2020). "Refined Permian−Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems". GSA Bulletin 132 (7–8): 1489–1513. doi:10.1130/B35355.1. Bibcode: 2020GSAB..132.1489M. http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-3834.
- ↑ Hendrik Nowak; Christian Vérard; Evelyn Kustatscher (2020). "Palaeophytogeographical patterns across the Permian–Triassic boundary". Frontiers in Earth Science 8: Article 613350. doi:10.3389/feart.2020.613350. Bibcode: 2020FrEaS...8..609N.
- ↑ Rolf W. Mathewes; David Robert Greenwood; Renee Love (2020). "The Kanaka Creek fossil flora (Huntingdon Formation), British Columbia, Canada—paleoenvironment and evidence for Paleocene age using palynology and macroflora". Canadian Journal of Earth Sciences 57 (3): 348–365. doi:10.1139/cjes-2018-0325. Bibcode: 2020CaJES..57..348M.
- ↑ Tao Su; Robert A. Spicer; Fei-Xiang Wu; Alexander Farnsworth; Jian Huang; Cédric Del Rio; Tao Deng; Lin Ding et al. (2020). "A Middle Eocene lowland humid subtropical "Shangri-La" ecosystem in central Tibet". Proceedings of the National Academy of Sciences of the United States of America 117 (52): 32989–32995. doi:10.1073/pnas.2012647117. PMID 33288692. Bibcode: 2020PNAS..11732989S.
- ↑ Matthew J. Butrim; Dana L. Royer (2020). "Leaf‐economic strategies across the Eocene–Oligocene transition correlate with dry season precipitation and paleoelevation". American Journal of Botany 107 (12): 1772–1785. doi:10.1002/ajb2.1580. PMID 33290590.
- ↑ C. Martínez; C. Jaramillo; A. Correa-Metrío; W. Crepet; J. E. Moreno; A. Aliaga; F. Moreno; M. Ibañez-Mejia et al. (2020). "Neogene precipitation, vegetation, and elevation history of the Central Andean Plateau". Science Advances 6 (35): eaaz4724. doi:10.1126/sciadv.aaz4724. PMID 32923618. Bibcode: 2020SciA....6.4724M.
- ↑ Góis‐Marques, Carlos A.; Nascimento, Lea de; Fernández‐Palacios, José María; Madeira, José; Sequeira, Miguel Menezes de (2020). "Tracing insular woodiness in giant Daucus (s.l.) fruit fossils from the Early Pleistocene of Madeira Island (Portugal)" (in en). Taxon 68 (6): 1314–1320. doi:10.1002/tax.12175. ISSN 1996-8175.
- ↑ Coiro, Mario; Martínez, Leandro C. A.; Upchurch, Garland R.; Doyle, James A. (2020). "Evidence for an extinct lineage of angiosperms from the Early Cretaceous of Patagonia and implications for the early radiation of flowering plants" (in en). New Phytologist 228 (1): 344–360. doi:10.1111/nph.16657. ISSN 1469-8137. PMID 32400897. https://www.zora.uzh.ch/id/eprint/188092/1/New_Phytologist_2020_accepted-manuscript.pdf.
- ↑ Jürg Schönenberger; Maria von Balthazar; Andrea López Martínez; Béatrice Albert; Charlotte Prieu; Susana Magallón; Hervé Sauquet (2020). "Phylogenetic analysis of fossil flowers using an angiosperm‐wide data set: proof‐of‐concept and challenges ahead". American Journal of Botany 107 (10): 1433–1448. doi:10.1002/ajb2.1538. PMID 33026116.
Original source: https://en.wikipedia.org/wiki/2020 in paleobotany.
Read more |