Physics:Orders of magnitude (magnetic field)

From HandWiki

This page lists examples of magnetic induction B in teslas and gauss produced by various sources, grouped by orders of magnitude. Note:

  • Traditionally, magnetizing field H, is measured in amperes per meter.
  • Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m2].[1]
  • One tesla is equal to 104 gauss.
  • Magnetic field drops off as the inverse cube of the distance (1/distance3) from a dipole source.
  • Energy required to produce laboratory magnetic fields increases with the square of magnetic field.[2]

Examples

These examples attempt to make the measuring point clear, usually the surface of the item mentioned.

Magnetic field strength (from lower to higher orders of magnitude)
Factor

(tesla)

SI name SI

Value

CGS

Value

Example of magnetic field strength
10−18 T attotesla 1 aT 10 fG
5 aT 50 fG Sensitivity of Gravity Probe B gyroscope's "SQUID" magnetometer (most sensitive when averaged over days)[3]
10−17 T 10 aT 100 fG
10−16 T 100 aT 1 pG
10−15 T femtotesla 1 fT 10 pG
2 fT 20 pG
10−14 T 10 fT 100 pG
10−13 T 100 fT 1 nG Human brain
10−12 T picotesla 1 pT 10 nG
10−11 T 10 pT 100 nG "Potholes" in the magnetic field found in the heliosheath around the Solar System reported by Voyager 1 (NASA, 2006)[4]
10−10 T 100 pT 1 μG Heliosphere
10−9 T nanotesla 1 nT 10 μG
10−8 T 10 nT 100 μG
10−7 T 100 nT 1 mG Coffeemaker (30 cm or 1 ft away)[5]
100 nT to 500 nT 1 mG to 5 mG Residential electric distribution lines (34.5 kV) (15 m or 49 ft away)[5][6]
10−6 T microtesla 1 μT 10 mG Blender (30 cm or 1 ft away)[5]
1.3 μT to 2.7 μT 13 mG to 27 mG High power (500 kV) transmission lines (30 m or 100 ft away)[6]
6 μT 60 mG Microwave oven (30 cm or 1 ft away)[5]
10−5 T 10 μT 100 mG
24 μT 240 mG Magnetic tape near tape head
31 μT 310 mG Earth's magnetic field at 0° latitude (on the equator)
58 μT 580 mG Earth's magnetic field at 50° latitude
10−4 T 100 μT 1 G Magnetic flux density that will induce an electromotive force of 10-8 volts in each centimeter of a wire moving perpendicularly at 1 centimeter/second by definition (1 gauss = 1 maxwell/centimeter²)[7]
500 μT 5 G Suggested exposure limit for cardiac pacemakers by American Conference of Governmental Industrial Hygienists (ACGIH)
10−3 T millitesla 1 mT 10 G Refrigerator magnets (loosely quoted as: 10 G,[8] 50 G,[9] 100 G,[10][11] 300 G[12])
10−2 T centitesla 10 mT 100 G
30 mT 300 G Penny-sized ferrite magnet
10−1 T decitesla 100 mT 1 kG Penny-sized neodymium magnet
150 mT 1.5 kG Sunspot
100 T tesla 1 T 10 kG Inside the core of a 60 Hz power transformer (1 T to 2 T (As of 2001))[13][14] or voice coil gap of a loudspeaker magnet (1 T to 2.4 T (As of 2006))[15]
1.5 T to 7 T 15 kG to 70 kG Medical magnetic resonance imaging systems (in practice)[16][17][18]
9.4 T 94 kG Experimental magnetic resonance imaging systems: NMR spectrometer at 400 MHz (9.4 T) to 500 MHz (11.7 T)
101 T decatesla 10 T 100 kG
11.7 T 117 kG
16 T 160 kG Levitate a frog by distorting its atomic orbitals[19]
23.5 T 235 kG 1 GHz NMR spectrometer[20]
32 T 235 kG Strongest continuous magnet field produced by all-superconducting magnet[21][22]
38 T 380 kG Strongest continuous magnetic field produced by non-superconductive resistive magnet[23]
45.22 T 452.2 kG Strongest non-tiny continuous magnetic field produced in a laboratory (Steady High Magnetic Field Facility (SHMFF) in Hefei, China, 2022),[24] beating previous 45 T record (National High Magnetic Field Laboratory's FSU, USA, 1999)[25] (both are hybrid magnets, combining a superconducting magnet with a resistive magnet)
45.5 T 455 kG Strongest continuous magnetic field produced in a laboratory (National High Magnetic Field Laboratory's FSU, USA, 2019), though the magnet is tiny (only 390 grams)[26]
102 T hectotesla 100 T 1 MG Strongest pulsed non-destructive ("multi-shot") magnetic field produced in a laboratory (Pulsed Field Facility at National High Magnetic Field Laboratory's Los Alamos National Laboratory, Los Alamos, NM, USA)[27]
103 T kilotesla 1 kT 10 MG
1.2 kT 12 MG Record for indoor pulsed magnetic field, (University of Tokyo, 2018)[28]
2.8 kT 28 MG Record for human produced, pulsed magnetic field, (VNIIEF, 2001)[29]
104 T 10 kT 100 MG
35 kT 350 MG Felt by valence electrons in a xenon atom due to the spin–orbit effect[30]
105 T 100 kT 1 GG Non-magnetar neutron stars[31]
106 T megatesla 1 MT 10 GG
107 T 10 MT 100 GG
108 T 100 MT 1 TG
109 T gigatesla 1 GT 10 TG Schwinger limit (~4.41 GT) above which the electromagnetic field becomes nonlinear
1010 T 10 GT 100 TG Magnetar neutron stars[32]
1011 T 100 GT 1 PG
1012 T teratesla 1 TT 10 PG
1013 T 10 TT 100 PG
16 TT 160 PG Swift J0243.6+6124 most magnetic pulsar[33][34]
1014 T 100 TT 1 EG Magnetic fields inside heavy ion collisions at RHIC[35][36]

References

  1. "Bureau International des Poids et Mesures, The International System of Units (SI), 8th edition 2006". bipm.org. 2012-10-01. http://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf. 
  2. Laboratory, National High Magnetic Field. "Tesla Definition - MagLab" (in en). https://nationalmaglab.org/about-the-maglab/around-the-lab/maglab-dictionary/tesla/#:~:text=The%20typical%20strength%20of%20the,45%20tesla%20for%20DC%20fields.. 
  3. Range, Shannon K'doah. Gravity Probe B: Examining Einstein's Spacetime with Gyroscopes. National Aeronautics and Space Administration. October 2004.
  4. "Surprises from the Edge of the Solar System". NASA. 2006-09-21. https://science.nasa.gov/headlines/y2006/21sep_voyager.htm?list823631. 
  5. 5.0 5.1 5.2 5.3 "Magnetic Field Levels Around Homes". p. 2. http://www-ehs.ucsd.edu/LBCI/LIPA_Magnetic_Field_Levels_Around_Homes.pdf. 
  6. 6.0 6.1 "EMF in Your Environment: Magnetic Field Measurements of Everyday Electrical Devices". 1992. pp. 23–24. https://nepis.epa.gov/Exe/ZyNET.exe/000005EP.txt?ZyActionD=ZyDocument&Client=EPA&Index=1991%20Thru%201994&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&UseQField=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5CZYFILES%5CINDEX%20DATA%5C91THRU94%5CTXT%5C00000002%5C000005EP.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=26. 
  7. "Gauss | magnetic field, electromagnetism, mathematics | Britannica" (in en). https://www.britannica.com/science/gauss. 
  8. adamsmagnetic (2021-01-04). "What Does Gauss Mean & What Does Gauss Measure?" (in en). https://www.adamsmagnetic.com/blogs/magnet-blog-what-you-need-know-about-gauss/. 
  9. "Tesla - Unit of Magnetic Flux Density" (in en-us). https://www.electricity-magnetism.org/tesla-unit-of-magnetic-flux-density/. 
  10. "Information on MRI Technique". Nevus Network. http://www.nevusnetwork.org/mritech.htm. 
  11. Laboratory, National High Magnetic Field. "Tesla Definition - MagLab" (in en). https://nationalmaglab.org/about-the-maglab/around-the-lab/maglab-dictionary/tesla/. 
  12. Boettger, John (2019). "The Hall Effect Gaussmeter". https://fwbell.com/wp-content/uploads/2019/04/Hall_Effect_Gauss.pdf. 
  13. Johnson, Gary L. (2001-10-29). "Inductors and transformers". eece.ksu.edu. http://www.eece.ksu.edu/~gjohnson/tcchap4.pdf. "A modern well-designed 60 Hz power transformer will probably have a magnetic flux density between 1 and 2 T inside the core." 
  14. "Trafo-Bestimmung 3von3". radiomuseum.org. 2009-07-11. http://www.radiomuseum.org/forumdata/upload/Trafo%2DBestimmung%5F3von3%2Epdf. 
  15. Elliot, Rod (2006-12-16). "Power Handling Vs. Efficiency". http://sound.whsites.net/articles/pwr-vs-eff.htm. "Typical flux densities for (half decent) loudspeakers range from around 1 Tesla (10,000 Gauss) up to around 2.4T, and I would suggest that anything less than 1T is next to useless. Very few drivers use magnetic materials that will provide much more than 1.8T across the gap..." 
  16. Savage, Niel (2013-10-23). "The World's Most Powerful MRI Takes Shape". https://spectrum.ieee.org/biomedical/imaging/the-worlds-most-powerful-mri-takes-shape. 
  17. Smith, Hans-Jørgen. "Magnetic resonance imaging". Medcyclopaedia Textbook of Radiology. GE Healthcare. http://www.medcyclopaedia.com/library/radiology/chapter04/4_5.aspx. 
  18. Orenstein, Beth W. (2006-02-16). "Ultra High-Field MRI — The Pull of Big Magnets". Radiology Today 7 (3): pp. 10. http://www.radiologytoday.net/archive/rt21606p10.shtml. 
  19. "Frog defies gravity". New Scientist (2077). 12 April 1997. https://www.newscientist.com/article/mg15420771.600-frog-defies-gravity.html. 
  20. "23.5 Tesla Standard-Bore, Persistent Superconducting Magnet". http://www.bruker.com/en/products/mr/nmr/magnets/nmr-superconducting-magnets/avance-1000/overview.html. 
  21. "32 Tesla All-Superconducting Magnet". National High Magnetic Field Laboratory. https://nationalmaglab.org/magnet-development/magnet-science-technology/magnet-projects/32-tesla-scm. 
  22. Liu, Jianhua; Wang, Qiuliang; Qin, Lang; Zhou, Benzhe; Wang, Kangshuai; Wang, Yaohui; Wang, Lei; Zhang, Zili et al. (2020-03-01). "World record 32.35 tesla direct-current magnetic field generated with an all-superconducting magnet". Superconductor Science and Technology 33 (3): 03LT01. doi:10.1088/1361-6668/ab714e. ISSN 0953-2048. Bibcode2020SuScT..33cLT01L. https://iopscience.iop.org/article/10.1088/1361-6668/ab714e. 
  23. ingevoerd, Geen OWMS velden. "HFML sets world record with a new 38 tesla magnet". https://www.ru.nl/nieuws-agenda/nieuws/vm/imm/vastestoffysica/2014/38tesla/@936560/hfml-sets-world/. 
  24. "World's strongest steady magnetic field generated in China" (in en-US). 2022-08-16. https://newatlas.com/physics/worlds-strongest-steady-magnetic-field/. 
  25. "Mag Lab Press Release: World's Most Powerful Magnet Tested Ushers in New Era for Steady High Field Research (December 17, 1999)". https://legacywww.magnet.fsu.edu/mediacenter/news/pressreleases/1999december17.html. 
  26. Laboratory, National High Magnetic Field. "With mini magnet, National MagLab creates world-record magnetic field - MagLab" (in en). https://nationalmaglab.org/news-events/news/lbc-project-world-record-magnetic-field/. 
  27. Laboratory, Los Alamos National. "Physical Sciences | Organizations" (in en). https://organizations.lanl.gov/physical-sciences/materials-physics-applications/nhmfl/. 
  28. Nakamura, D.; Ikeda, A.; Sawabe, H.; Matsuda, Y. H.; Takeyama, S. (2018). "Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression". Review of Scientific Instruments 89 (9): 095106. doi:10.1063/1.5044557. PMID 30278742. Bibcode2018RScI...89i5106N. 
  29. Bykov, A.I.; Dolotenko, M.I.; Kolokolchikov, N.P.; Selemir, V.D.; Tatsenko, O.M. (2001). "VNIIEF achievements on ultra-high magnetic fields generation". Physica B: Condensed Matter 294–295: 574–578. doi:10.1016/S0921-4526(00)00723-7. Bibcode2001PhyB..294..574B. 
  30. Herman, Frank (15 December 1963). "Relativistic Corrections to the Band Structure of Tetrahedrally Bonded Semiconductors". Physical Review Letters 11 (541): 541–545. doi:10.1103/PhysRevLett.11.541. Bibcode1963PhRvL..11..541H. 
  31. Reisenegger, A. (2003). "Origin and Evolution of Neutron Star Magnetic Fields". arXiv:astro-ph/0307133.
  32. Kaspi, Victoria M.; Beloborodov, Andrei M. (2017). "Magnetars". Annual Review of Astronomy and Astrophysics 55 (1): 261–301. doi:10.1146/annurev-astro-081915-023329. Bibcode2017ARA&A..55..261K. 
  33. Kong, Ling-Da; Zhang, Shu; Zhang, Shuang-Nan; Ji, Long; Doroshenko, Victor; Santangelo, Andrea; Chen, Yu-Peng; Lu, Fang-Jun et al. (2022-07-01). "Insight-HXMT Discovery of the Highest-energy CRSF from the First Galactic Ultraluminous X-Ray Pulsar Swift J0243.6+6124". The Astrophysical Journal Letters 933 (1): L3. doi:10.3847/2041-8213/ac7711. ISSN 2041-8205. Bibcode2022ApJ...933L...3K. 
  34. "Astronomers measure strongest magnetic field ever detected" (in en-US). 2022-07-15. https://newatlas.com/space/strongest-magnetic-field-pulsar/. 
  35. Tuchin, Kirill (2013). "Particle production in strong electromagnetic fields in relativistic heavy-ion collisions". Adv. High Energy Phys. 2013: 490495. doi:10.1155/2013/490495. 
  36. Bzdak, Adam; Skokov, Vladimir (29 March 2012). "Event-by-event fluctuations of magnetic and electric fields in heavy ion collisions". Physics Letters B 710 (1): 171–174. doi:10.1016/j.physletb.2012.02.065. Bibcode2012PhLB..710..171B.