Physics:Isotopes of boron

From HandWiki
Short description: Nuclides with atomic number of 5 but with different mass numbers
Main isotopes of Chemistry:boron (5B)
Iso­tope Decay
abun­dance half-life (t1/2) mode pro­duct
10B 20% stable[1]
11B 80% stable[1]
10B content may be as low as 19.1% and as high as 20.3% in natural samples. 11B is the remainder in such cases.[2]
Standard atomic weight Ar, standard(B)
  • [10.806, 10.821][3]
  • Conventional: 10.81
view · talk · edit

Boron (5B) naturally occurs as isotopes 10B and 11B, the latter of which makes up about 80% of natural boron. There are 13 radioisotopes that have been discovered, with mass numbers from 7 to 21, all with short half-lives, the longest being that of 8B, with a half-life of only 771.9(9) ms and 12B with a half-life of 20.20(2) ms. All other isotopes have half-lives shorter than 17.35 ms. Those isotopes with mass below 10 decay into helium (via short-lived isotopes of beryllium for 7B and 9B) while those with mass above 11 mostly become carbon.

A chart showing the abundances of the naturally occurring isotopes of boron.

List of isotopes

Nuclide
[n 1]
Z N Isotopic mass (u)
[n 2][n 3]
Half-life

[resonance width]
Decay
mode

[n 4]
Daughter
isotope

[n 5]
Spin and
parity
[n 6][n 7]
Physics:Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
6B?[n 8] 5 1 6.050800(2150) p-unstable 2p? 6Li? 2−#
7B 5 2 7.029712(27) 570(14) ys
[801(20) keV]
p 6Be[n 9] (3/2−)
8B[n 10][n 11] 5 3 8.0246073(11) 771.9(9) ms β+α 4He 2+
8mB 10624(8) keV 0+
9B 5 4 9.0133296(10) 800(300) zs p 8Be[n 12] 3/2−
10B[n 13] 5 5 10.012936862(16) Stable 3+ [0.189, 0.204][4]
11B 5 6 11.009305167(13) Stable 3/2− [0.796, 0.811][4]
11mB 12560(9) keV 1/2+, (3/2+)
12B 5 7 12.0143526(14) 20.20(2) ms β (99.40(2)%) 12C 1+
βα (0.60(2)%) 8Be[n 14]
13B 5 8 13.0177800(11) 17.16(18) ms β (99.734(36)%) 13C 3/2−
βn (0.266(36)%) 12C
14B 5 9 14.025404(23) 12.36(29) ms β (93.96(23)%) 14C 2−
βn (6.04(23)%) 13C
β2n ?[n 15] 12C ?
14mB 17065(29) keV 4.15(1.90) zs IT ?[n 15] 0+
15B 5 10 15.031087(23) 10.18(35) ms βn (98.7(1.0)%) 14C 3/2−
β (< 1.3%) 15C
β2n (< 1.5%) 13C
16B 5 11 16.039841(26) > 4.6 zs n ?[n 15] 15B ? 0−
17B[n 16] 5 12 17.04693(22) 5.08(5) ms βn (63(1)%) 16C (3/2−)
β (21.1(2.4)%) 17C
β2n (12(2)%) 15C
β3n (3.5(7)%) 14C
β4n (0.4(3)%) 13C
18B 5 13 18.05560(22) < 26 ns n 17B (2−)
19B[n 16] 5 14 19.06417(56) 2.92(13) ms βn (71(9)%) 18C (3/2−)
β2n (17(5)%) 17C
β3n (< 9.1%) 16C
β (> 2.9%) 19C
20B[5] 5 15 20.07451(59) > 912.4 ys n 19B (1−, 2−)
21B[5] 5 16 21.08415(60) > 760 ys 2n 19B (3/2−)
  1. mB – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Modes of decay:
    n: Neutron emission
    p: Proton emission
  5. Bold symbol as daughter – Daughter product is stable.
  6. ( ) spin value – Indicates spin with weak assignment arguments.
  7. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  8. This isotope has not yet been observed; given data is inferred or estimated from periodic trends.
  9. Subsequently decays by double proton emission to 4He for a net reaction of 7B4He + 31H
  10. Has 1 halo proton
  11. Intermediate product of a branch of proton-proton chain in stellar nucleosynthesis as part of the process converting hydrogen to helium
  12. Immediately decays into two α particles, for a net reaction of 9B → 24He + 1H
  13. One of the few stable odd-odd nuclei
  14. Immediately decays into two α particles, for a net reaction of 12B → 34He + e
  15. 15.0 15.1 15.2 Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.
  16. 16.0 16.1 Has 2 halo neutrons

Boron-8

Boron-8 is an isotope of boron that undergoes β+ decay to beryllium-8 with a half-life of 771.9(9) ms. It is the strongest candiate for a halo nucleus with a loosely-bound proton, in contrast to neutron halo nuclei such as lithium-11.[6]

Although neutrinos from boron-8 beta decays within the Sun make up only about 80 ppm of the total solar neutrino flux, they have a higher energy centered around 10 MeV,[7] and are an important background to dark matter direct detection experiments.[8] They are the first component of the neutrino floor that dark matter direct detection experiments are expected to eventually encounter.

Applications

Boron-10

Boron-10 is used in boron neutron capture therapy as an experimental treatment of some brain cancers.

References

  1. 1.0 1.1 "Atomic Weights and Isotopic Compositions for All Elements". National Institute of Standards and Technology. http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl. Retrieved 2008-09-21. 
  2. Szegedi, S.; Váradi, M.; Buczkó, Cs. M.; Várnagy, M.; Sztaricskai, T. (1990). "Determination of boron in glass by neutron transmission method". Journal of Radioanalytical and Nuclear Chemistry Letters 146 (3): 177. doi:10.1007/BF02165219. 
  3. Meija, Juris; Coplen, Tyler B.; Berglund, Michael; Brand, Willi A.; De Bièvre, Paul; Gröning, Manfred; Holden, Norman E.; Irrgeher, Johanna et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry 88 (3): 265–91. doi:10.1515/pac-2015-0305. 
  4. 4.0 4.1 "Atomic Weight of Boron". https://ciaaw.org/boron.htm. 
  5. 5.0 5.1 Leblond, S. (2018). "First observation of 20B and 21B". Physical Review Letters 121 (26): 262502–1–262502–6. doi:10.1103/PhysRevLett.121.262502. PMID 30636115. 
  6. Maaß, Bernhard; Müller, Peter; Nörtershäuser, Wilfried; Clark, Jason; Gorges, Christian; Kaufmann, Simon; König, Kristian; Krämer, Jörg et al. (November 2017). "Towards laser spectroscopy of the proton-halo candidate boron-8". Hyperfine Interactions 238 (1): 25. doi:10.1007/s10751-017-1399-5. Bibcode2017HyInt.238...25M. 
  7. Bellerive, A. (2004). "Review of solar neutrino experiments". International Journal of Modern Physics A 19 (8): 1167–1179. doi:10.1142/S0217751X04019093. Bibcode2004IJMPA..19.1167B. 
  8. Cerdeno, David G.; Fairbairn, Malcolm; Jubb, Thomas; Machado, Pedro; Vincent, Aaron C.; Boehm, Celine (2016). "Physics from solar neutrinos in dark matter direct detection experiments". JHEP 2016 (5): 118. doi:10.1007/JHEP05(2016)118. Bibcode2016JHEP...05..118C. 


https://borates.today/isotopes-a-comprehensive-guide/#:~:text=Boron%20isotope%20elements%20with%20masses,11%20mostly%20decay%20into%20carbon.