Biology:MT-ND2
Generic protein structure example |
MT-ND2 is a gene of the mitochondrial genome coding for the NADH dehydrogenase 2 (ND2) protein.[1] The ND2 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain.[2] Variants of human MT-ND2 are associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), Leigh's syndrome (LS), Leber's hereditary optic neuropathy (LHON) and increases in adult BMI.[3][4][5]
Structure
MT-ND2 is located in mitochondrial DNA from base pair 4,470 to 5,511.[1] The MT-ND2 gene produces a 39 kDa protein composed of 347 amino acids.[6][7] MT-ND2 is one of seven mitochondrial genes encoding subunits of the enzyme NADH dehydrogenase (ubiquinone), together with MT-ND1, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, and MT-ND6. Also known as Complex I, this enzyme is the largest of the respiratory complexes. The structure is L-shaped with a long, hydrophobic transmembrane domain and a hydrophilic domain for the peripheral arm that includes all the known redox centres and the NADH binding site. The MT-ND2 product and the rest of the mitochondrially encoded subunits are the most hydrophobic of the subunits of Complex I and form the core of the transmembrane region.[2]
Function
The MT-ND2 product is a subunit of the respiratory chain Complex I that is believed to belong to the minimal assembly of core proteins required to catalyze NADH dehydrogenation and electron transfer to ubiquinone (coenzyme Q10).[8] Initially, NADH binds to Complex I and transfers two electrons to the isoalloxazine ring of the flavin mononucleotide (FMN) prosthetic arm to form FMNH2. The electrons are transferred through a series of iron-sulfur (Fe-S) clusters in the prosthetic arm and finally to coenzyme Q10 (CoQ), which is reduced to ubiquinol (CoQH2). The flow of electrons changes the redox state of the protein, resulting in a conformational change and pK shift of the ionizable side chain, which pumps four hydrogen ions out of the mitochondrial matrix.[2]
Clinical significance
Pathogenic variants of the mitochondrial gene MT-ND2 are known to cause mtDNA-associated Leigh syndrome, as are variants of MT-ATP6, MT-TL1, MT-TK, MT-TW, MT-TV, MT-ND1, MT-ND3, MT-ND4, MT-ND5, MT-ND6 and MT-CO3. Abnormalities in mitochondrial energy generation result in neurodegenerative disorders like Leigh syndrome, which is characterized by an onset of symptoms between 12 months and three years of age. The symptoms frequently present themselves following a viral infection and include movement disorders and peripheral neuropathy, as well as hypotonia, spasticity and cerebellar ataxia. Roughly half of affected patients die of respiratory or cardiac failure by the age of three. Leigh syndrome is a maternally inherited disorder and its diagnosis is established through genetic testing of the aforementioned mitochondrial genes, including MT-ND2.[3] These complex I genes have been associated with a variety of neurodegenerative disorders, including Leber's hereditary optic neuropathy (LHON), mitochondrial encephalomyopathy with stroke-like episodes (MELAS) and the previously mentioned Leigh syndrome.[4]
Mitochondrial dysfunction resulting from variants of MT-ND2, MT-ND1 and MT-ND4L have been linked to BMI in adults and implicated in metabolic disorders including obesity, diabetes and hypertension.[5]
References
- ↑ 1.0 1.1 "Entrez Gene: MT-ND2 NADH dehydrogenase subunit 2". https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=4536.
- ↑ 2.0 2.1 2.2 Voet, Donald J.; Voet, Judith G.; Pratt, Charlotte W. (2013). "Chapter 18: Mitochondrial ATP synthesis". Fundamentals of Biochemistry (4th ed.). Hoboken, NJ: Wiley. pp. 581–620. ISBN 978-0-47054784-7.
- ↑ 3.0 3.1 "Mitochondrial DNA-Associated Leigh Syndrome and NARP". GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle. 1993–2015. https://www.ncbi.nlm.nih.gov/books/NBK1173.
- ↑ 4.0 4.1 "Association of the mtDNA m.4171C>A/MT-ND1 mutation with both optic neuropathy and bilateral brainstem lesions". BMC Neurology 14: 116. 2014. doi:10.1186/1471-2377-14-116. PMID 24884847.
- ↑ 5.0 5.1 "Mitochondrial genetic variants identified to be associated with BMI in adults". PLOS ONE 9 (8): e105116. 2014. doi:10.1371/journal.pone.0105116. PMID 25153900. Bibcode: 2014PLoSO...9j5116F.
- ↑ "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research 113 (9): 1043–53. Oct 2013. doi:10.1161/CIRCRESAHA.113.301151. PMID 23965338.
- ↑ "Mitochondrially encoded NADH dehydrogenase 2". Cardiac Organellar Protein Atlas Knowledgebase (COPaKB). https://amino.heartproteome.org/web/protein/P03891.
- ↑ "MT-ND2 - NADH-ubiquinone oxidoreductase chain 2 - Homo sapiens (Human)". The UniProt Consortium. https://www.uniprot.org/uniprot/P03891.
Further reading
- "Harvesting the fruit of the human mtDNA tree". Trends in Genetics 22 (6): 339–45. Jun 2006. doi:10.1016/j.tig.2006.04.001. PMID 16678300.
- "Dinucleotide repeat in the human mitochondrial D-loop". Human Molecular Genetics 1 (2): 140. May 1992. doi:10.1093/hmg/1.2.140-a. PMID 1301157.
- "Detection of point mutations in codon 331 of mitochondrial NADH dehydrogenase subunit 2 in Alzheimer's brains". Biochemical and Biophysical Research Communications 182 (1): 238–46. Jan 1992. doi:10.1016/S0006-291X(05)80136-6. PMID 1370613.
- "Differentiation of HT-29 human colonic adenocarcinoma cells correlates with increased expression of mitochondrial RNA: effects of trehalose on cell growth and maturation". Cancer Research 52 (13): 3718–25. Jul 1992. PMID 1377597.
- "Mitochondrial DNA complex I and III mutations associated with Leber's hereditary optic neuropathy". Genetics 130 (1): 163–73. Jan 1992. doi:10.1093/genetics/130.1.163. PMID 1732158.
- "Normal variants of human mitochondrial DNA and translation products: the building of a reference data base". Human Genetics 88 (2): 139–45. Dec 1991. doi:10.1007/bf00206061. PMID 1757091.
- "Alternative, simultaneous complex I mitochondrial DNA mutations in Leber's hereditary optic neuropathy". Biochemical and Biophysical Research Communications 174 (3): 1324–30. Feb 1991. doi:10.1016/0006-291X(91)91567-V. PMID 1900003.
- "Replication-competent human mitochondrial DNA lacking the heavy-strand promoter region". Molecular and Cellular Biology 11 (3): 1631–7. Mar 1991. doi:10.1128/MCB.11.3.1631. PMID 1996112.
- "Seven unidentified reading frames of human mitochondrial DNA encode subunits of the respiratory chain NADH dehydrogenase". Cold Spring Harbor Symposia on Quantitative Biology 51 (1): 103–14. 1987. doi:10.1101/sqb.1986.051.01.013. PMID 3472707.
- "URF6, last unidentified reading frame of human mtDNA, codes for an NADH dehydrogenase subunit". Science 234 (4776): 614–8. Oct 1986. doi:10.1126/science.3764430. PMID 3764430. Bibcode: 1986Sci...234..614C.
- "Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase". Nature 314 (6012): 592–7. 1985. doi:10.1038/314592a0. PMID 3921850. Bibcode: 1985Natur.314..592C.
- "Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing". Journal of Molecular Biology 143 (2): 161–78. Oct 1980. doi:10.1016/0022-2836(80)90196-5. PMID 6260957.
- "Sequence and organization of the human mitochondrial genome". Nature 290 (5806): 457–65. Apr 1981. doi:10.1038/290457a0. PMID 7219534. Bibcode: 1981Natur.290..457A.
- "Distinctive features of the 5'-terminal sequences of the human mitochondrial mRNAs". Nature 290 (5806): 465–70. Apr 1981. doi:10.1038/290465a0. PMID 7219535. Bibcode: 1981Natur.290..465M.
- "Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs". Proceedings of the National Academy of Sciences of the United States of America 92 (2): 532–6. Jan 1995. doi:10.1073/pnas.92.2.532. PMID 7530363. Bibcode: 1995PNAS...92..532H.
- "Automating the identification of DNA variations using quality-based fluorescence re-sequencing: analysis of the human mitochondrial genome". Nucleic Acids Research 26 (4): 967–73. Feb 1998. doi:10.1093/nar/26.4.967. PMID 9461455.
- "Departure from neutrality at the mitochondrial NADH dehydrogenase subunit 2 gene in humans, but not in chimpanzees". Genetics 148 (1): 409–21. Jan 1998. doi:10.1093/genetics/148.1.409. PMID 9475751.
- "Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA". Nature Genetics 23 (2): 147. Oct 1999. doi:10.1038/13779. PMID 10508508.
- "Mitochondrial genome variation and the origin of modern humans". Nature 408 (6813): 708–13. Dec 2000. doi:10.1038/35047064. PMID 11130070. Bibcode: 2000Natur.408..708I.
- "Phylogenetic network for European mtDNA". American Journal of Human Genetics 68 (6): 1475–84. Jun 2001. doi:10.1086/320591. PMID 11349229.
External links
Original source: https://en.wikipedia.org/wiki/MT-ND2.
Read more |