Orders of magnitude (energy)

From HandWiki

This list compares various energies in joules (J), organized by order of magnitude.

Below 1 J

List of orders of magnitude for energy
Factor (joules) SI prefix Value Item
10−34   6.626×10−34 J Photon energy of a photon with a frequency of 1 hertz.[1]
10−33   2×10−33 J Average kinetic energy of translational motion of a molecule at the lowest temperature reached, 100 picokelvins (As of 1999)[2]
10−28   6.6×10−28 J Energy of a typical AM radio photon (1 MHz) (4×10−9 eV)[3]
10−24 Yocto- (yJ) 1.6×10−24 J Energy of a typical microwave oven photon (2.45 GHz) (1×10−5 eV)[4][5]
10−23   2×10−23 J Average kinetic energy of translational motion of a molecule in the Boomerang Nebula, the coldest place known outside of a laboratory, at a temperature of 1 kelvin[6][7]
10−22   2–3000×10−22 J Energy of infrared light photons[8]
10−21 Zepto- (zJ) 1.7×10−21 J 1 kJ/mol, converted to energy per molecule[9]
2.1×10−21 J Thermal energy in each degree of freedom of a molecule at 25 °C (kT/2) (0.01 eV)[10]
2.856×10−21 J By Landauer's principle, the minimum amount of energy required at 25 °C to change one bit of information
3–7×10−21 J Energy of a van der Waals interaction between atoms (0.02–0.04 eV)[11][12]
4.1×10−21 J The "kT" constant at 25 °C, a common rough approximation for the total thermal energy of each molecule in a system (0.03 eV)[13]
7–22×10−21 J Energy of a hydrogen bond (0.04 to 0.13 eV)[11][14]
10−20   4.5×10−20 J Upper bound of the mass-energy of a neutrino in particle physics (0.28 eV)[15][16]
10−19   1.6×10−19 J ≈1 electronvolt (eV)[17]
3–5×10−19 J Energy range of photons in visible light (≈1.6–3.1 eV)[18][19]
3–14×10−19 J Energy of a covalent bond (2–9 eV)[11][20]
5–200×10−19 J Energy of ultraviolet light photons[8]
10−18 Atto- (aJ) 2.18×10−18 J Ground state ionization energy of hydrogen (13.6 eV)
10−17   2–2000×10−17 J Energy range of X-ray photons[8]
10−16      
10−15 Femto- (fJ) 3 × 10−15 J Average kinetic energy of one human red blood cell.[21][22][23]
10−14   1×10−14 J Sound energy (vibration) transmitted to the eardrums by listening to a whisper for one second.[24][25][26]
> 2×10−14 J Energy of gamma ray photons[8]
8.2×10−14 J Rest mass-energy of an electron[27]
10−13   1.6×10−13 J 1 megaelectronvolt (MeV)[28]
2.3×10−13 J Energy released by a single event of two protons fusing into deuterium (1.44 megaelectronvolt MeV)[29]
10−12 Pico- (pJ) 2.3×10−12 J Kinetic energy of neutrons produced by DT fusion, used to trigger fission (14.1 MeV)[30][31]
10−11   3.4×10−11 J Average total energy released in the nuclear fission of one uranium-235 atom (215 MeV)[32][33]
10−10   1.5030×10−10 J Rest mass-energy of a proton[34]
1.505×10−10 J Rest mass-energy of a neutron[35]
1.6×10−10 J 1 gigaelectronvolt (GeV)[36]
3×10−10 J Rest mass-energy of a deuteron[37]
6×10−10 J Rest mass-energy of an alpha particle[38]
7×10−10 J Energy required to raise a grain of sand by 0.1mm (the thickness of a piece of paper).[39]
10−9 Nano- (nJ) 1.6×10−9 J 10 GeV[40]
8×10−9 J Initial operating energy per beam of the CERN Large Electron Positron Collider in 1989 (50 GeV)[41][42]
10−8   1.3×10−8 J Mass-energy of a W boson (80.4 GeV)[43][44]
1.5×10−8 J Mass-energy of a Z boson (91.2 GeV)[45][46]
1.6×10−8 J 100 GeV[47]
6.4×10−8 J Operating energy per proton of the CERN Super Proton Synchrotron accelerator in 1976[48][49]
10−7   1×10−7 J ≡ 1 erg[50]
1.6×10−7 J 1 TeV (teraelectronvolt),[51] about the kinetic energy of a flying mosquito[52]
10−6 Micro- (μJ) 1.04×10−6 J Energy per proton in the CERN Large Hadron Collider in 2015 (6.5 TeV)[53][54]
10−5      
10−4      
10−3 Milli- (mJ)    
10−2 Centi- (cJ)    
10−1 Deci- (dJ) 1.1×10−1 J Energy of an American half-dollar falling 1 metre[55][56]

1 to 105 J

100 J 1 J ≡ 1 N·m (newtonmetre)
1 J ≡ 1 W·s (watt-second)
1 J Kinetic energy produced as an extra small apple (~100 grams[57]) falls 1 meter against Earth's gravity[58]
1 J Energy required to heat 1 gram of dry, cool air by 1 degree Celsius[59]
1.4 J ≈ 1 ft·lbf (foot-pound force)[50]
4.184 J ≡ 1 thermochemical calorie (small calorie)[50]
4.1868 J ≡ 1 International (Steam) Table calorie[60]
8 J Greisen-Zatsepin-Kuzmin theoretical upper limit for the energy of a cosmic ray coming from a distant source[61][62]
101 Deca- (daJ) 1×101 J Flash energy of a typical pocket camera electronic flash capacitor (100–400 μF @ 330 V)[63][64]
5×101 J The most energetic cosmic ray ever detected[65] was most likely a single proton traveling only slightly slower than the speed of light.[66]
102 Hecto- (hJ) 1.5×102 to 3.6×102 J Energy delivered by a biphasic external electric shock (defibrillation), usually during adult cardiopulmonary resuscitation for cardiac arrest.
3×102 J Energy of a lethal dose of X-rays[67]
3×102 J Kinetic energy of an average person jumping as high as they can[68][69][70]
3.3×102 J Energy to melt 1 g of ice[71]
> 3.6×102 J Kinetic energy of 800 gram[72] standard men's javelin thrown at > 30 m/s[73] by elite javelin throwers[74]
5–20×102 J Energy output of a typical photography studio strobe light in a single flash[75]
6×102 J Kinetic energy of 2 kg[76] standard men's discus thrown at 24.4 m/s by the world record holder Jürgen Schult[77]
6×102 J Use of a 10-watt flashlight for 1 minute
7.5×102 J A power of 1 horsepower applied for 1 second[50]
7.8×102 J Kinetic energy of 7.26 kg[78] standard men's shot thrown at 14.7 m/s by the world record holder Randy Barnes[79]
8.01×102 J Amount of work needed to lift a man with an average weight (81.7 kg) one meter above Earth (or any planet with Earth gravity)
103 Kilo- (kJ) 1.1×103 J ≈ 1 British thermal unit (BTU), depending on the temperature[50]
1.4×103 J Total solar radiation received from the Sun by 1 square meter at the altitude of Earth's orbit per second (solar constant)[80]
1.8×103 J Kinetic energy of M16 rifle bullet (5.56×45mm NATO M855, 4.1 g fired at 930 m/s)[81]
2.3×103 J Energy to vaporize 1 g of water into steam[82]
3×103 J Lorentz force can crusher pinch[83]
3.4×103 J Kinetic energy of world-record men's hammer throw (7.26 kg[84] thrown at 30.7 m/s[85] in 1986)[86]
3.6×103 J ≡ 1 W·h (watt-hour)[50]
4.2×103 J Energy released by explosion of 1 gram of TNT[50][87]
4.2×103 J ≈ 1 food Calorie (large calorie)
~7×103 J Muzzle energy of an elephant gun, e.g. firing a .458 Winchester Magnum[88]
9×103 J Energy in an alkaline AA battery[89]
104   1.7×104 J Energy released by the metabolism of 1 gram of carbohydrates[90] or protein[91]
3.8×104 J Energy released by the metabolism of 1 gram of fat[92]
4–5×104 J Energy released by the combustion of 1 gram of gasoline[93]
5×104 J Kinetic energy of 1 gram of matter moving at 10 km/s[94]
105   3×105 – 15×105 J Kinetic energy of an automobile at highway speeds (1 to 5 tons[95] at 89 km/h or 55 mph)[96]
5×105 J Kinetic energy of 1 gram of a meteor hitting Earth[97]

106 to 1011 J

106 Mega- (MJ) 1×106 J Kinetic energy of a 2 tonne[95] vehicle at 32 metres per second (115 km/h or 72 mph)[98]
1.2×106 J Approximate food energy of a snack such as a Snickers bar (280 food calories)[99]
3.6×106 J = 1 kWh (kilowatt-hour) (used for electricity)[50]
4.2×106 J Energy released by explosion of 1 kilogram of TNT[50][87]
8.4×106 J Recommended food energy intake per day for a moderately active woman (2000 food calories)[100][101]
107   1×107 J Kinetic energy of the armor-piercing round fired by the assault guns of the ISU-152 tank[102]
1.1×107 J Recommended food energy intake per day for a moderately active man (2600 food calories)[100][103]
3.7×107 J $1 of electricity at a cost of $0.10/kWh (the US average retail cost in 2009)[104][105][106]
4×107 J Energy from the combustion of 1 cubic meter of natural gas[107]
4.2×107 J Caloric energy consumed by Olympian Michael Phelps on a daily basis during Olympic training[108]
6.3×107 J Theoretical minimum energy required to accelerate 1 kg of matter to escape velocity from Earth's surface (ignoring atmosphere)[109]
108  
1.1×108 J ≈ 1 therm, depending on the temperature[50]
1.1×108 J ≈ 1 Tour de France, or ~90 hours[110] ridden at 5 W/kg[111] by a 65 kg rider[112]
7.3×108 J ≈ Energy from burning 16 kilograms of oil (using 135 kg per barrel of light crude)
109 Giga- (GJ) 1–10×109 J Energy in an average lightning bolt[113] (thunder)
1.1×109 J Magnetic stored energy in the world's largest toroidal superconducting magnet for the ATLAS experiment at CERN, Geneva[114]
1.2×109 J Inflight 100-ton Boeing 757-200 at 300 knots (154 m/s)
1.4×109 J Theoretical minimum amount of energy required to melt a tonne of steel (380 kWh)[115][116]
2×109 J Energy of an ordinary 61 liter gasoline tank of a car.[93][117][118]
2×109 J The unit of energy in Planck units[119]
3×109 J Inflight 125-ton Boeing 767-200 flying at 373 knots (192 m/s)
3.3×109 J Approximate average amount of energy expended by a human heart muscle over an 80-year lifetime[120][121]
4.2×109 J Energy released by explosion of 1 ton of TNT.
4.5×109 J Average annual energy usage of a standard refrigerator[122][123]
6.1×109 J ≈ 1 bboe (barrel of oil equivalent)[124]
1010   1.9×1010 J Kinetic energy of an Airbus A380 at cruising speed (560 tonnes at 511 knots or 263 m/s)
4.2×1010 J ≈ 1 toe (ton of oil equivalent)[124]
4.6×1010 J Yield energy of a Massive Ordnance Air Blast bomb, the second most powerful non-nuclear weapon ever designed[125][126]
7.3×1010 J Energy consumed by the average U.S. automobile in the year 2000[127][128][129]
8.6×1010 J ≈ 1 MW·d (megawatt-day), used in the context of power plants[130]
8.8×1010 J Total energy released in the nuclear fission of one gram of uranium-235[32][33][131]
1011   2.4×1011 J Approximate food energy consumed by an average human in an 80-year lifetime.[132]

1012 to 1017 J

1012 Tera- (TJ) 3.4×1012 J Maximum fuel energy of an Airbus A330-300 (97,530 liters[133] of Jet A-1[134])[135]
3.6×1012 J 1 GW·h (gigawatt-hour)[136]
4×1012 J Electricity generated by one 20-kg CANDU fuel bundle assuming ~29%[137] thermal efficiency of reactor[138][139]
4.2×1012 J Energy released by explosion of 1 kiloton of TNT[50][140]
6.4×1012 J Energy contained in jet fuel in a Boeing 747-100B aircraft at max fuel capacity (183,380 liters[141] of Jet A-1[134])[142]
1013   1.1×1013 J Energy of the maximum fuel an Airbus A380 can carry (320,000 liters[143] of Jet A-1[134])[144]
1.2×1013 J Orbital kinetic energy of the International Space Station (417 tonnes[145] at 7.7 km/s[146])[147]
6.3×1013 J Yield of the Little Boy atomic bomb dropped on Hiroshima in World War II (15 kilotons)[148][149]
9×1013 J Theoretical total mass-energy of 1 gram of matter[150]
1014   1.8×1014 J Energy released by annihilation of 1 gram of antimatter and matter
3.75×1014 J Total energy released by the Chelyabinsk meteor.[151]
6×1014 J Energy released by an average hurricane in 1 second[152]
1015 Peta- (PJ) > 1015 J Energy released by a severe thunderstorm[153]
1×1015 J Yearly electricity consumption in Greenland as of 2008[154][155]
4.2×1015 J Energy released by explosion of 1 megaton of TNT[50][156]
1016  
1.1×1016 J Yearly electricity consumption in Mongolia as of 2010[154][157]
9×1016 J Mass-energy in 1 kilogram of antimatter (or matter)[158]
1017   1×1017 J Energy released on the Earth's surface by the magnitude 9.1–9.3 2004 Indian Ocean earthquake[159]
1.7×1017 J Total energy from the Sun that strikes the face of the Earth each second[160]
2.1×1017 J Yield of the Tsar Bomba, the largest nuclear weapon ever tested (50 megatons)[161][162]
4.2×1017 J Yearly electricity consumption of Norway as of 2008[154][163]
4.5×1017 J Approximate energy needed to accelerate one ton to one-tenth of the speed of light
8×1017 J Estimated energy released by the eruption of the Indonesian volcano, Krakatoa, in 1883[164][165][166]

1018 to 1023 J

1018 Exa- (EJ) 1.4×1018 J Yearly electricity consumption of South Korea as of 2009[154][167]
1019   1.2×1019 J Explosive yield of global nuclear arsenal[168]
1.4×1019 J Yearly electricity consumption in the United States as of 2009[154][169]
1.4×1019J Yearly electricity production in the United States as of 2009[170][171]
5×1019 J Energy released in 1 day by an average hurricane in producing rain (400 times greater than the wind energy)[152]
6.4×1019 J Yearly electricity consumption of the world (As of 2008)[172][173]
6.8×1019 J Yearly electricity generation of the world (As of 2008)[172][174]
1020   5×1020 J Total world annual energy consumption in 2010[175][176]
8×1020 J Estimated global uranium resources for generating electricity 2005[177][178][179][180]
1021 Zetta- (ZJ) 6.9×1021 J Estimated energy contained in the world's natural gas reserves as of 2010[175][181]
7.9×1021 J Estimated energy contained in the world's petroleum reserves as of 2010[175][182]
1022   1.5×1022J Total energy from the Sun that strikes the face of the Earth each day[160][183]
2.4×1022 J Estimated energy contained in the world's coal reserves as of 2010[175][184]
2.9×1022 J Identified global uranium-238 resources using fast reactor technology[177]
3.9×1022 J Estimated energy contained in the world's fossil fuel reserves as of 2010[175][185]
4×1022 J Estimated total energy released by the magnitude 9.1–9.3 2004 Indian Ocean earthquake[186]
1023  
2.2×1023 J Total global uranium-238 resources using fast reactor technology[177]
3×1023 J The energy released in the formation of the Chicxulub Crater in the Yucatán Peninsula[187]

Over 1023 J

1024 Yotta- (YJ) 5.5×1024 J Total energy from the Sun that strikes the face of the Earth each year[160][188]
1025   6×1025 J Upper limit of energy released by a solar flare[189]
1026   >1026J Estimated energy of early Archean asteroid impacts[190]
3.8×1026 J Total energy output of the Sun each second[191]
1027   1×1027 J Estimate of the energy released by the impact that created the Caloris basin on Mercury[192]
~3×1027  J Estimate of energy required to evaporate all water on surface of Earth
1028   3.8×1028 J Kinetic energy of the Moon in its orbit around the Earth (counting only its velocity relative to the Earth)[193][194]
1029   2.1×1029 J Rotational energy of the Earth[195][196][197]
1030   1.8×1030 J Gravitational binding energy of Mercury
1031   ~2×1031 J The most energetic stellar superflare to date (S Fornacis)[198]
 3.3×1031J Total energy output of the Sun each day[191][199]
1032   2×1032 J Gravitational binding energy of the Earth[200]
1033   2.7×1033 J Earth's kinetic energy in its orbit[201]
1034   1.2×1034 J Total energy output of the Sun each year[191][202]
1039   1-5×1039 J Energy of the giant flare (starquake) released by SGR 1806-20[203][204][205]
6.6×1039 J  Theoretical total mass-energy of the Moon
1041   2.276×1041 J Gravitational binding energy of the Sun[206]
5.4×1041 J Theoretical total mass-energy of the Earth[207][208]
1043   5×1043 J Total energy of all gamma rays in a typical gamma-ray burst[209][210]
1044   1–2×1044 J Estimated energy released in a supernova,[211] sometimes referred to as a foe
1.2×1044 J Approximate lifetime energy output of the Sun.
~1044-45 Estimated kinetic energy released by FBOT CSS161010[212]
1045   (1.1±0.2)×1045 J Energy released by hypernova ASASSN-15lh[213]
2.3×1045 J Energy released by the very energetic supernova PS1-10adi, about twice the energy of ASASSN-15lh[214][215]
≳5 × 1045 J Energy released by the most energetic supernova to date, SN 2016aps[216][217][218][219]
>1045 J Estimated energy of a magnetorotational hypernova[220]
few times×1045 J Beaming-corrected 'True' total energy (Energy in gamma rays+relativistic kinetic energy) of hyper-energetic gamma-ray burst[221][222][223][224][225]
1046   >1046 J Estimated energy released in a hypernova,[226][227] in a pair-instability supernova[228] and in theoretical quark-novae[229]
1047 1045-47 J Estimated energy of stellar mass rotational black holes by vacuum polarization in a electromagnetic field[230][231]
1.8×1047 J Theoretical total mass-energy of the Sun[232][233]
5.4×1047 J Mass-energy emitted as gravitational waves during the merger of two black holes, originally about 30 Solar masses each, as observed by LIGO (GW150914)[234]
8.6×1047 J Mass-energy emitted as gravitational waves during the most energetic black hole merger observed until 2020 (GW170729)[235]
8.8×1047 J GRB 080916C – the most powerful Gamma-Ray Burst (GRB) ever recorded – total 'apparent'/isotropic (not corrected for beaming) energy output estimated at 8.8 × 1047 joules (8.8 × 1054 erg), or 4.9 times the sun's mass turned to energy.[236][237]
1048 ~1048 J Estimated energy of a supermassive Population III star supernova.[238][239]
~1.2×1048 J Approximate energy released in the most energetic black hole merging to date (GW190521), which originated the first intermediate-mass black hole ever detected[240][241][242][243][244]
1050 ≳1050 J Upper limit of 'apparent'/isotropic energy (Eiso) of Population III stars Gamma-Ray Bursts (GRBs).[245]
1053 >1053 J Mechanical energy of so-called "quasar tsunamis" very energetic[246][247]
  6×1053 J Total mechanical energy or enthalpy in the powerful AGN outburst in the RBS 797[248]
1054   3×1054 J Total mechanical energy or enthalpy in the powerful AGN outburst in the Hercules A (3C 348)[249]
1055   >1055 J Total mechanical energy or enthalpy in the powerful AGN outburst in the MS 0735.6+7421,[250] Ophiucus Supercluster Explosion[251] and supermassive black holes mergings[252][253]
1057 ~1057 J Estimated rotational energy of M87 SMBH and total energy of the most luminous quasars over Gyr time-scales[254][255]
~2×1057 J Estimated thermal energy of the Bullet Cluster of galaxies[256]
1058 ~1058 J Estimated total energy (in shockwaves, turbulence, gases heating up, gravitational force) of galaxy clusters mergings[257]
1059   1×1059 J Total mass-energy of our galaxy, the Milky Way, including dark matter and dark energy[258][259]
1062   1–2×1062 J Total mass-energy of the Virgo Supercluster including dark matter, the Supercluster which contains the Milky Way[260]
1069 4×1069 J Estimated total mass-energy of the observable universe[261]

SI multiples

SI multiples of joule (J)
Submultiples Multiples
Value SI symbol Name Value SI symbol Name
10−1 J dJ decijoule 101 J daJ decajoule
10−2 J cJ centijoule 102 J hJ hectojoule
10−3 J mJ millijoule 103 J kJ kilojoule
10−6 J µJ microjoule 106 J MJ megajoule
10−9 J nJ nanojoule 109 J GJ gigajoule
10−12 J pJ picojoule 1012 J TJ terajoule
10−15 J fJ femtojoule 1015 J PJ petajoule
10−18 J aJ attojoule 1018 J EJ exajoule
10−21 J zJ zeptojoule 1021 J ZJ zettajoule
10−24 J yJ yoctojoule 1024 J YJ yottajoule

The joule is named after James Prescott Joule. As with every SI unit named for a person, its symbol starts with an upper case letter (J), but when written in full it follows the rules for capitalisation of a common noun; i.e., "joule" becomes capitalised at the beginning of a sentence and in titles, but is otherwise in lower case.

See also

Notes

  1. "Planck's constant | physics | Britannica.com". britannica.com. http://www.britannica.com/EBchecked/topic/462917/Plancks-constant. 
  2. Calculated: KEavg ≈ (3/2) × T × 1.38×1023 = (3/2) × 1×1010 × 1.38×1023 ≈ 2.07×1033 J
  3. Calculated: Ephoton = hν = 6.626×1034 J-s × 1×106 Hz = 6.6×1028 J. In eV: 6.6×1028 J / 1.6×1019 J/eV = 4.1×109 eV.
  4. Cheung, Howard (1998). "Frequency of a microwave oven". in Elert, Glenn. https://hypertextbook.com/facts/1998/HowardCheung.shtml. Retrieved 2022-01-25. 
  5. Calculated: Ephoton = hν = 6.626×1034 J-s × 2.45×108 Hz = 1.62×1024 J. In eV: 1.62×1024 J / 1.6×1019 J/eV = 1.0×105 eV.
  6. "Boomerang Nebula boasts the coolest spot in the Universe". JPL. http://www.jpl.nasa.gov/news/releases/97/coldspot.html. 
  7. Calculated: KEavg ≈ (3/2) × T × 1.38×1023 = (3/2) × 1 × 1.38×1023 ≈ 2.07×1023 J
  8. 8.0 8.1 8.2 8.3 "Wavelength, Frequency, and Energy". Imagine the Universe. NASA. http://imagine.gsfc.nasa.gov/docs/science/know_l1/spectrum_chart.html. 
  9. Calculated: 1×103 J / 6.022×1023 entities per mole = 1.7×1021 J per entity
  10. Calculated: 1.381×1023 J/K × 298.15 K / 2 = 2.1×1021 J
  11. 11.0 11.1 11.2 "Bond Lengths and Energies". Chem 125 notes. UCLA. http://www.doe-mbi.ucla.edu/CHEM125/bonds.html. 
  12. Calculated: 2 to 4 kJ/mol = 2×103 J / 6.022×1023 molecules/mol = 3.3×1021 J. In eV: 3.3×1021 J / 1.6×1019 J/eV = 0.02 eV. 4×103 J / 6.022×1023 molecules/mol = 6.7×1021 J. In eV: 6.7×1021 J / 1.6×1019 J/eV = 0.04 eV.
  13. Ansari, Anjum. "Basic Physical Scales Relevant to Cells and Molecules". Physics 450. http://www.uic.edu/classes/phys/phys450/MARKO/N003.html. 
  14. Calculated: 4 to 13 kJ/mol. 4 kJ/mol = 4×103 J / 6.022×1023 molecules/mol = 6.7×1021 J. In eV: 6.7×1021 J / 1.6×1019 eV/J = 0.042 eV. 13 kJ/mol = 13×103 J / 6.022×1023 molecules/mol = 2.2×1020 J. In eV: 13×103 J / 6.022×1023 molecules/mol / 1.6×1019 eV/J = 0.13 eV.
  15. Thomas, S.; Abdalla, F.; Lahav, O. (2010). "Upper Bound of 0.28 eV on Neutrino Masses from the Largest Photometric Redshift Survey". Physical Review Letters 105 (3): 031301. doi:10.1103/PhysRevLett.105.031301. PMID 20867754. Bibcode2010PhRvL.105c1301T. 
  16. Calculated: 0.28 eV × 1.6×1019 J/eV = 4.5×1020 J
  17. "CODATA Value: electron volt". NIST. http://physics.nist.gov/cgi-bin/cuu/Value?tevj. 
  18. "BASIC LAB KNOWLEDGE AND SKILLS". http://www.sci.sdsu.edu/classes/chemistry/chem467l/mardahl/basic.html. "Visible wavelengths are roughly from 390 nm to 780 nm" 
  19. Calculated: E = hc/λ. E780 nm = 6.6×1034 kg-m2/s × 3×108 m/s / (780×109 m) = 2.5×1019 J. E_390 _nm = 6.6×1034 kg-m2/s × 3×108 m/s / (390×109 m) = 5.1×1019 J
  20. Calculated: 50 kcal/mol × 4.184 J/calorie / 6.0×1022e23 molecules/mol = 3.47×1019 J. (3.47×1019 J / 1.60×1019 eV/J = 2.2 eV.) and 200 kcal/mol × 4.184 J/calorie / 6.0×1022e23 molecules/mol = 1.389×1018 J. (7.64×1019 J / 1.60×1019 eV/J = 8.68 eV.)
  21. Phillips, Kevin; Jacques, Steven; McCarty, Owen (2012). "How much does a cell weigh?". Physical Review Letters 109 (11): 118105. doi:10.1103/PhysRevLett.109.118105. PMID 23005682. Bibcode2012PhRvL.109k8105P. "Roughly 27 picograms". 
  22. Bob Berman. "Our Bodies' Velocities, By the Numbers". http://discovermagazine.com/2014/julyaug/18-body-of-work. "The [...] blood [...] flow[s] at an average speed of 3 to 4 mph" 
  23. Calculated: 1/2 × 27×1012 g × (3.5 miles per hour)2 = 3×1015 J
  24. "Physics of the Body". Notre Dame. https://www3.nd.edu/~nsl/Lectures/mphysics/Medical%20Physics/Part%20I.%20Physics%20of%20the%20Body/Chapter%204.%20Acoustics%20of%20the%20Body/4.3%20Physics%20of%20the%20ear/Physics%20of%20the%20ear.pdf. . "The eardrum is a [...] membran[e] with an area of 65 mm2."
  25. "Intensity and the Decibel Scale". Physics Classroom. http://www.physicsclassroom.com/class/sound/Lesson-2/Intensity-and-the-Decibel-Scale. 
  26. Calculated: two eardrums ≈ 1 cm2. 1×106 W/m2 × 1×104 m2 × 1 s = 1×1014 J
  27. "electron mass energy equivalent". NIST. http://physics.nist.gov/cgi-bin/cuu/Value?mec2. 
  28. "Conversion from eV to J". NIST. http://physics.nist.gov/cgi-bin/cuu/Convert?exp=6&num=1&From=ev&To=j&Action=Convert+value+and+show+factor. 
  29. "How much energy is released when hydrogen is fused to produce one kilo of helium?". 11 November 2017. https://hbergeronx.medium.com/how-much-energy-is-released-when-hydrogen-is-fused-to-produce-one-kilo-of-helium-64e74b03b13e. 
  30. Muller, Richard A. (2002). "The Sun, Hydrogen Bombs, and the physics of fusion". http://muller.lbl.gov/teaching/physics10/old%20physics%2010/chapters%20%28old%29/7-fusion.htm. "The neutron comes out with high energy of 14.1 MeV" 
  31. "Conversion from eV to J". NIST. http://physics.nist.gov/cgi-bin/cuu/Convert?exp=7&num=1.41&From=ev&To=j&Action=Convert+value+and+show+factor. 
  32. 32.0 32.1 "Energy From Uranium Fission". HyperPhysics. http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/u235chn.html#c3. 
  33. 33.0 33.1 "Conversion from eV to J". NIST. http://physics.nist.gov/cgi-bin/cuu/Convert?exp=8&num=2.15&From=ev&To=j&Action=Convert+value+and+show+factor. 
  34. "proton mass energy equivalent". NIST. http://physics.nist.gov/cgi-bin/cuu/Value?mpc2. 
  35. "neutron mass energy equivalent". NIST. http://physics.nist.gov/cgi-bin/cuu/Value?mnc2. 
  36. "Conversion from eV to J". NIST. http://physics.nist.gov/cgi-bin/cuu/Convert?exp=9&num=1&From=ev&To=j&Action=Convert+value+and+show+factor. 
  37. "deuteron mass energy equivalent". NIST. http://physics.nist.gov/cgi-bin/cuu/Value?mdc2. 
  38. "alpha particle mass energy equivalent". NIST. http://physics.nist.gov/cgi-bin/cuu/Value?malc2. 
  39. Calculated: 7×104 g × 9.8 m/s2 × 1×104 m
  40. "Conversion from eV to J". NIST. http://physics.nist.gov/cgi-bin/cuu/Convert?exp=10&num=1&From=ev&To=j&Action=Convert+value+and+show+factor. 
  41. Myers, Stephen. "The LEP Collider". CERN. http://sl-div.web.cern.ch/sl-div/history/lep_doc.html. "the LEP machine energy is about 50 GeV per beam" 
  42. Calculated: 50×109 eV × 1.6×1019 J/eV = 8×109 J
  43. "W". PDG Live. Particle Data Group. http://pdglive.lbl.gov/Rsummary.brl?nodein=S043. 
  44. "Conversion from eV to J". NIST. http://physics.nist.gov/cgi-bin/cuu/Convert?exp=9&num=80.4&From=ev&To=j&Action=Convert+value+and+show+factor&Action=Convert+value+and+show+factor. 
  45. Amsler, C.; Doser, M.; Antonelli, M.; Asner, D.; Babu, K.; Baer, H.; Band, H.; Barnett, R. et al. (2008). "Review of Particle Physics⁎". Physics Letters B 667 (1): 1–6. doi:10.1016/j.physletb.2008.07.018. Bibcode2008PhLB..667....1A. http://pdglive.lbl.gov/Rsummary.brl?nodein=S044&fsizein=1. 
  46. "Conversion from eV to J". NIST. http://physics.nist.gov/cgi-bin/cuu/Convert?exp=9&num=91.2&From=ev&To=j&Action=Convert+value+and+show+factor. 
  47. "Conversion from eV to J". NIST. http://physics.nist.gov/cgi-bin/cuu/Convert?exp=11&num=1&From=ev&To=j&Action=Convert+value+and+show+factor. 
  48. Adams, John. "400 GeV Proton Synchrotron". Excertp from the CERN Annual Report 1976. CERN. http://sl-div.web.cern.ch/sl-div/history/sps_doc.html. "A circulating proton beam of 400 GeV energy was first achieved in the SPS on 17 June 1976" 
  49. Calculated: 400×109 eV × 1.6×1019 J/eV = 6.4×108 J
  50. 50.00 50.01 50.02 50.03 50.04 50.05 50.06 50.07 50.08 50.09 50.10 50.11 "Appendix B8—Factors for Units Listed Alphabetically". NIST Guide for the Use of the International System of Units (SI). NIST. 2 July 2009. http://physics.nist.gov/Pubs/SP811/appenB8.html. "1.355818" 
  51. "Conversion from eV to J". NIST. http://physics.nist.gov/cgi-bin/cuu/Convert?exp=12&num=1&From=ev&To=j&Action=Convert+value+and+show+factor. 
  52. "Chocolate bar yardstick". http://www.cernlove.org/blog/2010/04/chocolate-bar-yardstick/. "A TeV is actually a very tiny amount of energy. A popular analogy is to a flying mosquito." 
  53. "First successful beam at record energy of 6.5 TeV". http://home.web.cern.ch/about/updates/2015/04/first-successful-beam-record-energy-65-tev. 
  54. Calculated: 6.5×1012 eV per beam × 1.6×1019 J/eV = 1.04×106 J
  55. "Coin specifications". United States Mint. http://www.usmint.gov/about_the_mint/?action=coin_specifications. "11.340 g" 
  56. Calculated: m×g×h = 11.34×103 kg × 9.8 m/s2 × 1 m = 1.1×101 J
  57. "Apples, raw, with skin (NDB No. 09003)". USDA Nutrient Database. USDA. http://www.nal.usda.gov/fnic/foodcomp/search/. 
  58. Calculated: m×g×h = 1×101 kg × 9.8 m/s2 × 1 m = 1 J
  59. "Specific Heat of Dry Air". Engineering Toolbox. http://www.engineeringtoolbox.com/air-specific-heat-capacity-d_705.html. 
  60. "Footnotes". NIST Guide to the SI. NIST. 2 July 2009. http://physics.nist.gov/Pubs/SP811/footnotes.html#f09. 
  61. "Physical Motivations". ULTRA Home Page (EUSO project). Dipartimento di Fisica di Torino. http://www.dfg.unito.it/euso/physical-motivation.html. 
  62. Calculated: 5×1019 eV × 1.6×1019 J/ev = 8 J
  63. "Notes on the Troubleshooting and Repair of Electronic Flash Units and Strobe Lights and Design Guidelines, Useful Circuits, and Schematics". http://www.repairfaq.org/sam/strbfaq.htm. "The energy storage capacitor for pocket cameras is typically 100 to 400 uF at 330 V (charged to 300 V) with a typical flash energy of 10 W-s." 
  64. "Teardown: Digital Camera Canon PowerShot |". electroelvis.com. 2 September 2012. http://electroelvis.com/2012/09/02/teardown-digital-camera-canon-powershot/. 
  65. "The Fly's Eye (1981–1993)". HiRes. http://www.cosmic-ray.org/reading/flyseye.html#SEC10. 
  66. Bird, D. J. (March 1995). "Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation". Astrophysical Journal, Part 1 441 (1): 144–150. doi:10.1086/175344. Bibcode1995ApJ...441..144B. 
  67. "Ionizing Radiation". General Chemistry Topic Review: Nuclear Chemistry. Bodner Research Web. http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch23/radiation.php. 
  68. "Vertical Jump Test". Topend Sports. http://www.topendsports.com/testing/tests/vertjump.htm. "41–50 cm (males) 31–40 cm (females)" 
  69. "Mass of an Adult". The Physics Factbook. http://hypertextbook.com/facts/2003/AlexSchlessingerman.shtml. "70 kg" 
  70. Kinetic energy at start of jump = potential energy at high point of jump. Using a mass of 70 kg and a high point of 40 cm => energy = m×g×h = 70 kg × 9.8 m/s2 × 40×102 m = 274 J
  71. "Latent Heat of Melting of some common Materials". Engineering Toolbox. http://www.engineeringtoolbox.com/latent-heat-melting-solids-d_96.html. "334 kJ/kg" 
  72. "Javelin Throw – Introduction". IAAF. http://www.iaaf.org/community/athletics/trackfield/newsid=9427.html. 
  73. Young, Michael. "Developing Event Specific Strength for the Javelin Throw". http://www.indianathrower.com/documents/javelinthrowbiomechanics.pdf. "For elite athletes, the velocity of a javelin release has been measured in excess of 30m/s" 
  74. Calculated: 1/2 × 0.8 kg × (30 m/s)2 = 360 J
  75. Greenspun, Philip. "Studio Photography". http://photo.net/learn/studio/primer. "Most serious studio photographers start with about 2000 watts-seconds" 
  76. "Discus Throw – Introduction". IAAF. http://www.iaaf.org/community/athletics/trackfield/newsid=9437.html. 
  77. Calculated: 1/2 × 2 kg × (24.4 m/s)2 = 595.4 J
  78. "Shot Put – Introduction". IAAF. http://www.iaaf.org/community/athletics/trackfield/newsid=9444.html. 
  79. Calculated: 1/2 × 7.26 kg × (14.7 m/s)2 = 784 J
  80. Kopp, G.; Lean, J. L. (2011). "A new, lower value of total solar irradiance: Evidence and climate significance". Geophysical Research Letters 38 (1): n/a. doi:10.1029/2010GL045777. Bibcode2011GeoRL..38.1706K. 
  81. "Intermediate power ammunition for automatic assault rifles". Modern Firearms. World Guns. http://world.guns.ru/ammunition/intermediate-cartridges-e.html. 
  82. "Fluids – Latent Heat of Evaporation". Engineering Toolbox. http://www.engineeringtoolbox.com/fluids-evaporation-latent-heat-d_147.html. "2257 kJ/kg" 
  83. powerlabs.org – The PowerLabs Solid State Can Crusher!, 2002
  84. "Hammer Throw – Introduction". IAAF. http://www.iaaf.org/community/athletics/trackfield/newsid=9418.html. 
  85. Otto, Ralf M.. "HAMMER THROW WR PHOTOSEQUENCE – YURIY SEDYKH". http://hammerthrow.org/wp-content/uploads/photosequences/otto_sedykh_wr.pdf. "The total release velocity is 30.7 m/sec" 
  86. Calculated: 1/2 × 7.26 kg × (30.7 m/s)2 = 3420 J
  87. 87.0 87.1 4.2×109 J/ton of TNT-equivalent × (1 ton/1×106 grams) = 4.2×103 J/gram of TNT-equivalent
  88. ".458 Winchester Magnum". Accurate Powder. Western Powders Inc. http://www.accuratepowder.com/data/PerCaliber2Guide/Rifle/Standarddata(Rifle)/458Cal(11.63mm)/458%20Winchester%20Magnum%20pages%20339%20and%20340.pdf. 
  89. "Battery energy storage in various battery sizes". AllAboutBatteries.com. http://www.allaboutbatteries.com/Energy-tables.html. 
  90. "Energy Density of Carbohydrates". The Physics Factbook. http://hypertextbook.com/facts/2007/AnuragPanda.shtml. 
  91. "Energy Density of Protein". The Physics Factbook. http://hypertextbook.com/facts/2003/DavidDukhan.shtml. 
  92. "Energy Density of Fats". The Physics Factbook. http://hypertextbook.com/facts/2004/PingZhang.shtml. 
  93. 93.0 93.1 "Energy Density of Gasoline". The Physics Factbook. http://hypertextbook.com/facts/2003/ArthurGolnik.shtml. 
  94. Calculated: E = 1/2 m×v2 = 1/2 × (1×103 kg) × (1×104 m/s)2 = 5×104 J.
  95. 95.0 95.1 "List of Car Weights". LoveToKnow. http://cars.lovetoknow.com/List_of_Car_Weights. "3000 to 12000 pounds" 
  96. Calculated: Using car weights of 1 ton to 5 tons. E = 1/2 m×v2 = 1/2 × (1×103 kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 3.0×105 J. E = 1/2 × (5×103 kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 15×105 J.
  97. Muller, Richard A.. "Kinetic Energy in a meteor". Old Physics 10 notes. http://muller.lbl.gov/teaching/Physics10/old%20physics%2010/physics%2010%20notes/meteorKE.html. 
  98. Calculated: KE = 1/2 × 2×103 kg × (32 m/s)2 = 1.0×106 J
  99. "Candies, MARS SNACKFOOD US, SNICKERS Bar (NDB No. 19155)". USDA Nutrient Database. USDA. http://www.nal.usda.gov/fnic/foodcomp/search/. 
  100. 100.0 100.1 "How to Balance the Food You Eat and Your Physical Activity and Prevent Obesity". Healthy Weight Basics. National Heart Lung and Blood Institutde. http://www.nhlbi.nih.gov/health/public/heart/obesity/wecan/healthy-weight-basics/balance.htm. 
  101. Calculated: 2000 food calories = 2.0×106 cal × 4.184 J/cal = 8.4×106 J
  102. Calculated: 1/2 × m × v2 = 1/2 × 48.78 kg × (655 m/s)2 = 1.0×107 J.
  103. Calculated: 2600 food calories = 2.6×106 cal × 4.184 J/cal = 1.1×107 J
  104. "Table 3.3 Consumer Price Estimates for Energy by Source, 1970–2009". Annual Energy Review. US Energy Information Administration. 19 October 2011. http://www.eia.gov/totalenergy/data/annual/showtext.cfm?t=ptb0303. "$28.90 per million BTU" 
  105. Calculated J per dollar: 1 million BTU/$28.90 = 1×106 BTU / 28.90 dollars × 1.055×103 J/BTU = 3.65×107 J/dollar
  106. Calculated cost per kWh: 1 kWh × 3.60×106 J/kWh / 3.65×107 J/dollar = 0.0986 dollar/kWh
  107. "Energy in a Cubic Meter of Natural Gas". The Physics Factbook. http://hypertextbook.com/facts/2002/JanyTran.shtml. 
  108. "The Olympic Diet of Michael Phelps". WebMD. http://www.webmd.com/diet/news/20080813/the-olympic-diet-of-michael-phelps. 
  109. Cline, James E. D.. "Energy to Space". http://home.earthlink.net/~jedcline/ets.html. "6.27×107 Joules / Kg" 
  110. "Tour de France Winners, Podium, Times". Bike Race Info. http://bikeraceinfo.com/tdf/tdfindex.html. 
  111. "Watts/kg". Flamme Rouge. http://www.flammerouge.je/content/3_factsheets/constant/wattkilobench.htm. 
  112. Calculated: 90 hr × 3600 seconds/hr × 5 W/kg × 65 kg = 1.1×108 J
  113. Smith, Chris (6 March 2007). "How do Thunderstorms Work?". The Naked Scientists. http://www.thenakedscientists.com/HTML/articles/article/howdothunderstormswork-2/. "It discharges about 1–10 billion joules of energy" 
  114. "Powering up ATLAS's mega magnet". Spotlight on.... CERN. http://user.web.cern.ch/public/en/Spotlight/SpotlightATLAS-en.html. "magnetic energy of 1.1 Gigajoules" 
  115. "ITP Metal Casting: Melting Efficiency Improvement". ITP Metal Casting. U.S. Department of Energy. http://www1.eere.energy.gov/industry/metalcasting/pdfs/umr22_fs.pdf. "377 kWh/mt" 
  116. Calculated: 380 kW-h × 3.6×106 J/kW-h = 1.37×109 J
  117. Bell Fuels. "Lead-Free Gasoline Material Safety Data Sheet". NOAA. http://www.sefsc.noaa.gov/HTMLdocs/Gasoline.htm. 
  118. thepartsbin.com – Volvo Fuel Tank: Compare at The Parts Bin , 6 May 2012
  119. [math]\displaystyle{ E_\text{P} = \sqrt{\frac{\hbar c^5}{G}} }[/math]
  120. "Power of a Human Heart". The Physics Factbook. http://hypertextbook.com/facts/2003/IradaMuslumova.shtml. "The mechanical power of the human heart is ~1.3 watts" 
  121. Calculated: 1.3 J/s × 80 years × 3.16×107 s/year = 3.3×109 J
  122. "U.S. Household Electricity Uses: A/C, Heating, Appliances". U.S. HOUSEHOLD ELECTRICITY REPORT. EIA. http://www.eia.gov/emeu/reps/enduse/er01_us.html. "For refrigerators in 2001, the average UEC was 1,239 kWh" 
  123. Calculated: 1239 kWh × 3.6×106 J/kWh = 4.5×109 J
  124. 124.0 124.1 Energy Units, by Arthur Smith, 21 January 2005
  125. "Top 10 Biggest Explosions". Listverse. 28 November 2011. http://listverse.com/2011/11/28/top-10-biggest-explosions/. "a yield of 11 tons of TNT" 
  126. Calculated: 11 tons of TNT-equivalent × 4.184×109 J/ton of TNT-equivalent = 4.6×1010 J
  127. "Emission Facts: Average Annual Emissions and Fuel Consumption for Passenger Cars and Light Trucks". EPA. http://www.epa.gov/otaq/consumer/f00013.htm. "581 gallons of gasoline" 
  128. "200 Mile-Per-Gallon Cars?". http://www.uwgb.edu/dutchs/pseudosc/200mpgcar.htm. "a gallon of gas ... 125 million joules of energy" 
  129. Calculated: 581 gallons × 125×106 J/gal = 7.26×1010 J
  130. Calculated: 1×106 watts × 86400 seconds/day = 8.6×1010 J
  131. Calculated: 3.44×1010 J/U-235-fission × 1×103 kg / (235 amu per U-235-fission × 1.66×1027 amu/kg) = 8.82×1010 J
  132. Calculated: 2000 kcal/day × 365 days/year × 80 years = 2.4×1011 J
  133. "A330-300 Dimensions & key data". Airbus. http://www.airbus.com/aircraftfamilies/passengeraircraft/a330family/a330-300/specifications/. "97530 litres" 
  134. 134.0 134.1 134.2 "Archived copy". http://www.bp.com/liveassets/bp_internet/aviation/air_bp/STAGING/local_assets/downloads_pdfs/a/air_bp_products_handbook_04004_1.pdf. 
  135. Calculated: 97530 liters × 0.804 kg/L × 43.15 MJ/kg = 3.38×1012 J
  136. Calculated: 1×109 watts × 3600 seconds/hour
  137. Weston, Kenneth. "Chapter 10. Nuclear Power Plants". Energy Conversion. http://www.personal.utulsa.edu/~kenneth-weston/chapter10.pdf. "The thermal efficiency of a CANDU plant is only about 29%" 
  138. "CANDU and Heavy Water Moderated Reactors". http://www.nucleartourist.com/type/candu.htm. "fuel burnup in a CANDU is only 6500 to 7500 MWd per metric ton uranium" 
  139. Calculated: 7500×106 watt-days/tonne × (0.020 tonnes per bundle) × 86400 seconds/day = 1.3×1013 J of burnup energy. Electricity = burnup × ~29% efficiency = 3.8×1012 J
  140. Calculated: 4.2×109 J/ton of TNT-equivalent × 1×103 tons/megaton = 4.2×1012 J/megaton of TNT-equivalent
  141. "747 Classics Technical Specs". Boeing. http://www.boeing.com/commercial/747family/pf/pf_classics.html. "183,380 L" 
  142. Calculated: 183380 liters × 0.804 kg/L × 43.15 MJ/kg = 6.36×1012 J
  143. "A380-800 Dimensions & key data". Airbus. http://www.airbus.com/aircraftfamilies/passengeraircraft/a380family/a380-800/specifications/. "320,000 L" 
  144. Calculated: 320,000 L × 0.804 kg/L × 43.15  MJ/kg = 11.1×1012 J
  145. "International Space Station: The ISS to Date". NASA. http://www.nasa.gov/mission_pages/station/structure/isstodate.html. 
  146. "The wizards of orbits". European Space Agency. http://www.esa.int/esaCP/ESA104MBAMC_FeatureWeek_0.html. "The International Space Station, for example, flies at 7.7 km/s in one of the lowest practicable orbits" 
  147. Calculated: E = 1/2 m.v2 = 1/2 × 417000 kg × (7700m/s)2 = 1.2×1013 J
  148. "What was the yield of the Hiroshima bomb?". Warbird's Forum. http://www.warbirdforum.com/hiroshim.htm. "21 kt" 
  149. Calculated: 15 kt = 15×109 grams of TNT-equivalent × 4.2×103 J/gram TNT-equivalent = 6.3×1013 J
  150. "Conversion from kg to J". NIST. http://physics.nist.gov/cgi-bin/cuu/Convert?exp=-3&num=1&From=kg&To=j&Action=Convert+value+and+show+factor. 
  151. "JPL – Fireballs and bolides". NASA. https://cneos.jpl.nasa.gov/fireballs/. 
  152. 152.0 152.1 "How much energy does a hurricane release?". FAQ : HURRICANES, TYPHOONS, AND TROPICAL CYCLONES. NOAA. http://www.aoml.noaa.gov/hrd/tcfaq/D7.html. 
  153. "The Gathering Storms". COSMOS. http://www.cosmosmagazine.com/node/3302/full. 
  154. 154.0 154.1 154.2 154.3 154.4 "Country Comparison :: Electricity – consumption". The World Factbook. CIA. https://www.cia.gov/library/publications/the-world-factbook/rankorder/2042rank.html. 
  155. Calculated: 288.6×106 kWh × 3.60×106 J/kWh = 1.04×1015 J
  156. Calculated: 4.2×109 J/ton of TNT-equivalent × 1×106 tons/megaton = 4.2×1015 J/megaton of TNT-equivalent
  157. Calculated: 3.02×109 kWh × 3.60×106 J/kWh = 1.09×1016 J
  158. Calculated: E = mc2 = 1 kg × (2.998×108 m/s)2 = 8.99×1016 J
  159. "USGS Energy and Broadband Solution". National Earthquake Information Center, US Geological Survey. http://neic.usgs.gov/neis/eq_depot/2004/eq_041226/neic_slav_e.html. 
  160. 160.0 160.1 160.2 The Earth has a cross section of 1.274×1014 square meters and the solar constant is 1361 watts per square meter.
  161. "The Soviet Weapons Program – The Tsar Bomba". The Nuclear Weapon Archive. http://www.nuclearweaponarchive.org/Russia/TsarBomba.html. 
  162. Calculated: 50×106 tons TNT-equivalent × 4.2×109 J/ton TNT-equivalent = 2.1×1017 J
  163. Calculated: 115.6×109 kWh × 3.60×106 J/kWh = 4.16×1017 J
  164. Alexander, R. McNeill (1989). Dynamics of Dinosaurs and Other Extinct Giants. Columbia University Press. p. 144. ISBN 978-0-231-06667-9. https://books.google.com/books?id=0q_1xk3SVKEC. "the explosion of the island volcano Krakatoa in 1883, had about 200 megatonnes energy." 
  165. Calculated: 200×106 tons of TNT equivalent × 4.2×109 J/ton of TNT equivalent = 8.4×1017 J
  166. This value appears to be referred only to the third explosion on 27th August, 10.02 a.m. According to reports, the third explosion was by far the largest; it is associated to the biggest sound in the recorded history, the highest tsunami during the eruption and the most powerful shock waves rounded the world several times. 200 Megatons of TNT are often referred as the total energy released by the entire eruption, but it's plausible that are rather the energy released by the single third explosion, considering the effects.[1][2]
  167. Calculated: 402×109 kWh × 3.60×106 J/kWh = 1.45×1017 J
  168. Mizokami, Kyle (2019-04-01). "Here's What Would Happen If We Blew Up All the World's Nukes at Once" (in en-US). https://www.popularmechanics.com/military/weapons/a27008390/blow-up-every-nuke/. 
  169. Calculated: 3.741×1012 kWh × 3.600×106 J/kWh = 1.347×1019 J
  170. "United States". The World Factbook. USA. https://www.cia.gov/the-world-factbook/countries/united-states/. 
  171. Calculated: 3.953×1012 kWh × 3.600×106 J/kWh = 1.423×1019 J
  172. 172.0 172.1 "World". The World Factbook. CIA. https://www.cia.gov/the-world-factbook/countries/world/. 
  173. Calculated: 17.8×1012 kWh × 3.60×106 J/kWh = 6.41×1019 J
  174. Calculated: 18.95×1012 kWh × 3.60×106 J/kWh = 6.82×1019 J
  175. 175.0 175.1 175.2 175.3 175.4 "Statistical Review of World Energy 2011". BP. http://www.bp.com/assets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2011/STAGING/local_assets/pdf/statistical_review_of_world_energy_full_report_2011.pdf. 
  176. Calculated: 12002.4×106 tonnes of oil equivalent × 42×109 J/tonne of oil equivalent = 5.0×1020 J
  177. 177.0 177.1 177.2 "Global Uranium Resources to Meet Projected Demand | International Atomic Energy Agency". iaea.org. June 2006. http://www.iaea.org/NewsCenter/News/2006/uranium_resources.html. 
  178. "U.S. Energy Information Administration, International Energy Generation". http://www.eia.doe.gov/pub/international/iealf/table63.xls. 
  179. "U.S. EIA International Energy Outlook 2007.". eia.doe.gov. http://www.eia.doe.gov/oiaf/ieo/electricity.html. 
  180. Final number is computed. Energy Outlook 2007 shows 15.9% of world energy is nuclear. IAEA estimates conventional uranium stock, at today's prices is sufficient for 85 years. Convert billion kilowatt-hours to joules then: 6.25×1019×0.159×85 = 8.01×1020.
  181. Calculated: "6608.9 trillion cubic feet" => 6608.9×103 billion cubic feet × 0.025 million tonnes of oil equivalent/billion cubic feet × 1×106 tonnes of oil equivalent/million tonnes of oil equivalent × 42×109 J/tonne of oil equivalent = 6.9×1021 J
  182. Calculated: "188.8 thousand million tonnes" => 188.8×109 tonnes of oil × 42×109 J/tonne of oil = 7.9×1021 J
  183. Calculated: 1.27×1014 m2 × 1370 W/m2 × 86400 s/day = 1.5×1022 J
  184. Calculated: 860938 million tonnes of coal => 860938×106 tonnes of coal × (1/1.5 tonne of oil equivalent / tonne of coal) × 42×109 J/tonne of oil equivalent = 2.4×1022 J
  185. Calculated: natural gas + petroleum + coal = 6.9×1021 J + 7.9×1021 J + 2.4×1022 J = 3.9×1022 J
  186. "USGS, Harvard Moment Tensor Solution". National Earthquake Information Center. 26 December 2004. http://neic.usgs.gov/neis/eq_depot/2004/eq_041226/neic_slav_hrv.html. 
  187. Boslough, M. B.; Chael, E. P.; Trucano, T. G.; Crawford, D. A.; Campbell, D. L. (1994-12-01) (in English). Axial focusing of impact energy in the earth`s interior: A possible link to flood basalts and hotspots. https://www.osti.gov/biblio/10197028. 
  188. Calculated: 1.27×1014 m2 × 1370 W/m2 × 86400 s/day = 5.5×1024 J
  189. Carroll, Bradley; Ostlie, Dale (2017). An Introduction to Modern Astrophysics (2 ed.). ISBN 978-1-108-42216-1. 
  190. Zahnle, K. J. (26 August 2018). "Climatic Effect of Impacts on the Ocean". Comparative Climatology of Terrestrial Planets III: From Stars to Surfaces 2065: 2056. Bibcode2018LPICo2065.2056Z. https://ntrs.nasa.gov/citations/20180006692. 
  191. 191.0 191.1 191.2 "Ask Us: Sun: Amount of Energy the Earth Gets from the Sun". Cosmicopia. NASA. http://helios.gsfc.nasa.gov/qa_sun.html#sunenergymass. 
  192. Lii, Jiangning. "Seismic effects of the Caloris basin impact, Mercury". https://dspace.mit.edu/bitstream/handle/1721.1/69472/775585855-MIT.pdf?sequence=2. 
  193. "Moon Fact Sheet". NASA. http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html. 
  194. Calculated: KE = 1/2 × m × v2. v = 1.023×103 m/s. m = 7.349×1022 kg. KE = 1/2 × (7.349×1022 kg) × (1.023×103 m/s)2 = 3.845×1028 J.
  195. "Moment of Inertia—Earth". Eric Weisstein's World of Physics. http://scienceworld.wolfram.com/physics/MomentofInertiaEarth.html. 
  196. Allain, Rhett. "Rotational energy of the Earth as an energy source". .dotphysics. Science Blogs. http://scienceblogs.com/dotphysics/2009/06/rotational-energy-of-the-earth-as-an-energy-source.php. "the Earth takes 23.9345 hours to rotate" 
  197. Calculated: E_rotational = 1/2 × I × w2 = 1/2 × (8.0×1037 kg m2) × (2×pi/(23.9345 hour period × 3600 seconds/hour))2 = 2.1×1029 J
  198. Schaefer, Bradley E.; King, Jeremy R.; Deliyannis, Constantine P. (February 2000). "Superflares on Ordinary Solar‐Type Stars" (in en). The Astrophysical Journal 529 (2): 1026–1030. doi:10.1086/308325. ISSN 0004-637X. https://iopscience.iop.org/article/10.1086/308325. 
  199. Calculated: 3.8×1026 J/s × 86400 s/day = 3.3×1031 J
  200. "Earth's Gravitational Binding Energy". http://typnet.net/Essays/EarthBind.htm. "Variable Density Method: the Earth's gravitational binding energy is −1.711×1032 J" 
  201. "DutchS/pseudosc/flipaxis". uwgb.edu. http://www.uwgb.edu/DutchS/pseudosc/flipaxis.htm. 
  202. Calculated: 3.8×1026 J/s × 86400 s/day × 365.25 days/year = 1.2×1034 J
  203. "NASA - Cosmic Explosion Among the Brightest in Recorded History" (in en). https://www.nasa.gov/vision/universe/watchtheskies/swift_nsu_0205.html. 
  204. Palmer, D. M.; Barthelmy, S.; Gehrels, N.; Kippen, R. M.; Cayton, T.; Kouveliotou, C.; Eichler, D.; Wijers, R. a. M. J. et al. (April 2005). "A giant γ-ray flare from the magnetar SGR 1806–20" (in en). Nature 434 (7037): 1107–1109. doi:10.1038/nature03525. ISSN 1476-4687. https://www.nature.com/articles/nature03525. 
  205. Stella, L.; Dall'Osso, S.; Israel, G. L.; Vecchio, A. (2005-11-17). "Gravitational Radiation from Newborn Magnetars in the Virgo Cluster" (in en). The Astrophysical Journal 634 (2): L165–L168. doi:10.1086/498685. ISSN 0004-637X. https://iopscience.iop.org/article/10.1086/498685. 
  206. [math]\displaystyle{ U = \frac{(3/5)GM^2}{r} }[/math]
    Chandrasekhar, S. 1939, An Introduction to the Study of Stellar Structure (Chicago: U. of Chicago; reprinted in New York: Dover), section 9, eqs. 90–92, p. 51 (Dover edition)
    Lang, K. R. 1980, Astrophysical Formulae (Berlin: Springer Verlag), p. 272
  207. "Earth: Facts & Figures". Solar System Exploration. NASA. http://solarsystem.nasa.gov/planets/profile.cfm?Object=Earth&Display=Facts. 
  208. "Conversion from kg to J". NIST. http://physics.nist.gov/cgi-bin/cuu/Convert?exp=24&num=6.0&From=kg&To=j&Action=Convert+value+and+show+factor. 
  209. Frail, D. A.; Kulkarni, S. R.; Sari, R.; Djorgovski, S. G.; Bloom, J. S.; Galama, T. J.; Reichart, D. E.; Berger, E. et al. (2001). "Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir". The Astrophysical Journal 562 (1): L55. doi:10.1086/338119. Bibcode2001ApJ...562L..55F.  "the gamma-ray energy release, corrected for geometry, is narrowly clustered around 5 × 1050 erg"
  210. Calculated: 5×1050 erg × 1×107 J/erg = 5×1043 J
  211. Khokhlov, A.; Mueller, E.; Hoeflich, P.; Mueller; Hoeflich (1993). "Light curves of Type IA supernova models with different explosion mechanisms". Astronomy and Astrophysics 270 (1–2): 223–248. Bibcode1993A&A...270..223K. 
  212. Coppejans, D. L.; Margutti, R.; Terreran, G.; Nayana, A. J.; Coughlin, E. R.; Laskar, T.; Alexander, K. D.; Bietenholz, M. et al. (2020-05-26). "A Mildly Relativistic Outflow from the Energetic, Fast-rising Blue Optical Transient CSS161010 in a Dwarf Galaxy" (in en). The Astrophysical Journal 895 (1): L23. doi:10.3847/2041-8213/ab8cc7. ISSN 2041-8213. https://iopscience.iop.org/article/10.3847/2041-8213/ab8cc7. 
  213. Dong, S.; Shappee, B. J.; Prieto, J. L.; Jha, S. W.; Stanek, K. Z.; Holoien, T. W.- S.; Kochanek, C. S.; Thompson, T. A. et al. (15 January 2016). "ASASSN-15lh: A highly super-luminous supernova". Science 351 (6270): 257–260. doi:10.1126/science.aac9613. PMID 26816375. Bibcode2016Sci...351..257D. 
  214. Kankare, E.; Kotak, R.; Mattila, S.; Lundqvist, P.; Ward, M. J.; Fraser, M.; Lawrence, A.; Smartt, S. J. et al. (December 2017). "A population of highly energetic transient events in the centres of active galaxies" (in en). Nature Astronomy 1 (12): 865–871. doi:10.1038/s41550-017-0290-2. ISSN 2397-3366. https://www.nature.com/articles/s41550-017-0290-2. 
  215. Both ASSASN-15lh and PS1-10adi are indicated as supernovae and probably they are; actually, other mechanisms are proposed to explain them, more or less in accordance to the characteristics of supernovae
  216. published, Mike Wall (2020-04-13). "Boom! Distant star explosion is brightest ever seen" (in en). https://www.space.com/brightest-supernova-ever-discovered-sn2016aps.html. 
  217. Starr, Michelle. "Astronomers Detect The Most Powerful Star Explosion We've Ever Observed" (in en-gb). https://www.sciencealert.com/this-exploding-star-was-the-most-powerful-we-ve-ever-spotted. 
  218. CNN, Kristen Rogers. "Astronomers just discovered the brightest supernova ever seen". https://www.cnn.com/2020/04/13/world/brightest-supernova-sn2016aps-scn/index.html. 
  219. Nicholl, Matt; Blanchard, Peter K.; Berger, Edo; Chornock, Ryan; Margutti, Raffaella; Gomez, Sebastian; Lunnan, Ragnhild; Miller, Adam A. et al. (September 2020). "An extremely energetic supernova from a very massive star in a dense medium" (in en). Nature Astronomy 4 (9): 893–899. doi:10.1038/s41550-020-1066-7. ISSN 2397-3366. https://www.nature.com/articles/s41550-020-1066-7. 
  220. Yong, D.; Kobayashi, C.; Da Costa, G. S.; Bessell, M. S.; Chiti, A.; Frebel, A.; Lind, K.; Mackey, A. D. et al. (2021-07-08). "R-Process elements from magnetorotational hypernovae". Nature 595 (7866): 223–226. doi:10.1038/s41586-021-03611-2. ISSN 0028-0836. http://arxiv.org/abs/2107.03010. 
  221. McBreen, S; Krühler, T; Rau, A; Greiner, J; Kann, D. A; Savaglio, S; Afonso, P; Clemens, C et al. (2010). "Optical and near-infrared follow-up observations of four Fermi/LAT GRBs: Redshifts, afterglows, energetics and host galaxies". Astronomy and Astrophysics 516 (71): A71. doi:10.1051/0004-6361/200913734. Bibcode2010A&A...516A..71M. 
  222. Cenko, S. B; Frail, D. A; Harrison, F. A; Haislip, J. B; Reichart, D. E; Butler, N. R; Cobb, B. E; Cucchiara, A et al. (2010). "Afterglow Observations of Fermi-LAT Gamma-Ray Bursts and the Emerging Class of Hyper-Energetic Events". The Astrophysical Journal 732 (1): 29. doi:10.1088/0004-637X/732/1/29. Bibcode2011ApJ...732...29C. 
  223. Cenko, S. B; Frail, D. A; Harrison, F. A; Kulkarni, S. R; Nakar, E; Chandra, P; Butler, N. R; Fox, D. B et al. (2010). "The Collimation and Energetics of the Brightest Swift Gamma-Ray Bursts". The Astrophysical Journal 711 (2): 641–654. doi:10.1088/0004-637X/711/2/641. Bibcode2010ApJ...711..641C. 
  224. url= http://tsvi.phys.huji.ac.il/presentations/Frail_AstroExtreme.pdf
  225. url= http://fermi.gsfc.nasa.gov/science/mtgs/grb2010/tue/Dale_Frail.ppt
  226. "A Hypernova: The Super-charged Supernova and its link to Gamma-Ray Bursts". Imagine the Universe!. NASA. http://imagine.gsfc.nasa.gov/docs/science/know_l1/why_hyper.html. "With a power about 100 times that of the already astonishingly powerful "typical" supernova" 
  227. it is specified that only the 1% of the total energy (10^44 J) is kinetic energy; so, almost the total energy is carried by neutrinos
  228. Kasen, Daniel; Woosley, S. E.; Heger, Alexander (2011). "Pair Instability Supernovae: Light Curves, Spectra, and Shock Breakout". The Astrophysical Journal 734 (2): 102. doi:10.1088/0004-637X/734/2/102. Bibcode2011ApJ...734..102K. https://iopscience.iop.org/article/10.1088/0004-637X/734/2/102. 
  229. "Quark-Nova | Astronomy & Astrophysics (A&A)". https://www.aanda.org/component/article?access=bibcode&bibcode=&bibcode=2002A%2526A...390L..39OFUL. 
  230. Ruffini, R.; Salmonson, J. D.; Wilson, J. R.; Xue, S. -S. (1999-10-01). "On the pair electromagnetic pulse of a black hole with electromagnetic structure". Astronomy and Astrophysics 350: 334–343. ISSN 0004-6361. https://ui.adsabs.harvard.edu/abs/1999A&A...350..334R. 
  231. Ruffini, R.; Salmonson, J. D.; Wilson, J. R.; Xue, S. -S. (2000-07-01). "On the pair-electromagnetic pulse from an electromagnetic black hole surrounded by a baryonic remnant". Astronomy and Astrophysics 359: 855–864. ISSN 0004-6361. https://ui.adsabs.harvard.edu/abs/2000A&A...359..855R. 
  232. "Sun Fact Sheet". NASA. http://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html. 
  233. "Conversion from kg to J". NIST. http://physics.nist.gov/cgi-bin/cuu/Convert?exp=30&num=2.0&From=kg&To=j&Action=Convert+value+and+show+factor. 
  234. Abbott, B. et al. (2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters 116 (6): 061102. doi:10.1103/PhysRevLett.116.061102. PMID 26918975. Bibcode2016PhRvL.116f1102A. 
  235. If GW190521 is a boson star merging, the present one remains the largest. See note [246][247]
  236. "Fermi's record breaking gamma-ray burst". http://www.astronomynow.com/090220fermisrecordbreakinggrb.html. 
  237. It is important to specify that the energetic reduction for beaming (invoked to explain so much energetics and jet breaks) is expected in the "Fireball model", which is the traditional one; other main models explain both Long and Short GRBs with binary systems, such as "Induced Gravitational Collapse", "Binary-Driven Hypernovae" which refer to the "Fireshell" one, in which cases the beaming isn't assumpted and the isotropic energy is a real value of energy due to the rotational energy of the stellar black hole and vacuum polarization in a electromagnetic field, which are able to explain energetics up and over 1047 J
  238. Whalen, Daniel J.; Johnson, Jarrett L.; Smidt, Joseph; Meiksin, Avery; Heger, Alexander; Even, Wesley; Fryer, Chris L. (August 2013). "The Supernova That Destroyed a Protogalaxy: Prompt Chemical Enrichment and Supermassive Black Hole Growth" (in en). The Astrophysical Journal 774 (1): 64. doi:10.1088/0004-637X/774/1/64. ISSN 0004-637X. Bibcode2013ApJ...774...64W. https://doi.org/10.1088/0004-637x/774/1/64. 
  239. Chen, Ke-Jung; Heger, Alexander; Woosley, Stan; Almgren, Ann; Whalen, Daniel J.; Johnson, Jarrett L. (July 2014). "The General Relativistic Instability Supernova of a Supermassive Population III Star" (in en). The Astrophysical Journal 790 (2): 162. doi:10.1088/0004-637X/790/2/162. ISSN 0004-637X. Bibcode2014ApJ...790..162C. https://doi.org/10.1088/0004-637x/790/2/162. 
  240. Assuming the uncertainties about the masses of the objects, the values of the LIGO Data are taken in consideration; so we have a newborn black hole with about 142 solar masses and the conversion in gravitational waves of about 7 solar masses
  241. Abbott, R.; Abbott, T. D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R. X.; Adya, V. B. et al. (2020-09-02). "Properties and Astrophysical Implications of the 150 M ⊙ Binary Black Hole Merger GW190521" (in en). The Astrophysical Journal 900 (1): L13. doi:10.3847/2041-8213/aba493. ISSN 2041-8213. https://iopscience.iop.org/article/10.3847/2041-8213/aba493. 
  242. LIGO Scientific Collaboration and Virgo Collaboration; Abbott, R.; Abbott, T. D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R. X. et al. (2020-09-02). "GW190521: A Binary Black Hole Merger with a Total Mass of $150\text{ }\text{ }{M}_{\ensuremath{\bigodot}}$". Physical Review Letters 125 (10): 101102. doi:10.1103/PhysRevLett.125.101102. https://link.aps.org/doi/10.1103/PhysRevLett.125.101102. 
  243. A research claims that this is instead a boson stars merging with approximately 8 times more probability than the black hole case; if so, the existence and the collision of boson stars there would be confirmed together. Furthermore, the energy released and the distance would be reduced.[3] See the following note for the link of the research
  244. Bustillo, Juan Calderón; Sanchis-Gual, Nicolas; Torres-Forné, Alejandro; Font, José A.; Vajpeyi, Avi; Smith, Rory; Herdeiro, Carlos; Radu, Eugen et al. (2021-02-24). "GW190521 as a Merger of Proca Stars: A Potential New Vector Boson of $8.7\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}13}\text{ }\mathrm{eV}$". Physical Review Letters 126 (8): 081101. doi:10.1103/PhysRevLett.126.081101. https://link.aps.org/doi/10.1103/PhysRevLett.126.081101. 
  245. Toma, Kenji; Sakamoto, Takanori; Mészáros, Peter (April 2011). "Population III Gamma-Ray Burst Afterglows: Constraints on Stellar Masses and External Medium Densities" (in en). The Astrophysical Journal 731 (2): 127. doi:10.1088/0004-637X/731/2/127. ISSN 0004-637X. Bibcode2011ApJ...731..127T. https://doi.org/10.1088/0004-637x/731/2/127. 
  246. Garner, Rob (2020-03-18). "Quasar Tsunamis Rip Across Galaxies". http://www.nasa.gov/feature/goddard/2020/quasar-tsunamis-rip-across-galaxies. 
  247. To determinate this value, the maximum energy of 1047 J for gamma-ray burts is taken in consideration; then six orders of magnitude are added, equivalent to ten million of years, the time frame in which the quasar tsunami will exceed the GRBs energetics over 1 million of times, according to the Nahum Arav's statement in the previous note
  248. Cavagnolo, K. W; McNamara, B. R; Wise, M. W; Nulsen, P. E. J; Brüggen, M; Gitti, M; Rafferty, D. A (2011). "A Powerful AGN Outburst in RBS 797". The Astrophysical Journal 732 (2): 71. doi:10.1088/0004-637X/732/2/71. Bibcode2011ApJ...732...71C. 
  249. url= http://iopscience.iop.org/1538-4357/625/1/L9/fulltext/19121.text.html
  250. Li, Shuang-Liang; Cao, Xinwu (June 2012). "CONSTRAINTS ON JET FORMATION MECHANISMS WITH THE MOST ENERGETIC GIANT OUTBURSTS IN MS 0735$\mathplus$7421" (in en). The Astrophysical Journal 753 (1): 24. doi:10.1088/0004-637X/753/1/24. ISSN 0004-637X. https://doi.org/10.1088/0004-637x/753/1/24. 
  251. Giacintucci, S.; Markevitch, M.; Johnston-Hollitt, M.; Wik, D. R.; Wang, Q. H. S.; Clarke, T. E. (February 2020). "Discovery of a Giant Radio Fossil in the Ophiuchus Galaxy Cluster" (in en). The Astrophysical Journal 891 (1): 1. doi:10.3847/1538-4357/ab6a9d. ISSN 0004-637X. Bibcode2020ApJ...891....1G. https://doi.org/10.3847/1538-4357/ab6a9d. 
  252. Siegel, Ethan. "Merging Supermassive Black Holes Will Become The Most Energetic Events Of All" (in en). https://www.forbes.com/sites/startswithabang/2020/03/03/the-most-energetic-event-in-the-universe-hasnt-been-discovered-yet/. 
  253. Siegel, Ethan (2020-03-10). "Merging Supermassive Black Holes Are The Universe’s Most Energetic Events Of All" (in en). https://medium.com/starts-with-a-bang/merging-supermassive-black-holes-are-the-universes-most-energetic-events-of-all-be380cdb2975. 
  254. Diodati, Michele (2020-04-11). "Rotating Black Holes, the Most Powerful Energy Generators in the Universe" (in en). https://medium.com/amazing-science/rotating-black-holes-the-most-powerful-energy-generators-in-the-universe-832439add442. 
  255. Tamburini, Fabrizio; Thidé, Bo; Della Valle, Massimo (2020) (in en). Measurement of the spin of the M87 black hole from its observed twisted light. doi:10.1093/mnrasl/slz176. ISSN 0035-8711. https://openaccess.inaf.it/handle/20.500.12386/31845. 
  256. Tucker, W.; Blanco, P.; Rappoport, S.; David, L.; Fabricant, D.; Falco, E. E.; Forman, W.; Dressler, A. et al. (1998-03-02). "1E 0657–56: A Contender for the Hottest Known Cluster of Galaxies" (in en). The Astrophysical Journal 496 (1): L5. doi:10.1086/311234. ISSN 0004-637X. Bibcode1998ApJ...496L...5T. https://iopscience.iop.org/article/10.1086/311234/meta. 
  257. Markevitch, Maxim; Vikhlinin, Alexey (May 2007). "Shocks and cold fronts in galaxy clusters". Physics Reports 443 (1): 1–53. doi:10.1016/j.physrep.2007.01.001. http://arxiv.org/abs/astro-ph/0701821. 
  258. Karachentsev, I. D.; Kashibadze, O. G. (2006). "Masses of the local group and of the M81 group estimated from distortions in the local velocity field". Astrophysics 49 (1): 3–18. doi:10.1007/s10511-006-0002-6. Bibcode2006Ap.....49....3K. 
  259. "Conversion from kg to J". NIST. http://physics.nist.gov/cgi-bin/cuu/Convert?exp=42&num=1.2&From=kg&To=j&Action=Convert+value+and+show+factor. 
  260. Einasto, M. et al. (December 2007). "The richest superclusters. I. Morphology". Astronomy and Astrophysics 476 (2): 697–711. doi:10.1051/0004-6361:20078037. Bibcode2007A&A...476..697E. 
  261. "Big Bang Energy". http://imagine.gsfc.nasa.gov/docs/ask_astro/answers/980211b.html.