Orders of magnitude (mass)

From HandWiki
Short description: Orders of magnitude (mass) in SI system
An overview of ranges of mass

To help compare different orders of magnitude, the following lists describe various mass levels between 10−67 kg and 1052 kg. The least massive thing listed here is a graviton, and the most massive thing is the observable universe. Typically, an object having greater mass will also have greater weight (see mass versus weight), especially if the objects are subject to the same gravitational field strength.

Units of mass

SI multiples of gram (g)
Submultiples Multiples
Value SI symbol Name Value SI symbol Name
10−1 g dg decigram 101 g dag decagram
10−2 g cg centigram 102 g hg hectogram
10−3 g mg milligram 103 g kg kilogram
10−6 g µg microgram (mcg) 106 g Mg megagram (tonne)
10−9 g ng nanogram 109 g Gg gigagram
10−12 g pg picogram 1012 g Tg teragram
10−15 g fg femtogram 1015 g Pg petagram
10−18 g ag attogram 1018 g Eg exagram
10−21 g zg zeptogram 1021 g Zg zettagram
10−24 g yg yoctogram 1024 g Yg yottagram
Common prefixes are in bold face.[1]

The table at right is based on the kilogram (kg), the base unit of mass in the International System of Units (SI). The kilogram is the only standard unit to include an SI prefix (kilo-) as part of its name. The gram (10−3 kg) is an SI derived unit of mass. However, the names of all SI mass units are based on gram, rather than on kilogram; thus 103 kg is a megagram (106 g), not a *kilokilogram.

The tonne (t) is an SI-compatible unit of mass equal to a megagram (Mg), or 103 kg. The unit is in common use for masses above about 103 kg and is often used with SI prefixes. For example, a gigagram (Gg) or 109 g is 103 tonnes, commonly called a kilotonne.

Other units

Other units of mass are also in use. Historical units include the stone, the pound, the carat, and the grain.

For subatomic particles, physicists use the mass equivalent to the energy represented by an electronvolt (eV). At the atomic level, chemists use the mass of one-twelfth of a carbon-12 atom (the dalton). Astronomers use the mass of the sun (M).

The least massive things: below 10−24 kg

Unlike other physical quantities, mass–energy does not have an a priori expected minimal quantity, or an observed basic quantum as in the case of electric charge. Planck's law allows for the existence of photons with arbitrarily low energies. Consequently, there can only ever be an experimental upper bound on the mass of a supposedly massless particle; in the case of the photon, this confirmed upper bound is of the order of 3×10−27 eV/c2 = 10−62 kg.

Factor (kg) Value Item
10−67 1.07×10−67 kg Graviton, upper bound (6×10−32 eV/c2)[2]
10−40 4.2×10−40 kg Mass equivalent of the energy of a photon at the peak of the spectrum of the cosmic microwave background radiation (0.235 meV/c2)[3]
10−36 1.8×10−36 kg 1 eV/c2, the mass equivalent of one electronvolt[4]
3.6×10−36 kg Electron neutrino, upper limit on mass (2 eV/c2)[5]
10−33
quectogram (qg)
10−31 9.11×10−31 kg Electron (511 keV/c2), the lightest elementary particle with a measured nonzero rest mass[6]
10−30
rontogram (rg)
3.0–5.5×10−30 kg Up quark (as a current quark) (1.7–3.1 MeV/c2)[7]
10−28 1.9×10−28 kg Muon (106 MeV/c2)[8]
10−27
yoctogram (yg)
1.661×10−27 kg Dalton (Da), a.k.a. unified atomic mass unit (u)
1.673×10−27 kg Proton (938.3 MeV/c2)[9][10]
1.674×10−27 kg Hydrogen atom, the lightest atom
1.675×10−27 kg Neutron (939.6 MeV/c2)[11][12]
10−26 1.2×10−26 kg Lithium atom (6.941 Da)
3.0×10−26 kg Water molecule (18.015 Da)
8.0×10−26 kg Titanium atom (47.867 Da)
10−25 1.1×10−25 kg Copper atom (63.546 Da)
1.6×10−25 kg Z boson (91.2 GeV/c2)[13]
2.2×10−25 kg Higgs boson (125 GeV/c2)
3.1×10−25 kg Top quark (173 GeV/c2),[14] the heaviest known elementary particle
3.2×10−25 kg Caffeine molecule (194 Da)
3.5×10−25 kg Lead-208 atom
4.9×10−25 kg Oganesson-294 atom, the heaviest known nuclide

10−24 to 10−18 kg

Factor (kg) Value Item
10−24
zeptogram (zg)
1.2×10−24 kg Buckyball molecule (720 Da)
10−23 1.4×10−23 kg Ubiquitin, a small protein (8.6 kDa)[15]
5.5×10−23 kg A typical protein (median size of roughly 300 amino acids ≈ 33 kDa)[16]
10−22 1.1×10−22 kg Haemoglobin A molecule in blood (64.5 kDa)[17]
10−21
attogram (ag)
1.65×10−21 kg Double-stranded DNA molecule consisting of 1,578 base pairs (995 kDa)[18]
4.3×10−21 kg Prokaryotic ribosome (2.6 MDa)[19]
7.1×10−21 kg Eukaryotic ribosome (4.3 MDa)[19]
7.6×10−21 kg Brome mosaic virus, a small virus (4.6 MDa)[20]
10−20 3×10−20 kg Synaptic vesicle in rats (16.1 ± 3.8 MDa)[21]
6.8×10−20 kg Tobacco mosaic virus (41 MDa)[22]
10−19 1.1×10−19 kg Nuclear pore complex in yeast (66 MDa)[23]
2.5×10−19 kg Human adenovirus (150 MDa)[24]

10−18 to 10−12 kg

Factor (kg) Value Item
10−18
femtogram (fg)
1×10−18 kg HIV-1 virus[25][26]
4.7×10−18 kg DNA sequence of length 4.6 Mbp, the weight of the E. coli genome[27]
10−17 ~1×10−17 kg Vaccinia virus, a large virus[28]
1.1×10−17 kg Mass equivalent of 1 joule[29]
10−16 3×10−16 kg Prochlorococcus cyanobacteria, the smallest (and possibly most plentiful)[30] photosynthetic organism on Earth[31][32]
10−15
picogram (pg)
1×10−15 kg E. coli bacterium (wet weight)[33]
6×10−15 kg DNA in a typical diploid human cell (approximate)
10−14 2.2×10−14 kg Human sperm cell[32][34]
6×10−14 kg Yeast cell (quite variable)[35][36]
10−13 1.5×10−13 kg Dunaliella salina, a green alga (dry weight)[37]

10−12 to 10−6 kg

Scanning electron micrograph showing grains of sand

Factor (kg) Value Item
10−12
nanogram (ng)
1×10−12 kg Average human cell (1 nanogram)[38]
2–3×10−12 kg HeLa human cell[39][40][41]
8×10−12 kg Grain of birch pollen[42]
10−11    
10−10 2.5×10−10 kg Grain of maize pollen[43]
3.5×10−10 kg Very fine grain of sand (0.063 mm diameter, 350 nanograms)
10−9
microgram (μg)
3.6×10−9 kg Human ovum[32][44]
2.4×10−9 kg US RDA for vitamin B12 for adults[45]
10−8 10−8 kg Speculated approximate lower limit of the mass of a primordial black hole
1.5×10−8 kg US RDA for vitamin D for adults[46]
~2×10−8 kg Uncertainty in the mass of the International Prototype of the Kilogram (IPK) (±~20 μg)[47]
2.2×10−8 kg Planck mass,[48] can be expressed as the mass of a 2 Planck Length radius black hole
~7×10−8 kg One eyelash hair (approximate)[49]
10−7 1.5×10−7 kg US RDA for iodine for adults[50]
2–3×10−7 kg Fruit fly (dry weight)[51][52]

10−6 to 1 kg

Factor (kg) Value Item
10−6
milligram (mg)
2.5×10−6 kg Mosquitoes, common smaller species (about 2.5 milligrams),[53] grain of salt or sand,[54] medicines are typically expressed in milligrams[55]
10−5
centigram (cg)
1.1×10−5 kg Small granule of quartz (2 mm diameter, 11 milligrams)[56]
2×10−5 kg Adult housefly (Musca domestica, 21.4 milligrams)[57]
10−4
decigram (dg)
0.27–2.0×10−4 kg Range of amounts of caffeine in one cup of coffee (27–200 milligrams)[58]
1.5×10−4 kg A frame of 35mm motion picture film (157 milligrams)[59]
2×10−4 kg Metric carat (200 milligrams)[59]
10−3
gram (g)
1×10−3 kg One cubic centimeter of water (1 gram)[60]
1×10−3 kg US dollar bill (1 gram)[61]
~1×10−3 kg Two raisins (approximately 1 gram)[62]
~8×10−3 kg Coins of one euro (7.5 grams),[63] one U.S. dollar (8.1 grams)[64] and one Canadian loonie (7 grams [pre-2012], 6.27 grams [2012-])[65]
10−2
decagram (dag)
1.2×10−2 kg Mass of one mole (6.02214×1023 atoms) of carbon-12 (12 grams)
1.37×10−2 kg Amount of ethanol defined as one standard drink in the U.S. (13.7 grams)[66]
2–4×10−2 kg Adult mouse (Mus musculus, 20–40 grams)[67]
2.8×10−2 kg Ounce (avoirdupois) (28.3495 grams)[59]
4.7×10−2 kg Mass equivalent of the energy that is 1 megaton of TNT equivalent[59][68]
10−1
hectogram   (hg)
0.1-0.2 kg An orange (100–200 grams)[69]
0.142-0.149 kg A baseball used in the major league.[70]
0.454 kg Pound (avoirdupois) (453.6 grams)[59]

1 kg to 105 kg

Iron weights up to 50 kilograms depicted in Dictionnaire encyclopédique de l'épicerie et des industries annexes.
Factor (kg) Value Item
1 kg
kilogram (kg)
1 kg One litre (0.001 m3) of water[71]
1–3 kg Smallest breed of dog (Chihuahua)[72]
1–3 kg Typical laptop computer, 2010[73]
1–3 kg Adult domestic tortoise
2.5–4 kg Newborn human baby[74]
4.0 kg Women's shot[75]
4–5 kg Housecat[76]
7.26 kg Men's shot[75]
101 9–27 kg Medium-sized dog[77]
10–30 kg A CRT computer monitor or television set[citation needed]
50 kg Large dog breed (Great Dane)
70 kg Adult human[78]
102 130–180 kg Mature lion, female (130 kg) and male (180 kg)[79]
200–250 kg Giant tortoise
240–450 kg Grand piano[80][81]
400–900 kg Dairy cow[82]
500–500,000 kg A teaspoon (5 ml) of white dwarf material (0.5–500 tonnes)[83][84]
635 kg Heaviest human in recorded history (Jon Brower Minnoch)
907.2 kg 1 short ton (2000 pounds - U.S.)[59]
103
megagram (Mg)
1000 kg 1 tonne (U.S. spelling: metric ton)[59]
1000 kg 1 cubic metre of water[71]
1016.05 kg Ton (British) / 1 long ton (2240 pounds - U.S.)[59]
1300–1600 kg Typical passenger cars[85]
2700–6000 kg Adult elephant[86]
104 1.1×104 kg Hubble Space Telescope (11 tonnes)[87]
1.2×104 kg Largest elephant on record (12 tonnes)[88]
1.4×104 kg Big Ben (bell) (14 tonnes)[89]
2.7×104 kg ENIAC computer, 1946 (30 tonnes)[90]
4×104 kg Maximum gross mass (truck + load combined) of a semi-trailer truck in the EU (40–44 tonnes)[91]
5×104–6×104 kg Tank; Bulldozer (50–60 tonnes)
6.0×104 kg Largest single-piece meteorite, Hoba West Meteorite (60 tonnes)[92]
7.3×104 kg Largest dinosaur, Argentinosaurus (73 tonnes)[93]
105 1.74-1.83×105 kg Operational empty weight of a Boeing 747-300
1.8×105 kg Largest animal ever, a blue whale (180 tonnes)[94]
4.2×105 kg International Space Station (417 tonnes)[95]
6×105 kg World's heaviest aircraft: Antonov An-225 (maximum take-off mass: 600 tonnes, payload: 250 tonnes)[96]

106 to 1011 kg

Factor (kg) Value Item
106
gigagram (Gg)
1×106 kg Trunk of the giant sequoia tree named General Sherman, largest living tree by trunk volume (1121 tonnes)[97]
2.0×106 kg Launch mass of the Space Shuttle (2041 tonnes)[98]
6×106 kg Largest clonal colony, the quaking aspen named Pando (largest living organism) (6000 tonnes)[99]
7.8×106 kg Virginia-class nuclear submarine (submerged weight)[100]
107 1×107 kg Annual production of Darjeeling tea[101]
5.2×107 kg RMS Titanic when fully loaded (52,000 tonnes)[102]
9.97×107 kg Heaviest train ever: Australia's BHP Iron Ore, 2001 record (99,700 tonnes)[103]
108 6.6×108 kg Largest ship and largest mobile man-made object, Seawise Giant, when fully loaded (660,000 tonnes)[104]
7×108 kg Heaviest (non-pyramid) building, Palace of the Parliament in Bucharest, Romania[105]
109
teragram (Tg)
4.3×109 kg Amount of matter converted into energy by the Sun each second[106]
6×109 kg Great Pyramid of Giza[107]
1010
6×1010 kg Amount of concrete in the Three Gorges Dam, the world's largest concrete structure[108][109]
1011 ~1×1011 kg The mass of a primordial black hole with an evaporation time equal to the age of the universe[110]
2×1011 kg Amount of water stored in London storage reservoirs (0.2 km3)[111]
6×1011 kg Total mass of the world's human population[112]
5×1011 kg Total biomass of Antarctic krill, one of the most plentiful animal species on the planet in terms of biomass[113]

1012 to 1017 kg

Factor (kg) Value Item
1012
petagram (Pg)
0.8–2.1×1012 kg Global biomass of fish[114]
4×1012 kg Global annual human food production[115]
4×1012 kg World crude oil production in 2009 (3,843 Mt)[116]
5.5×1012 kg A teaspoon (5 ml) of neutron star material (5000 million tonnes)[117]
1013 1×1013 kg Mass of comet 67P/Churyumov–Gerasimenko[118]
4×1013 kg Global annual human carbon dioxide emission[119][120]
1014 1.05×1014 kg Global net primary production – the total mass of carbon fixed in organic compounds by photosynthesis each year on Earth[121]
7.2×1014 kg Total carbon stored in Earth's atmosphere[122]
1015
exagram (Eg)
2.0×1015 kg Total carbon stored in the terrestrial biosphere[123]
3.5×1015 kg Total carbon stored in coal deposits worldwide[124]
1016 1×1016 kg 951 Gaspra, the first asteroid ever to be closely approached by a spacecraft (rough estimate)[125]
1×1016 kg Rough estimate of the total carbon content of all organisms on Earth.[126]
3×1016 kg
3.8×1016 kg Total carbon stored in the oceans.[127]
1017 1.6×1017 kg Prometheus, a shepherd satellite for the inner edge of Saturn's F Ring[128]

1018 to 1023 kg

Factor (kg) Value Item
1018
zettagram (Zg)
5.1×1018 kg Earth's atmosphere[129]
5.6×1018 kg Hyperion, a moon of Saturn[128]
1019 3×1019 kg 3 Juno, one of the larger asteroids in the asteroid belt[130]
3×1019 kg The rings of Saturn[131]
1020 9.4×1020 kg Ceres, dwarf planet within the asteroid belt[132]
1021
yottagram (Yg)
1.4×1021 kg Earth's oceans[133]
1.5×1021 kg Charon, the largest moon of Pluto[134]
2.9–3.7×1021 kg The asteroid belt[135]
1022 1.3×1022 kg Pluto[134]
2.1×1022 kg Triton, largest moon of Neptune[136]
7.3×1022 kg Earth's Moon[137]
1023 1.3×1023 kg Titan, largest moon of Saturn[138]
1.5×1023 kg Ganymede, largest moon of Jupiter[139]
3.3×1023 kg Mercury[140]
6.4×1023 kg Mars[141]

1024 to 1029 kg

Jupiter is the most massive planet in the Solar System.
Factor (kg) Value Item
1024
ronnagram (Rg)
4.9×1024 kg Venus[142]
6.0×1024 kg Earth[143]
1025 3×1025 kg Oort cloud[144]
8.7×1025 kg Uranus[145]
1026 1.0×1026 kg Neptune[146]
5.7×1026 kg Saturn[147]
1027
quettagram (Qg)
1.9×1027 kg Jupiter[148]
1028 2–14×1028 kg Brown dwarfs (approximate)[149]
1029 3×1029 kg Barnard's Star, a nearby red dwarf[150]

1030 to 1035 kg

Factor (kg) Value Item
1030 2×1030 kg The Sun[151] (one solar mass or M = 1.989×1030 kg)
2.8×1030 kg Chandrasekhar limit (1.4 M)[152][153]
1031 4×1031 kg Betelgeuse, a red supergiant star (20 M)[154]
1032 4–7×1032 kg R136a1, the most massive of known stars (230 to 345 M)[155]
6–8×1032 kg Hyades star cluster (300 to 400 M)[156]
1033 1.6×1033 kg Pleiades star cluster (800 M)[157]
1034
1035 ~1035 kg Typical globular cluster in the Milky Way (overall range: 3×103 to 4×106 M)[158]
2×1035 kg Low end of mass range for giant molecular clouds (1×105 to 1×107 M)[159][160]
7.3×1035 kg Jeans mass of a giant molecular cloud at 100 K and density 30 atoms per cubic centimeter;[161]
possible example: Orion molecular cloud complex

1036 to 1041 kg

Factor (kg) Value Item
1036 1.79×1036 kg The entire Carina complex.
2.4×1036 kg The Gould Belt of stars, including the Sun (1.2×106 M)[162]
7–8×1036 kg The supermassive black hole at the center of the Milky Way, associated with the radio source Sagittarius A* (3.7±0.2×106 M)[163]
8×1036 kg Omega centauri, the largest globular cluster in the Milky Way, containing approximately 10 million stars.
1037    
1038    
1039    
1040 4.17×1040 kg NGC 4889, the largest measured supermassive black hole, weighing 21 billion solar masses (2.1×1010 M)
1041 4×1041 kg

The most massive things: 1042 kg and greater

Factor (kg) Value Item
1042 1.2×1042 kg Milky Way galaxy (5.8×1011 M)[164]
2–3×1042 kg Local Group of galaxies, including the Milky Way (1.29±0.14×1012 M)[164]
1043    
1044    
1045 1–2×1045 kg Local or Virgo Supercluster of galaxies, including the Local Group (1×1015 M)[165]
1046    
1047 2×1047 kg Laniakea Supercluster of galaxies, which encompasses the Virgo supercluster
1048 2×1048 kg Pisces–Cetus Supercluster Complex, a galaxy filament that includes the Laniakea Supercluster.
1049 4×1049 kg Hercules–Corona Borealis Great Wall, the largest structure in the known universe
1050    
1051    
1052 4.4506×1052 kg Mass of the observable universe as estimated by NASA
1.4×1053 kg Mass of the observable universe as estimated by the U.S. National Solar Observatory[166]

See also

Notes

  1. Criterion: A combined total of at least 250,000 Google hits on both the modern spelling (‑gram) and the dated British spelling (‑gramme). 
  2. Zyla, P. (2020). Review of Particle Physics: Gauge and Higgs bosons. https://pdg.lbl.gov/2020/tables/rpp2020-sum-gauge-higgs-bosons.pdf. 
  3. Fixsen, D. J. (2009). "The Temperature of the Cosmic Microwave Background". The Astrophysical Journal 707 (2): 916–920. doi:10.1088/0004-637X/707/2/916. Bibcode2009ApJ...707..916F. 
  4. "Conversion from eV to kg". NIST. http://physics.nist.gov/cgi-bin/cuu/Convert?exp=0&num=1&From=ev&To=kg&Action=Convert+value+and+show+factor. 
  5. "The most sensitive analysis on the neutrino mass [...] is compatible with a neutrino mass of zero. Considering its uncertainties this value corresponds to an upper limit on the electron neutrino mass of m<2.2 eV/c2 (95% Confidence Level)" The Mainz Neutrino Mass Experiment
  6. "CODATA Value: electron mass". NIST. http://physics.nist.gov/cgi-bin/cuu/Value?me. 
  7. K. Nakamura; Particle Data Group (2011). "PDGLive Particle Summary 'Quarks (u, d, s, c, b, t, b', t', Free)'". Particle Data Group. http://pdg.lbl.gov/2011/tables/rpp2011-sum-quarks.pdf. 
  8. "CODATA Value: muon mass". NIST. http://physics.nist.gov/cgi-bin/cuu/Value?mmu. 
  9. "CODATA Value: proton mass". NIST. http://physics.nist.gov/cgi-bin/cuu/Value?mp. 
  10. "CODATA Value: proton mass energy equivalent in MeV". NIST. http://physics.nist.gov/cgi-bin/cuu/Value?mpc2mev. 
  11. "CODATA Value: neutron mass". NIST. http://physics.nist.gov/cgi-bin/cuu/Value?mn. 
  12. "CODATA Value: neutron mass energy equivalent in MeV". NIST. http://physics.nist.gov/cgi-bin/cuu/Value?mnc2mev. 
  13. Amsler, C.; Doser, M.; Antonelli, M.; Asner, D.; Babu, K.; Baer, H.; Band, H.; Barnett, R. et al. (2008). "Review of Particle Physics⁎". Physics Letters B 667 (1): 1. doi:10.1016/j.physletb.2008.07.018. Bibcode2008PhLB..667....1A. http://pdglive.lbl.gov/Rsummary.brl?nodein=S044&fsizein=1. 
  14. K. Nakamura; Particle Data Group (2011). "PDGLive Particle Summary 'Quarks (u, d, s, c, b, t, b', t', Free)'". Particle Data Group. http://pdg.lbl.gov/2011/tables/rpp2011-sum-quarks.pdf. 
  15. "Ubiquitin". Channel Proteomes. http://www.channel-proteomes.com/projects/cav2env/proteins/P62989. 
  16. Ron Milo. "How big is the "average" protein?". http://www.weizmann.ac.il/plants/Milo/images/proteinSize110623Clean.pdf. 
  17. Van Beekvelt MC; Colier WN; Wevers RA; Van Engelen BG (Feb 2001). "Performance of near-infrared spectroscopy in measuring local O2 consumption and blood flow in skeletal muscle". J Appl Physiol 90 (2): 511–519. doi:10.1152/jappl.2001.90.2.511. ISSN 8750-7587. PMID 11160049. 
  18. From attograms to Daltons: Cornell NEMS device detects the mass of a single DNA molecule [1]. Retrieved 2010-10-14
  19. 19.0 19.1 "Eukaryotic Ribosome". ETH Zurich. http://www.mol.biol.ethz.ch/groups/ban_group/Ribosome. 
  20. Bockstahler, L.; Kaesberg, P. (1962). "The Molecular Weight and Other Biophysical Properties of Bromegrass Mosaic Virus". Biophysical Journal 2 (1): 1–9. doi:10.1016/S0006-3495(62)86836-2. PMID 19431313. Bibcode1962BpJ.....2....1B. 
  21. "Atomic mass of synaptic vesicle – Rat Rattus". BioNumbers. http://bionumbers.hms.harvard.edu/bionumber.aspx?s=n&id=102736. 
  22. "Molecular weight – Tobacco mosaic virus (TMV) – BNID 105958". BioNumbers. http://bionumbers.hms.harvard.edu/bionumber.aspx?s=y&id=105958&lnsh=1. 
  23. Rout, M. P.; Blobel, G. (1993). "Isolation of the yeast nuclear pore complex". The Journal of Cell Biology 123 (4): 771–783. doi:10.1083/jcb.123.4.771. PMID 8227139. 
  24. Liu, H.; Jin, L.; Koh, S. B. S.; Atanasov, I.; Schein, S.; Wu, L.; Zhou, Z. H. (2010). "Atomic Structure of Human Adenovirus by Cryo-EM Reveals Interactions Among Protein Networks". Science 329 (5995): 1038–1043. doi:10.1126/science.1187433. PMID 20798312. PMC 3412078. Bibcode2010Sci...329.1038L. http://virology.cornell.edu/Liu.pdf. 
  25. "Virus diameter of HIV-1 - HIV". BioNumbers. http://bionumbers.hms.harvard.edu/bionumber.aspx?&id=101667&ver=10. 
  26. Calculated : volume = 4/3 × π × (126e−9 m / 2)3 = 1.05e−21 m3. Assume density = 1 g/cm3 => mass = 1.05e−21 m3 × 1e3 kg/m3 = 1.05e−18 kg
  27. Frederick R. Blattner et al. (1997). "The Complete Genome Sequence of Escherichia coli K-12". Science 277 (5331): 1453–1462. doi:10.1126/science.277.5331.1453. PMID 9278503. 
  28. "Mass of virion - Virus Vaccinia". BioNumbers. http://bionumbers.hms.harvard.edu/bionumber.aspx?&id=106860&ver=2. 
  29. "Conversion from J to kg". NIST. http://physics.nist.gov/cgi-bin/cuu/Convert?exp=0&num=1&From=j&To=kg&Action=Convert+value+and+show+factor. 
  30. "Prochlorococcus marinus MIT 9313 - Home". Joint Genome Institute. http://genome.jgi-psf.org/prom9/prom9.home.html. 
  31. "Size (diameter) of most abundant cyanobacteri - Prochlorococcus - BNID 101520". BioNumbers. http://bionumbers.hms.harvard.edu/bionumber.aspx?&id=101520&ver=6. 
  32. 32.0 32.1 32.2 Mass calculated from volume assuming density of 1 g/mL
  33. "E. coli Statistics". The CyberCell Database. http://ccdb.wishartlab.com/CCDB/cgi-bin/STAT_NEW.cgi. 
  34. M. R. Curry, J. D. Millar, S. M. Tamuli & P. F. Watson, "Surface Area & Volume Measurements for Ram & Human Spermatozoa," Biology of Reproduction, 55, 6 (1996‑12‑01): 1325–32.
  35. Ron Milo. "How big is a yeast cell". http://www.weizmann.ac.il/plants/Milo/images/YeastSize-Feb2010.pdf. 
  36. ""Rule of thumb" for cell mass". BioNumbers. http://bionumbers.hms.harvard.edu/bionumber.aspx?s=y&id=101795&hlid=64639. 
  37. "Cell dry weight - Green algae Dunaliella salina". BioNumbers. http://bionumbers.hms.harvard.edu/bionumber.aspx?s=n&id=106042. 
  38. "A quick introduction to elements of biology - cells, molecules, genes, functional genomics, microarrays". European Bioinformatics Institute. http://www.ebi.ac.uk/microarray/biology_intro.html. "if we estimate the average weight of a human cell as about 10^-9 g" 
  39. "Measured HeLa cell mass". BioNumbers. http://bionumbers.hms.harvard.edu/bionumber.aspx?s=n&id=103721. 
  40. "Estimated HeLa cell mass". BioNumbers. http://bionumbers.hms.harvard.edu/bionumber.aspx?s=n&id=103720. 
  41. Phillips, Kevin G.; Jacques, Steven L.; McCarty, Owen J. T. (13 September 2012). "Measurement of Single Cell Refractive Index, Dry Mass, Volume, and Density Using a Transillumination Microscope". Physical Review Letters 109 (11): 118105. doi:10.1103/physrevlett.109.118105. PMID 23005682. Bibcode2012PhRvL.109k8105P. 
  42. Schäppi, G. F.; Suphioglu, C.; Taylor, P. E.; Knox, R. B. (1997). "Concentrations of the major birch tree allergen Bet v 1 in pollen and respirable fine particles in the atmosphere". Journal of Allergy and Clinical Immunology 100 (5): 656–661. doi:10.1016/S0091-6749(97)70170-2. PMID 9389296. http://www.jacionline.org/article/S0091-6749(97)70170-2/fulltext.  "the total pollen grain mass of approximately 7.85 ng"
  43. Fonseca, A. E.; Westgate, M. E.; Grass, L.; Dornbos, J. (2003). "Tassel Morphology as an Indicator of Potential Pollen Production in Maize". Crop Management 2: 1–15. doi:10.1094/CM-2003-0804-01-RS. http://www.plantmanagementnetwork.org/pub/cm/research/2003/tassel/. Retrieved 2015-08-28.  "The dry weight of individual pollen grains has been estimated at 250 ng"
  44. "Volume of human oocyte - Human Homo sapiens". BioNumbers. http://bionumbers.hms.harvard.edu/bionumber.aspx?&id=101664&ver=7. 
  45. "Dietary Supplement Fact Sheet: Vitamin B12". Office of Dietary Supplements. http://ods.od.nih.gov/factsheets/VitaminB12. 
  46. "Dietary Supplement Fact Sheet: Vitamin D". Office of Dietary Supplements. http://ods.od.nih.gov/factsheets/vitamind. 
  47. Report to the CGPM, 14th meeting of the Consultative Committee for Units (CCU), April 2001, 2. (ii); General Conference on Weights and Measures, 22nd Meeting, October 2003, which stated "The kilogram is in need of a new definition because the mass of the prototype is known to vary by several parts in 108 over periods of time of the order of a month ..." (3.2 MB ZIP file, here).
  48. "CODATA Value: Planck mass". NIST. http://physics.nist.gov/cgi-bin/cuu/Value?plkm. 
  49. "Weigh An Eyelash". National Semiconductor. http://www.national.com/en/videos/MiligramScale.html. 
  50. "Dietary Supplement Fact Sheet: Iodine". Office of Dietary Supplements. http://ods.od.nih.gov/factsheets/Iodine-QuickFacts. 
  51. "Mean dry mass (male) - Fruit fly". BioNumbers. http://bionumbers.hms.harvard.edu/bionumber.aspx?id=102570. 
  52. "Mean dry mass (female) - Fruit fly". BioNumbers. http://bionumbers.hms.harvard.edu/bionumber.aspx?s=n&id=102571. 
  53. "Frequently Asked Questions". American Mosquito Control Association. http://www.mosquito.org/index.php?option=com_content&view=article&id=45&Itemid=122#weigh. "Smaller species found around houses commonly weigh about 2.5 milligrams." 
  54. "Metric Mass (Weight)". https://www.mathsisfun.com/measure/metric-mass.html. 
  55. "Mass". 8 July 2017. https://thinkmetric.org.uk/basics/mass/. 
  56. Quartz has a density of 2.65. Mass = Volume × Density = (4/3 × π × (1e−3 m)3) × (2.65 × 1e3 kg/m3) = 1.1e−5 kg.
  57. Price, G. M. (1961). "Some Aspects of Amino Acid Metabolism in the Adult Housefly, Musca domestica". Biochem. J. 80 (2): 420–8. doi:10.1042/bj0800420. PMID 16748919. 
  58. "Caffeine content for coffee, tea, soda and more". Mayo Clinic. http://www.mayoclinic.com/health/caffeine/AN01211. 
  59. 59.0 59.1 59.2 59.3 59.4 59.5 59.6 59.7 "Appendix B8—Factors for Units Listed Alphabetically". NIST. 2009-07-02. http://physics.nist.gov/Pubs/SP811/appenB8.html. Retrieved 29 October 2011. 
  60. "Mass, Weight, Density or Specific Gravity of Water at Various Temperatures". http://www.simetric.co.uk/si_water.htm. 
  61. "FAQ Library". U.S. Bureau of Engraving and Printing. http://www.bep.treas.gov/faqlibrary.html. 
  62. "FoodData Central". https://fdc.nal.usda.gov/. 
  63. "Denominations and technical specifications of Euro coins". http://europa.eu/legislation_summaries/economic_and_monetary_affairs/introducing_euro_practical_aspects/l25028_en.htm. "weight (g): 7.5" 
  64. "Coin specifications". United States Mint. http://www.usmint.gov/about_the_mint/?action=coin_specifications. 
  65. "the 1-dollar coin - Royal Canadian Mint". Royal Canadian Mint. http://www.mint.ca/store/mint/learn/1-dollar-5300014. 
  66. "Alcohol and Public Health: Frequently Asked Questions". CDC. 2018-03-29. https://www.cdc.gov/alcohol/faqs.htm#standDrink. 
  67. "Biomethodology of the Mouse". Animal Research, The University of Iowa. http://research.uiowa.edu/animal/?get=mouse. 
  68. Calculated: 1e6 tons of TNT-equivalent × 4.184e9 J/ton of TNT-equivalent × 1.1e−17 kg of mass-equivalent/J = 4.7e−2 kg of mass-equivalent
  69. "Oranges, raw, with peel (NDB No. 09205 and 09200)". USDA. http://www.nal.usda.gov/fnic/foodcomp/search/. 
  70. Christina Lee, "Mass of a Baseball", The Physics Factbook, 1999. Retrieved 2018-07-04
  71. 71.0 71.1 "Water - Density and Specific Weight". The Engineering Tool Box. http://www.engineeringtoolbox.com/water-density-specific-weight-d_595.html. 
  72. "Chihuahua Weight Chart". http://members.shaw.ca/crystaljems/weight.htm. "907 g ... 2722 g" 
  73. "Laptop Buyer's Guide". About.com. http://compreviews.about.com/od/buyers/a/Laptop-Size-and-Weight-Guide.htm. "2.0 lbs ... > 6 lbs" 
  74. "Baby birth weight Information". http://www.baby2see.com/baby_birth_weight.html. "2500 g ... 4000 g" 
  75. 75.0 75.1 "Shot Put - Introduction". IAAF. http://www.iaaf.org/community/athletics/trackfield/newsid=9444.html. 
  76. Mattern, Michelle Y.; McLennan, Deborah A. (2000). "Phylogeny and Speciation of Felids". Cladistics 16 (2): 232–253. doi:10.1111/j.1096-0031.2000.tb00354.x. PMID 34902955. 
  77. "Dog Services - Adoptable Dogs". http://www.clackamas.us/k9man/adoptpet.jsp. "medium (30lbs to 60lbs)" 
  78. "Mass of an Adult". http://hypertextbook.com/facts/2003/AlexSchlessingerman.shtml. "70 kg" 
  79. Nowell, Kristin; Jackson, Peter (1996). "Panthera Leo". Wild Cats: Status Survey and Conservation Action Plan. Gland, Switzerland: IUCN/SSC Cat Specialist Group. pp. 17. ISBN 978-2-8317-0045-8. http://carnivoractionplans1.free.fr/wildcats.pdf. "adult males (>4 years) 181 kg (n=14) and females 126 kg (n=25)" 
  80. "GRAND PIANO GUIDE TO STEINWAY AND INDUSTRY STANDARD SIZES". Bluebook of Pianos. http://www.bluebookofpianos.com/sizes.html. "540 lbs ... 990 lbs" 
  81. Calculated: 540 lbs × 0.4536 kg/lb = 240 kg. 990 lb × 0.4536 kg/lb = 450 kg.
  82. "Cow (Cattle) breed comparisons". http://www.bovinebazaar.com/whythisbreed.htm. 
  83. Jennifer Johnson. "Lecture 22: Extreme Stars: White Dwarfs & Neutron Stars". Ohio State Department of Astronomy. http://www.astronomy.ohio-state.edu/~jaj/Ast162/lectures/notesWL22.html. 
  84. Using the quoted density of 1e5 to 1e8 kg/m3 for white dwarf material, 1 teaspoon = 5mL = 5e−3 m3 has a calculated mass of: Low end: 5e−3 m3 × 1e5 kg/m3 = 5e2 kg High end: 5e−3 m3 × 1e8 kg/m3 = 5e5 kg
  85. "Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 Through 2016". United States Environmental Protection Agency EPA-420-R-16-010: 28, 30. November 2016. https://www.epa.gov/sites/production/files/2016-11/documents/420r16010.pdf. Retrieved 2 November 2017. 
  86. Norton, C.A. Spinage ; illustrated by Larry (1994). Elephants. London: T & A D Poyser. ISBN 9780856610882. 
  87. "Solar System Exploration: Hubble Space Telescope". NASA. http://solarsystem.nasa.gov/missions/profile.cfm?Sort=Alpha&Letter=H&Alias=Hubble%20Space%20Telescope. 
  88. Ward, Rowland (1935). Records of Big Game (10th ed.). London. 
  89. "The Story of Big Ben". Whitechapel Bell Foundry. http://www.whitechapelbellfoundry.co.uk/bigben.htm. 
  90. Kennedy Jr., T.R. (Feb 15, 1946). "Electronic Computer Flashes Answers, May Speed Engineering". The New York Times (2–15–1946). http://www.computerhistory.org/revolution/birth-of-the-computer/4/78/323?position=0. 
  91. "Council Directive 96/53/EC of 25 July 1996" (PDF). 1996-09-17. p. 12. http://eur-lex.europa.eu/smartapi/cgi/sga_doc?smartapi!celexapi!prod!CELEXnumdoc&lg=EN&numdoc=31996L0053&model=guichett. 
  92. Meteoritical Bulletin Database: Hoba
  93. Mazzetta, Gerardo V.; Christiansen, Per; Fariña, Richard A. (2004). "Giants and Bizarres: Body Size of Some Southern South American Cretaceous Dinosaurs". Historical Biology 16 (2–4): 71–83. doi:10.1080/08912960410001715132. http://www.miketaylor.org.uk/tmp/papers/Mazzetta-et-al_04_SA-dino-body-size.pdf. Retrieved 2009-01-23. 
  94. "What is the biggest animal ever to exist on Earth?". How Stuff Works. 2001-07-25. http://science.howstuffworks.com/environmental/life/zoology/all-about-animals/question687.htm. 
  95. "International Space Station: The ISS to Date". NASA. http://www.nasa.gov/mission_pages/station/structure/isstodate.html. 
  96. Greg Goebel. "The Antonov Giants: An-22, An-124, & An-225". http://vectorsite.net/avantgt.html#m3. 
  97. Fry, Walter; White, John Roberts (1942). Big Trees. Palo Alto, California: Stanford University Press. 
  98. "Space Shuttle Basics". NASA. http://www.spaceflight.nasa.gov/shuttle/reference/basics/index.html. 
  99. David Hershey. "Re: What is the biggest tree in the world?". MadSci Network. http://www.madsci.org/posts/archives/1997-08/868768324.Bt.r.html. 
  100. "The US Navy". US Navy. http://www.navy.mil/navydata/fact_print.asp?cid=4100&tid=100&ct=4&page=1. 
  101. "Darjeeling Tea: Questions and Answers". Darjeeling Tea Association. http://www.darjeelingtea.com/files/teafaqs.asp#02. 
  102. "THE 66,000 TON MYTH". Mark Chirnside. http://www.markchirnside.co.uk/Olympic-Titanic66000-ton_displacement_myth.html. 
  103. "Hamersley Freight Line - Railway Technology". Railway Technology. http://www.railway-technology.com/projects/hamersley-freight-line/. 
  104. "Knock Nevis - The world's largest ship ever". http://www.container-transportation.com/knock-nevis.html. 
  105. "Heaviest building". http://guinnessworldrecords.com/world-records/heaviest-building/. 
  106. "Is the Sun Shrinking?". Stanford Solar Center. http://solar-center.stanford.edu/FAQ/Qshrink.html. 
  107. Levy, Janey (2005). The Great Pyramid of Giza: Measuring Length, Area, Volume, and Angles. Rosen Publishing Group. ISBN 978-1-4042-6059-7. 
  108. Richard R. Wertz. "The Three Gorges Dam Project". http://www.ibiblio.org/chinesehistory/contents/07spe/specrep01.html#Quick%20Facts. 
  109. "Density of Concrete". http://hypertextbook.com/facts/1999/KatrinaJones.shtml. 
  110. Andrew Hamilton. "Hawking Radiation". University of Colorado at Boulder. http://casa.colorado.edu/~ajsh/hawk.html. 
  111. Chris Birks; Mike Owen; Brian Arkell (2001). "London's Water Resources: Threat or Opportunity". Area 33 (1): 95–97. 
  112. "Biomasse: Die Menschheit wiegt so viel wie alle Termiten". https://www.spektrum.de/news/die-menschheit-wiegt-so-viel-wie-alle-termiten/1566852. 
  113. Stephen Nicol; Yoshinari Endo (1997). Krill Fisheries of the World. Fisheries Technical Paper 367. Food and Agriculture Organization. ISBN 978-92-5-104012-6. http://www.fao.org/DOCREP/003/W5911E/W5911E00.HTM. 
  114. Wilson, R. W.; Millero, F. J.; Taylor, J. R.; Walsh, P. J.; Christensen, V.; Jennings, S.; Grosell, M. (2009). "Contribution of Fish to the Marine Inorganic Carbon Cycle". Science 323 (5912): 359–362. doi:10.1126/science.1157972. PMID 19150840. Bibcode2009Sci...323..359W. https://www.science.org/doi/10.1126/science.1157972. 
  115. "World Environment Day - Food Waste Facts". http://unep.org/wed/2013/quickfacts/. 
  116. "Key World Energy Statistics 2010". International Energy Agency. 2010. p. 10. http://www.iea.org/textbase/nppdf/free/2010/key_stats_2010.pdf. 
  117. The average density of material in a neutron star of radius 10 km is 1.1×1012 kg cm−3. Therefore, 5 ml of such material is 5.5×1012 kg, or 5 500 000 000 t. This is about 15 times the total mass of the human world population. Alternatively, 5 ml from a neutron star of radius 20 km radius (average density 8.35×1010 kg cm−3) has a mass of about 400 Mt, or about the mass of all humans.
  118. Pätzold, M.; Andert, T.; Hahn, M.; Asmar, S. W.; Barriot, J.-P.; Bird, M. K.; Häusler, B.; Peter, K. et al. (4 February 2016). "A homogeneous nucleus for comet 67P/Churyumov–Gerasimenko from its gravity field". Nature 530 (7588): 63–65. doi:10.1038/nature16535. PMID 26842054. Bibcode2016Natur.530...63P. 
  119. Amos, Jonathan (2014-12-18). "BBC News - Carbon dioxide satellite mission returns first global maps". BBC News. http://bbc.com/news/science-environment-30399073. 
  120. "Carbon dioxide monitoring rocket blasts off – News – ABC Environment (Australian Broadcasting Corporation)". http://abc.net.au/environment/articles/2014/07/03/4038407.htm. 
  121. Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. (1998). "Primary production of the Biosphere: Integrating Terrestrial and Oceanic Components". Science 281 (5374): 237–240. doi:10.1126/science.281.5374.237. PMID 9657713. Bibcode1998Sci...281..237F. http://www.escholarship.org/uc/item/9gm7074q. 
  122. "Total carbon stored in the atmosphere". BioNumbers. http://bionumbers.hms.harvard.edu/bionumber.aspx?s=n&id=100967. 
  123. "Total carbon stored in the terrestrial biosphere". BioNumbers. http://bionumbers.hms.harvard.edu/bionumber.aspx?s=n&id=100974. 
  124. "Total carbon stored in coal deposits worldwide". BioNumbers. http://bionumbers.hms.harvard.edu/bionumber.aspx?s=n&id=100979. 
  125. "Asteroid Fact Sheet". NASA. http://nssdc.gsfc.nasa.gov/planetary/factsheet/asteroidfact.html. 
  126. William B. Whitman; David C. Coleman; William J. Wiebe (1998). "Prokaryotes: The unseen majority". Proceedings of the National Academy of Sciences of the United States of America 95 (12): 6578–6583. doi:10.1073/pnas.95.12.6578. PMID 9618454. Bibcode1998PNAS...95.6578W. 
  127. "Total carbon stored in the oceans (mostly inorganic)". BioNumbers. http://bionumbers.hms.harvard.edu/bionumber.aspx?s=n&id=100968. 
  128. 128.0 128.1 Thomas, P. C. (July 2010). "Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission". Icarus 208 (1): 395–401. doi:10.1016/j.icarus.2010.01.025. Bibcode2010Icar..208..395T. http://www.ciclops.org/media/sp/2011/6794_16344_0.pdf. Retrieved 4 September 2015. 
  129. Trenberth, Kevin E.; Smith, Lesley. "The Mass of the Atmosphere: a Constraint on Global Analyses". National Center for Atmospheric Research. http://www.cgd.ucar.edu/cas/abstracts/files/kevin2003_6.html. 
  130. Jim Baer (2010). "Recent Asteroid Mass Determinations". Personal Website. http://home.earthlink.net/~jimbaer1/astmass.txt. 
  131. Brainerd, Jerome James. "Saturn's Rings". The Astrophysics Spectator. http://www.astrophysicsspectator.com/topics/planets/SaturnRings.html. 
  132. Carry, B.; Dumas, C.; Fulchignoni, M.; Merline, W. J.; Berthier, J.; Hestroffer, D.; Fusco, T.; Tamblyn, P. (2008). "Near-infrared mapping and physical properties of the dwarf-planet Ceres". Astronomy and Astrophysics 478 (1): 235–244. doi:10.1051/0004-6361:20078166. Bibcode2008A&A...478..235C. http://www2.keck.hawaii.edu/inst/people/conrad/nsfGrantRef/2007-arXiv-Benoit.Carry.pdf. 
  133. "Mass of the Oceans". http://hypertextbook.com/facts/1998/AvijeetDut.shtml. 
  134. 134.0 134.1 Buie, Marc W.; Grundy, William M.; Young, Eliot F.; Young, Leslie A.; Stern, S. Alan (2006). "Orbits and Photometry of Pluto's Satellites: Charon, S/2005 P1, and S/2005 P2". The Astronomical Journal 132 (1): 290–298. doi:10.1086/504422. Bibcode2006AJ....132..290B. 
  135. "Hidden Mass in the Asteroid Belt". Icarus 158 (1): 98–105. July 2002. doi:10.1006/icar.2002.6837. Bibcode2002Icar..158...98K. 
  136. "Solar System Exploration: Triton: Overview". NASA. http://solarsystem.nasa.gov/planets/profile.cfm?Object=Triton. 
  137. "Earth's Moon: Facts & Figures". NASA. http://solarsystem.nasa.gov/planets/profile.cfm?Object=Moon&Display=Facts. 
  138. Jacobson, R. A.; Antreasian, P. G.; Bordi, J. J.; Criddle, K. E.; Ionasescu, R.; Jones, J. B.; Mackenzie, R. A.; Meek, M. C. et al. (December 2006). "The Gravity Field of the Saturnian System from Satellite Observations and Spacecraft Tracking Data". The Astronomical Journal 132 (6): 2520–2526. doi:10.1086/508812. Bibcode2006AJ....132.2520J. 
  139. Showman, A. P.; Malhotra, R. (1999). "The Galilean Satellites". Science 286 (5437): 77–84. doi:10.1126/science.286.5437.77. PMID 10506564. http://www.lpl.arizona.edu/~showman/publications/showman-malhotra-1999.pdf. Retrieved 28 August 2015. 
  140. "Mercury: Facts & Figures". NASA. http://solarsystem.nasa.gov/planets/profile.cfm?Object=Mercury&Display=Facts. 
  141. "Mars: Facts & Figures". NASA. http://solarsystem.nasa.gov/planets/profile.cfm?Object=Mars&Display=Facts. 
  142. "Venus: Facts & Figures". NASA. http://solarsystem.nasa.gov/planets/profile.cfm?Object=Venus&Display=Facts. 
  143. "Earth: Facts & Figures". NASA. http://solarsystem.nasa.gov/planets/profile.cfm?Object=Earth&Display=Facts. 
  144. Weissman, Paul R (1983). "The mass of the Oort cloud". Astronomy and Astrophysics 118 (1): 90–94. Bibcode1983A&A...118...90W. 
  145. "Uranus: Facts & Figures". NASA. http://solarsystem.nasa.gov/planets/profile.cfm?Object=Uranus&Display=Facts. 
  146. "Neptune: Facts & Figures". NASA. http://solarsystem.nasa.gov/planets/profile.cfm?Object=Neptune&Display=Facts. 
  147. "Saturn: Facts & Figures". NASA. http://solarsystem.nasa.gov/planets/profile.cfm?Object=Saturn&Display=Facts. 
  148. "Jupiter: Facts & Figures". NASA. http://solarsystem.nasa.gov/planets/profile.cfm?Object=Jupiter&Display=Facts. 
  149. Boss, Alan (2001-04-03). "Are They Planets or What?". Carnegie Institution of Washington. http://www.carnegieinstitution.org/News4-3,2001.html. 
  150. Dawson, P. C.; De Robertis, M. M. (2004). "Barnard's Star and the M Dwarf Temperature Scale". The Astronomical Journal 127 (5): 2909. doi:10.1086/383289. Bibcode2004AJ....127.2909D. 
  151. "Sun Fact Sheet". NASA. http://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html. 
  152. p. 55, How A Supernova Explodes, Hans A. Bethe and Gerald Brown, pp. 51–62 in Formation And Evolution of Black Holes in the Galaxy: Selected Papers with Commentary, Hans Albrecht Bethe, Gerald Edward Brown, and Chang-Hwan Lee, River Edge, NJ: World Scientific: 2003. ISBN:981-238-250-X.
  153. Mazzali, P. A.; Röpke, F. K.; Benetti, S.; Hillebrandt, W. (2007). "A Common Explosion Mechanism for Type Ia Supernovae". Science 315 (5813): 825–828. doi:10.1126/science.1136259. PMID 17289993. Bibcode2007Sci...315..825M. 
  154. Kaler, Jim. "Betelgeuse" (2008). Stars. University of Illinois. Retrieved on 2009-02-08.
  155. Crowther, Paul A.; Schnurr, Olivier; Hirschi, Raphael; Yusof, Norhasliza et al. (2010). "The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M stellar mass limit". Monthly Notices of the Royal Astronomical Society 408 (2): 731–751. doi:10.1111/j.1365-2966.2010.17167.x. Bibcode2010MNRAS.408..731C. 
  156. The Astrophysics Spectator: Open Star Clusters. Retrieved 2008-09-15
  157. Adams, J. D.; Stauffer, J. R.; Monet, D. G.; Skrutskie, M. F.; Beichman, C. A. (2001). "The Mass and Structure of the Pleiades Star Cluster from 2MASS". The Astronomical Journal 121 (4): 2053. doi:10.1086/319965. Bibcode2001AJ....121.2053A. 
  158. "Globular cluster parameters". Oleg Y. Gnedin and Jeremia P. Ostriker. http://www.astro.lsa.umich.edu/~ognedin/gc/go97_table1.ascii. 
  159. "Cool Cosmos". Infrared Processing and Analysis Center. http://coolcosmos.ipac.caltech.edu/cosmic_classroom/cosmic_reference/molecular_clouds.html. 
  160. "Milky Way Galaxy: Molecular Clouds". The Astrophysics Spectator. http://www.astrophysicsspectator.com/topics/milkyway/MolecularClouds.html. 
  161. "Molecular Clouds". The Astrophysics Spectator. Issue 5.02. January 30, 2008. http://www.astrophysicsspectator.com/topics/milkyway/MolecularClouds.html. "A cool cloud with a temperature of 100K and a density of 30 hydrogen atoms per cubic centimeter has a Jeans length of approximately 50 parsecs and a Jeans mass of approximately 365,000 solar masses." 
  162. Olano, C. A. (1982). "On a model of local gas related to Gould's belt". Astronomy and Astrophysics 112 (2): 195–208. Bibcode1982A&A...112..195O. 
  163. Ghez, A. M.; Salim, S.; Hornstein, S. D.; Tanner, A.; Lu, J. R.; Morris, M.; Becklin, E. E.; Duchene, G. (2005). "Stellar Orbits around the Galactic Center Black Hole". The Astrophysical Journal 620 (2): 744–757. doi:10.1086/427175. Bibcode2005ApJ...620..744G. 
  164. 164.0 164.1 Karachentsev, I. D.; Kashibadze, O. G. (2006). "Masses of the local group and of the M81 group estimated from distortions in the local velocity field". Astrophysics 49 (1): 3–18. doi:10.1007/s10511-006-0002-6. Bibcode2006Ap.....49....3K. 
  165. Einasto, M.; Saar, E.; Liivamägi, L. J.; Einasto, J. et al. (2007). "The richest superclusters: I. Morphology". Astronomy and Astrophysics 476 (2): 697–711. doi:10.1051/0004-6361:20078037. Bibcode2007A&A...476..697E. 
  166. "Mass, Size, and Density of the Universe". http://people.cs.umass.edu/~immerman/stanford/universe.html. 

External links