Biology:Charophyta

From HandWiki
Short description: Phylum of algae
Biology:Charophyta
Chara sp reproductive structure.JPG
Scientific classificationEdit this classification
(unranked): Viridiplantae
(unranked): Charophyta
Migula 1897,[1] sensu Leliaert et al. 2012
Groups included
Cladistically included but traditionally excluded taxa

Embryophyta

Charophyta (UK: /kəˈrɒfɪtə, ˌkærəˈftə/) is a group of freshwater green algae, called charophytes (/ˈkærəˌfts/), sometimes treated as a division,[2] yet also as a superdivision[3] or an unranked clade. The terrestrial plants, the Embryophyta emerged deep within Charophyta, possibly from terrestrial unicellular charophytes,[4] with the class Zygnematophyceae as a sister group.[5][6][7][8]

With the Embryophyta now cladistically placed in the Charophyte, it is a synonym of Streptophyta.[9][10][11][12] The sister group of the charophytes are the Chlorophyta. In some charophyte groups, such as the Zygnematophyceae or conjugating green algae, flagella are absent and sexual reproduction does not involve free-swimming flagellate sperm. Flagellate sperm, however, are found in stoneworts (Charales) and Coleochaetales, orders of parenchymatous charophytes that are the closest relatives of the land plants, where flagellate sperm are also present in all except the conifers and flowering plants.[13] Fossil stoneworts of early Devonian age that are similar to those of the present day have been described from the Rhynie chert of Scotland.[14] Somewhat different charophytes have also been collected from the Late Devonian (Famennian) Waterloo Farm lagerstätte of South Africa. These include two species each of Octochara and Hexachara, which are the oldest fossils of Charophyte axes bearing in situ oogonia.

The name comes from the genus Chara, but the finding that the Embryophyta actually emerged in them has not resulted in a much more restricted meaning of the Charophyta, namely to a much smaller side branch. This more restricted group corresponds to the Charophyceae.

Description

The Zygnematophyceae or, as they used to be called, Conjugatophyceae, generally possess two fairly elaborate chloroplasts in each cell, rather than many discoid ones. They reproduce asexually by the development of a septum between the two cell-halves or semi-cells (in unicellular forms, each daughter-cell develops the other semi-cell afresh) and sexually by conjugation, or the fusion of the entire cell-contents of the two conjugating cells. The saccoderm desmids and the placoderm or true desmids, unicellular or filamentous members of the Zygnematophyceae, are dominant in non-calcareous, acid waters of oligotrophic or primitive lakes (e.g. Wastwater), or in lochans, tarns and bogs, as in the West of Scotland, Eire, parts of Wales and of the Lake District.[15]

Klebsormidium, the type of the Klebsormidiophyceae, is a simple filamentous form with circular, plate-like chloroplasts, reproducing by fragmentation, by dorsiventral, biciliate swarmers and, according to Wille, a twentieth-century algologist, by aplanospores.[16] Sexual reproduction is simple and isogamous (the male and female gametes are outwardly indistinguishable).[16]

The Charales (Charophyceae), or stoneworts, are freshwater and brackish algae with slender green or grey stems; the grey colour of many species results from the deposition of lime on the walls, masking the green colour of the chlorophyll. The main stems are slender and branch occasionally. Lateral branchlets occur in whorls at regular intervals up the stem, they are attached by rhizoids to the substrate.[17] The reproductive organs consist of antheridia and oogonia, though the structures of these organs differ considerably from the corresponding organs in other algae. As a result of fertilization, a protonema is formed, from which the sexually reproducing algae develops.

A new terrestrial genus found in sandy soil in the Czech Republic, Streptofilum, may belong in its own class due its unique phylogenetic position. A cell wall is absent, instead the cell membrane consist of many layers of specific scales. It is a short, filamentous and unbranched algae surrounded by a mucilaginous sheath, which often disintegrates to diads and unicells.[18]

Reproduction

The cells in Charophyta algae are all haploid, except during sexual reproduction, where a diploid unicellular zygote is produced. The zygote turns into four new haploid cells through meiosis, which will develop into new algae. In multicellular forms these haploid cells will grow into a gametophyte. In embryophytes (land plants) the zygote will instead give rise to a multicellular sporophyte.[19][20]

Classification

Charophyta are complex green algae that form a sister group to the Chlorophyta and within which the Embryophyta emerged. The chlorophyte and charophyte green algae and the embryophytes or land plants form a clade called the green plants or Viridiplantae, that is united among other things by the absence of phycobilins, the presence of chlorophyll a and chlorophyll b, cellulose in the cell wall and the use of starch, stored in the plastids, as a storage polysaccharide. The charophytes and embryophytes share several traits that distinguish them from the chlorophytes, such as the presence of certain enzymes (class I aldolase, Cu/Zn superoxide dismutase, glycolate oxidase, flagellar peroxidase), lateral flagella (when present), and, in many species, the use of phragmoplasts in mitosis.[21] Thus Charophyta and Embryophyta together form the clade Streptophyta, excluding the Chlorophyta.

Charophytes such as Palaeonitella cranii and possibly the yet unassigned Parka decipiens[22] are present in the fossil record of the Devonian.[14] Palaeonitella differed little from some present-day stoneworts.

Cladogram

There is an emerging consensus on green algal relationships, mainly based on molecular data.[21][23][24][25][9][2][6][26][27][28][29][30][18][31] The Mesostigmatophyceae (including Spirotaenia, and Chlorokybophyceae) are at the base of charophytes (streptophytes). The cladograms below show consensus phylogenetic relationships based on plastid genomes[32] and a new proposal for a third phylum of green plants based on analysis of nuclear genomes.[33]

Script error: No such module "Clade/gallery".

Mesostigmatophyceae s.l. in the cladograms corresponds to a clade of a narrower circumscription, Mesostigmatophyceae s.s., and a separate class Chlorokybophyceae, as used by AlgaeBase.[1]

The Mesostigmatophyceae are not filamentous, but the other basal charophytes (streptophytes) are.[34][18][28]

References

  1. 1.0 1.1 Guiry, M.D.; Guiry, G.M. (2024). "Charophytes". AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org/browse/taxonomy/?id=97242. 
  2. 2.0 2.1 Lewis, Louise A.; McCourt, Richard M. (2004). "Green algae and the origin of land plants". American Journal of Botany 91 (10): 1535–56. doi:10.3732/ajb.91.10.1535. PMID 21652308. 
  3. Ruggiero, M. A. et al. (2015). "A higher level classification of all living organisms". PLOS One 10 (4): e0119248. doi:10.1371/journal.pone.0119248. PMID 25923521. Bibcode2015PLoSO..1019248R. 
  4. de Vries, J; Archibald, JM (March 2018). "Plant evolution: landmarks on the path to terrestrial life.". The New Phytologist 217 (4): 1428–1434. doi:10.1111/nph.14975. PMID 29318635. 
  5. Del-Bem, Luiz-Eduardo (2018-05-31). "Xyloglucan evolution and the terrestrialization of green plants" (in en). New Phytologist 219 (4): 1150–1153. doi:10.1111/nph.15191. ISSN 0028-646X. PMID 29851097. 
  6. 6.0 6.1 Ruhfel, Brad R.; Gitzendanner, Matthew A.; Soltis, Pamela S.; Soltis, Douglas E.; Burleigh, J. Gordon (2014-02-17). "From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes". BMC Evolutionary Biology 14: 23. doi:10.1186/1471-2148-14-23. ISSN 1471-2148. PMID 24533922. 
  7. Wickett, Norman J.; Mirarab, Siavash; Nguyen, Nam; Warnow, Tandy; Carpenter, Eric; Matasci, Naim; Ayyampalayam, Saravanaraj; Barker, Michael S. et al. (2014-11-11). "Phylotranscriptomic analysis of the origin and early diversification of land plants" (in en). Proceedings of the National Academy of Sciences 111 (45): E4859–E4868. doi:10.1073/pnas.1323926111. ISSN 0027-8424. PMID 25355905. Bibcode2014PNAS..111E4859W. 
  8. Vries, Jan de; Stanton, Amanda; Archibald, John M.; Gould, Sven B. (2016-02-16). "Streptophyte Terrestrialization in Light of Plastid Evolution" (in en). Trends in Plant Science 21 (6): 467–476. doi:10.1016/j.tplants.2016.01.021. ISSN 1360-1385. PMID 26895731. 
  9. 9.0 9.1 Cook, Martha E.; Graham, Linda E. (2017). "Chlorokybophyceae, Klebsormidiophyceae, Coleochaetophyceae". in Archibald, John M. (in en). Handbook of the Protists. Springer International Publishing. pp. 185–204. doi:10.1007/978-3-319-28149-0_36. ISBN 9783319281476. 
  10. Delwiche, Charles F.; Timme, Ruth E. (2011). "Plants". Current Biology 21 (11): R417–R422. doi:10.1016/j.cub.2011.04.021. PMID 21640897. 
  11. Karol, Kenneth G.; McCourt, Richard M.; Cimino, Matthew T.; Delwiche, Charles F. (2001-12-14). "The Closest Living Relatives of Land Plants" (in en). Science 294 (5550): 2351–2353. doi:10.1126/science.1065156. ISSN 0036-8075. PMID 11743201. Bibcode2001Sci...294.2351K. 
  12. Lewis, Louise A.; McCourt, Richard M. (2004). "Green algae and the origin of land plants" (in en). American Journal of Botany 91 (10): 1535–1556. doi:10.3732/ajb.91.10.1535. ISSN 1537-2197. PMID 21652308. https://onlinelibrary.wiley.com/doi/abs/10.3732/ajb.91.10.1535. 
  13. Vaughn, K.C.; Renzaglia, K.S. (2006). "Structural and immunocytochemical characterization of the Ginkgo biloba L. sperm motility apparatus". Protoplasma 227 (2–4): 165–73. doi:10.1007/s00709-005-0141-3. PMID 16736257. https://naldc-legacy.nal.usda.gov/naldc/download.xhtml?id=32589&content=PDF. 
  14. 14.0 14.1 Kelman, R.; Feist, M.; Trewin, N.H.; Hass, H. (2003). "Charophyte algae from the Rhynie chert". Transactions of the Royal Society of Edinburgh: Earth Sciences 94 (4): 445–455. doi:10.1017/s0263593300000808. 
  15. West, G.S; Fritsch, F.E. (1927). A Treatise of the British Freshwater Algae. Cambridge: Cambridge University Press. 
  16. 16.0 16.1 Fritsch, F.E. (1935). The Structure and Reproduction of the Algae, vol I. Cambridge University Press. pp. 205–206. 
  17. Bryant 2007, J. The Stoneworts (Chlorophyta, Charales) in Guiry, M.D., John, D.M., Rindi, F. and McCarthy, T.K (Ed) New Survey of Clare Island Volume 6: The Freshwater and Terrestrial Algae. Royal Irish Academy. ISBN:9781904890317
  18. 18.0 18.1 18.2 Mikhailyuk, Tatiana; Lukešová, Alena; Glaser, Karin; Holzinger, Andreas; Obwegeser, Sabrina; Nyporko, Svetlana; Friedl, Thomas; Karsten, Ulf (2018). "New Taxa of Streptophyte Algae (Streptophyta) from Terrestrial Habitats Revealed Using an Integrative Approach". Protist 169 (3): 406–431. doi:10.1016/j.protis.2018.03.002. ISSN 1434-4610. PMID 29860113. 
  19. Evolution and development of land plant embryos - GtR - UKRI
  20. Becker, B.; Marin, B. (2009). "Streptophyte algae and the origin of embryophytes". Annals of Botany 103 (7): 999–1004. doi:10.1093/aob/mcp044. PMID 19273476. 
  21. 21.0 21.1 Leliaert, Frederik; Smith, David R.; Moreau, Hervé; Herron, Matthew D.; Verbruggen, Heroen; Delwiche, Charles F.; De Clerck, Olivier (2012). "Phylogeny and molecular evolution of the green algae". Critical Reviews in Plant Sciences 31: 1–46. doi:10.1080/07352689.2011.615705. http://images.algaebase.org/pdf/5628E58F0ecc431F0CsJm2B04CAD/49951.pdf. Retrieved 2016-10-04. 
  22. Hemsley, A.R. (1989). "The ultrastructure of the spores of the Devonian plant Parka decipiens". Annals of Botany 64 (3): 359–367. doi:10.1093/oxfordjournals.aob.a087852. 
  23. Marin, Birger (2012). "Nested in the Chlorellales or Independent Class? Phylogeny and Classification of the Pedinophyceae (Viridiplantae) Revealed by Molecular Phylogenetic Analyses of Complete Nuclear and Plastid-encoded rRNA Operons". Protist 163 (5): 778–805. doi:10.1016/j.protis.2011.11.004. PMID 22192529. 
  24. Laurin-Lemay, Simon; Brinkmann, Henner; Philippe, Hervé (2012). "Origin of land plants revisited in the light of sequence contamination and missing data". Current Biology 22 (15): R593–R594. doi:10.1016/j.cub.2012.06.013. PMID 22877776. 
  25. Leliaert, Frederik; Tronholm, Ana; Lemieux, Claude; Turmel, Monique; DePriest, Michael S.; Bhattacharya, Debashish; Karol, Kenneth G.; Fredericq, Suzanne et al. (2016-05-09). "Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov." (in en). Scientific Reports 6: 25367. doi:10.1038/srep25367. ISSN 2045-2322. PMID 27157793. Bibcode2016NatSR...625367L. 
  26. Adl, Sina M.; Simpson, Alastair G. B.; Lane, Christopher E.; Lukeš, Julius; Bass, David; Bowser, Samuel S.; Brown, Matthew W.; Burki, Fabien et al. (2012-09-01). "The Revised Classification of Eukaryotes" (in en). Journal of Eukaryotic Microbiology 59 (5): 429–514. doi:10.1111/j.1550-7408.2012.00644.x. ISSN 1550-7408. PMID 23020233. 
  27. Lemieux, Claude; Otis, Christian; Turmel, Monique (2007-01-12). "A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies". BMC Biology 5: 2. doi:10.1186/1741-7007-5-2. ISSN 1741-7007. PMID 17222354. 
  28. 28.0 28.1 Umen, James G. (2014-11-01). "Green Algae and the Origins of Multicellularity in the Plant Kingdom" (in en). Cold Spring Harbor Perspectives in Biology 6 (11): a016170. doi:10.1101/cshperspect.a016170. ISSN 1943-0264. PMID 25324214. 
  29. Sánchez-Baracaldo, Patricia; Raven, John A.; Pisani, Davide; Knoll, Andrew H. (2017-09-12). "Early photosynthetic eukaryotes inhabited low-salinity habitats". Proceedings of the National Academy of Sciences 114 (37): E7737–E7745. doi:10.1073/pnas.1620089114. PMID 28808007. Bibcode2017PNAS..114E7737S. 
  30. Gitzendanner, Matthew A.; Soltis, Pamela S.; Wong, Gane K.-S.; Ruhfel, Brad R.; Soltis, Douglas E. (2018). "Plastid phylogenomic analysis of green plants: A billion years of evolutionary history" (in en). American Journal of Botany 105 (3): 291–301. doi:10.1002/ajb2.1048. ISSN 0002-9122. PMID 29603143. 
  31. Glass, Sarah (2021). Chloroplast Genome Evolution in the Klebsormidiophyceae and Streptofilum (MS thesis). Lehman College.
  32. Turmel, Monique; Lemieux, Claude (2018), "Evolution of the Plastid Genome in Green Algae", Advances in Botanical Research (Elsevier): pp. 157–193, doi:10.1016/bs.abr.2017.11.010, ISBN 9780128134573, https://www.researchgate.net/publication/321734296 
  33. Li, Linzhou; Wang, Sibo; Wang, Hongli; Sahu, Sunil Kumar; Marin, Birger; Li, Haoyuan; Xu, Yan; Liang, Hongping et al. (2020). "The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants" (in en). Nature Ecology & Evolution 4 (9): 1220–1231. doi:10.1038/s41559-020-1221-7. ISSN 2397-334X. PMID 32572216. 
  34. Nishiyama, Tomoaki; Sakayama, Hidetoshi; de Vries, Jan; Buschmann, Henrik; Saint-Marcoux, Denis; Ullrich, Kristian K.; Haas, Fabian B.; Vanderstraeten, Lisa et al. (2018). "The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization". Cell 174 (2): 448–464.e24. doi:10.1016/j.cell.2018.06.033. ISSN 0092-8674. PMID 30007417. 

External links

Wikidata ☰ Q133219 entry