Physics:Isotopes of tantalum
Natural tantalum (73Ta) consists of two stable isotopes: 181Ta (99.988%) and 180mTa (0.012%).
There are also 35 known artificial radioisotopes, the longest-lived of which are 179Ta with a half-life of 1.82 years, 182Ta with a half-life of 114.43 days, 183Ta with a half-life of 5.1 days, and 177Ta with a half-life of 56.56 hours. All other isotopes have half-lives under a day, most under an hour. There are also numerous isomers, the most stable of which (other than 180mTa) is 178m1Ta with a half-life of 2.36 hours. All isotopes and nuclear isomers of tantalum are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.
Tantalum has been proposed as a "salting" material for nuclear weapons (cobalt is another, better-known salting material). A jacket of 181Ta, irradiated by the intense high-energy neutron flux from an exploding thermonuclear weapon, would transmute into the radioactive isotope 182Ta with a half-life of 114.43 days and produce approximately 1.12 MeV of gamma radiation, significantly increasing the radioactivity of the weapon's fallout for several months. Such a weapon is not known to have ever been built, tested, or used.[1] While the conversion factor from absorbed dose (measured in Grays) to effective dose (measured in Sievert) for gamma rays is 1 while it is 50 for alpha radiation (i.e., a gamma dose of 1 Gray is equivalent to 1 Sievert whereas an alpha dose of 1 Gray is equivalent to 50 Sievert), gamma rays are only attenuated by shielding, not stopped. As such, alpha particles require incorporation to have an effect while gamma rays can have an effect via mere proximity. In military terms, this allows a gamma ray weapon to deny an area to either side as long as the dose is high enough, whereas radioactive contamination by alpha emitters which do not release significant amounts of gamma rays can be counteracted by ensuring the material is not incorporated.
List of isotopes
Nuclide [n 1] |
Z | N | Isotopic mass (u) [n 2][n 3] |
Half-life [n 4] |
Decay mode [n 5] |
Daughter isotope [n 6][n 7] |
Spin and parity [n 8][n 4] |
Physics:Natural abundance (mole fraction) | |
---|---|---|---|---|---|---|---|---|---|
Excitation energy[n 4] | Normal proportion | Range of variation | |||||||
155Ta | 73 | 82 | 154.97459(54)# | 2.9+1.5 −1.1 ms[2] |
p | 154Hf | (11/2−) | ||
155mTa | ~323 keV | 12+4 −3 μs[3] |
p | 154Hf | 11/2−? | ||||
156Ta[4] | 73 | 83 | 155.97230(43)# | 106(4) ms | p (71%) | 155Hf | (2−) | ||
β+ (29%) | 156Hf | ||||||||
156mTa | 102(7) keV | 0.36(4) s | p | 155Hf | 9+ | ||||
157Ta | 73 | 84 | 156.96819(22) | 10.1(4) ms | α (91%) | 153Lu | 1/2+ | ||
β+ (9%) | 157Hf | ||||||||
157m1Ta | 22(5) keV | 4.3(1) ms | 11/2− | ||||||
157m2Ta | 1593(9) keV | 1.7(1) ms | α | 153Lu | (25/2−) | ||||
158Ta | 73 | 85 | 157.96670(22)# | 49(8) ms | α (96%) | 154Lu | (2−) | ||
β+ (4%) | 158Hf | ||||||||
158mTa | 141(9) keV | 36.0(8) ms | α (93%) | 154Lu | (9+) | ||||
IT | 158Ta | ||||||||
β+ | 158Hf | ||||||||
159Ta | 73 | 86 | 158.963018(22) | 1.04(9) s | β+ (66%) | 159Hf | (1/2+) | ||
α (34%) | 155Lu | ||||||||
159mTa | 64(5) keV | 514(9) ms | α (56%) | 155Lu | (11/2−) | ||||
β+ (44%) | 159Hf | ||||||||
160Ta | 73 | 87 | 159.96149(10) | 1.70(20) s | α | 156Lu | (2#)− | ||
β+ | 160Hf | ||||||||
160mTa | 310(90)# keV | 1.55(4) s | β+ (66%) | 160Hf | (9)+ | ||||
α (34%) | 156Lu | ||||||||
161Ta | 73 | 88 | 160.95842(6)# | 3# s | β+ (95%) | 161Hf | 1/2+# | ||
α (5%) | 157Lu | ||||||||
161mTa | 50(50)# keV | 2.89(12) s | 11/2−# | ||||||
162Ta | 73 | 89 | 161.95729(6) | 3.57(12) s | β+ (99.92%) | 162Hf | 3+# | ||
α (.073%) | 158Lu | ||||||||
163Ta | 73 | 90 | 162.95433(4) | 10.6(18) s | β+ (99.8%) | 163Hf | 1/2+# | ||
α (.2%) | 159Lu | ||||||||
164Ta | 73 | 91 | 163.95353(3) | 14.2(3) s | β+ | 164Hf | (3+) | ||
165Ta | 73 | 92 | 164.950773(19) | 31.0(15) s | β+ | 165Hf | 5/2−# | ||
165mTa | 60(30) keV | 9/2−# | |||||||
166Ta | 73 | 93 | 165.95051(3) | 34.4(5) s | β+ | 166Hf | (2)+ | ||
167Ta | 73 | 94 | 166.94809(3) | 1.33(7) min | β+ | 167Hf | (3/2+) | ||
168Ta | 73 | 95 | 167.94805(3) | 2.0(1) min | β+ | 168Hf | (2−,3+) | ||
169Ta | 73 | 96 | 168.94601(3) | 4.9(4) min | β+ | 169Hf | (5/2+) | ||
170Ta | 73 | 97 | 169.94618(3) | 6.76(6) min | β+ | 170Hf | (3)(+#) | ||
171Ta | 73 | 98 | 170.94448(3) | 23.3(3) min | β+ | 171Hf | (5/2−) | ||
172Ta | 73 | 99 | 171.94490(3) | 36.8(3) min | β+ | 172Hf | (3+) | ||
173Ta | 73 | 100 | 172.94375(3) | 3.14(13) h | β+ | 173Hf | 5/2− | ||
174Ta | 73 | 101 | 173.94445(3) | 1.14(8) h | β+ | 174Hf | 3+ | ||
175Ta | 73 | 102 | 174.94374(3) | 10.5(2) h | β+ | 175Hf | 7/2+ | ||
176Ta | 73 | 103 | 175.94486(3) | 8.09(5) h | β+ | 176Hf | (1)− | ||
176m1Ta | 103.0(10) keV | 1.1(1) ms | IT | 176Ta | (+) | ||||
176m2Ta | 1372.6(11)+X keV | 3.8(4) µs | (14−) | ||||||
176m3Ta | 2820(50) keV | 0.97(7) ms | (20−) | ||||||
177Ta | 73 | 104 | 176.944472(4) | 56.56(6) h | β+ | 177Hf | 7/2+ | ||
177m1Ta | 73.36(15) keV | 410(7) ns | 9/2− | ||||||
177m2Ta | 186.15(6) keV | 3.62(10) µs | 5/2− | ||||||
177m3Ta | 1355.01(19) keV | 5.31(25) µs | 21/2− | ||||||
177m4Ta | 4656.3(5) keV | 133(4) µs | 49/2− | ||||||
178Ta | 73 | 105 | 177.945778(16) | 9.31(3) min | β+ | 178Hf | 1+ | ||
178m1Ta | 100(50)# keV | 2.36(8) h | β+ | 178Hf | (7)− | ||||
178m2Ta | 1570(50)# keV | 59(3) ms | (15−) | ||||||
178m3Ta | 3000(50)# keV | 290(12) ms | (21−) | ||||||
179Ta | 73 | 106 | 178.9459295(23) | 1.82(3) y | EC | 179Hf | 7/2+ | ||
179m1Ta | 30.7(1) keV | 1.42(8) µs | (9/2)− | ||||||
179m2Ta | 520.23(18) keV | 335(45) ns | (1/2)+ | ||||||
179m3Ta | 1252.61(23) keV | 322(16) ns | (21/2−) | ||||||
179m4Ta | 1317.3(4) keV | 9.0(2) ms | IT | 179Ta | (25/2+) | ||||
179m5Ta | 1327.9(4) keV | 1.6(4) µs | (23/2−) | ||||||
179m6Ta | 2639.3(5) keV | 54.1(17) ms | (37/2+) | ||||||
180Ta | 73 | 107 | 179.9474648(24) | 8.152(6) h | EC (86%) | 180Hf | 1+ | ||
β− (14%) | 180W | ||||||||
180m1Ta | 77.1(8) keV | Observationally stable[n 9][n 10] | 9− | 1.2(2)×10−4 | |||||
180m2Ta | 1452.40(18) keV | 31.2(14) µs | 15− | ||||||
180m3Ta | 3679.0(11) keV | 2.0(5) µs | (22−) | ||||||
180m4Ta | 4171.0+X keV | 17(5) µs | (23, 24, 25) | ||||||
181Ta | 73 | 108 | 180.9479958(20) | Observationally stable[n 11] | 7/2+ | 0.99988(2) | |||
181m1Ta | 6.238(20) keV | 6.05(12) µs | 9/2− | ||||||
181m2Ta | 615.21(3) keV | 18(1) µs | 1/2+ | ||||||
181m3Ta | 1485(3) keV | 25(2) µs | 21/2− | ||||||
181m4Ta | 2230(3) keV | 210(20) µs | 29/2− | ||||||
182Ta | 73 | 109 | 181.9501518(19) | 114.43(3) d | β− | 182W | 3− | ||
182m1Ta | 16.263(3) keV | 283(3) ms | IT | 182Ta | 5+ | ||||
182m2Ta | 519.572(18) keV | 15.84(10) min | 10− | ||||||
183Ta | 73 | 110 | 182.9513726(19) | 5.1(1) d | β− | 183W | 7/2+ | ||
183mTa | 73.174(12) keV | 107(11) ns | 9/2− | ||||||
184Ta | 73 | 111 | 183.954008(28) | 8.7(1) h | β− | 184W | (5−) | ||
185Ta | 73 | 112 | 184.955559(15) | 49.4(15) min | β− | 185W | (7/2+)# | ||
185mTa | 1308(29) keV | >1 ms | (21/2−) | ||||||
186Ta | 73 | 113 | 185.95855(6) | 10.5(3) min | β− | 186W | (2−,3−) | ||
186mTa | 1.54(5) min | ||||||||
187Ta | 73 | 114 | 186.96053(21)# | 2# min [>300 ns] |
β− | 187W | 7/2+# | ||
188Ta | 73 | 115 | 187.96370(21)# | 20# s [>300 ns] |
β− | 188W | |||
189Ta | 73 | 116 | 188.96583(32)# | 3# s [>300 ns] |
7/2+# | ||||
190Ta | 73 | 117 | 189.96923(43)# | 0.3# s |
- ↑ mTa – Excited nuclear isomer.
- ↑ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- ↑ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- ↑ 4.0 4.1 4.2 # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- ↑
Modes of decay:
EC: Electron capture IT: Isomeric transition
p: Proton emission - ↑ Bold italics symbol as daughter – Daughter product is nearly stable.
- ↑ Bold symbol as daughter – Daughter product is stable.
- ↑ ( ) spin value – Indicates spin with weak assignment arguments.
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs named{{{1}}}
- ↑ One of the few (observationally) stable odd-odd nuclei
- ↑ Believed to undergo α decay to 177Lu
Tantalum-180m
The nuclide 180mTa (m denotes a metastable state) has sufficient energy to decay in three ways: isomeric transition to the ground state of 180Ta, beta decay to 180W, and electron capture to 180Hf. However, no radioactivity from any decay mode of this nuclear isomer has ever been observed. As of 2023, the half-life of 180mTa is calculated from experimental observation to be at least 2.9×1017 (290 quadrillion) years.[5][6][7] The very slow decay of 180mTa is attributed to its high spin (9 units) and the low spin of lower-lying states. Gamma or beta decay would require many units of angular momentum to be removed in a single step, so that the process would be very slow.[8]
The very unusual nature of 180mTa is that the ground state of this isotope is less stable than the isomer. This phenomenon is exhibited in bismuth-210m (210mBi) and americium-242m (242mAm), among other nuclides. 180Ta has a half-life of only 8 hours. 180mTa is the only naturally occurring nuclear isomer (excluding radiogenic and cosmogenic short-living nuclides). It is also the rarest primordial nuclide in the Universe observed for any element that has any stable isotopes. In an s-process stellar environment with a thermal energy kBT = 26 keV (i.e. a temperature of 300 million kelvin), the nuclear isomers are expected to be fully thermalized, meaning that 180Ta rapidly transitions between spin states and its overall half-life is predicted to be 11 hours.[9]
It is one of only five stable nuclides to have both an odd number of protons and an odd number of neutrons, the other four stable odd-odd nuclides being 2H, 6Li, 10B and 14N.[10]
References
- ↑ D. T. Win; M. Al Masum (2003). "Weapons of Mass Destruction". Assumption University Journal of Technology 6 (4): 199–219. http://www.journal.au.edu/au_techno/2003/apr2003/aujt6-4_article07.pdf.
- ↑ Page, R. D.; Bianco, L.; Darby, I. G.; Uusitalo, J.; Joss, D. T.; Grahn, T.; Herzberg, R.-D.; Pakarinen, J. et al. (26 June 2007). "α decay of Re 159 and proton emission from Ta 155" (in en). Physical Review C 75 (6): 061302. doi:10.1103/PhysRevC.75.061302. ISSN 0556-2813. Bibcode: 2007PhRvC..75f1302P. https://openresearch.surrey.ac.uk/view/delivery/44SUR_INST/12139605080002346/13140305300002346.
- ↑ Uusitalo, J.; Davids, C. N.; Woods, P. J.; Seweryniak, D.; Sonzogni, A. A.; Batchelder, J. C.; Bingham, C. R.; Davinson, T. et al. (1 June 1999). "Proton emission from the closed neutron shell nucleus 155 Ta" (in en). Physical Review C 59 (6): R2975–R2978. doi:10.1103/PhysRevC.59.R2975. ISSN 0556-2813. Bibcode: 1999PhRvC..59.2975U. https://journals.aps.org/prc/pdf/10.1103/PhysRevC.59.R2975. Retrieved 12 June 2023.
- ↑ Darby, I. G.; Page, R. D.; Joss, D. T.; Bianco, L.; Grahn, T.; Judson, D. S.; Simpson, J.; Eeckhaudt, S. et al. (20 June 2011). "Precision measurements of proton emission from the ground states of Ta 156 and Re 160" (in en). Physical Review C 83 (6): 064320. doi:10.1103/PhysRevC.83.064320. ISSN 0556-2813. Bibcode: 2011PhRvC..83f4320D. https://journals.aps.org/prc/pdf/10.1103/PhysRevC.83.064320. Retrieved 21 June 2023.
- ↑ Arnquist, I. J.; Avignone III, F. T.; Barabash, A. S.; Barton, C. J.; Bhimani, K. H.; Blalock, E.; Bos, B.; Busch, M. et al. (13 October 2023). "Constraints on the Decay of 180mTa". Phys. Rev. Lett. 131 (15): 152501. doi:10.1103/PhysRevLett.131.152501.
- ↑ Conover, Emily (2016-10-03). "Rarest nucleus reluctant to decay". https://www.sciencenews.org/article/rarest-nucleus-reluctant-decay.
- ↑ Lehnert, Björn; Hult, Mikael; Lutter, Guillaume; Zuber, Kai (2017). "Search for the decay of nature's rarest isotope 180mTa". Physical Review C 95 (4): 044306. doi:10.1103/PhysRevC.95.044306. Bibcode: 2017PhRvC..95d4306L.
- ↑ Quantum mechanics for engineers Leon van Dommelen, Florida State University
- ↑ P. Mohr, F. Kaeppeler, and R. Gallino (2007). "Survival of Nature's Rarest Isotope 180Ta under Stellar Conditions". Phys. Rev. C 75: 012802. doi:10.1103/PhysRevC.75.012802.
- ↑ Various (2002). Lide, David R.. ed. Handbook of Chemistry & Physics (88th ed.). CRC. ISBN 978-0-8493-0486-6. OCLC 179976746. http://www.hbcpnetbase.com/. Retrieved 2008-05-23.
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A 729: 3–128, doi:10.1016/j.nuclphysa.2003.11.001, Bibcode: 2003NuPhA.729....3A, https://hal.archives-ouvertes.fr/in2p3-00020241/document
- Isotopic compositions and standard atomic masses from:
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A 729: 3–128, doi:10.1016/j.nuclphysa.2003.11.001, Bibcode: 2003NuPhA.729....3A, https://hal.archives-ouvertes.fr/in2p3-00020241/document
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory. http://www.nndc.bnl.gov/nudat2/.
- Lide, David R., ed (2004). "11. Table of the Isotopes". CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.
Original source: https://en.wikipedia.org/wiki/Isotopes of tantalum.
Read more |