Physics:Weyl–Lewis–Papapetrou coordinates
From HandWiki
In general relativity, the Weyl–Lewis–Papapetrou coordinates are a set of coordinates, used in the solutions to the vacuum region surrounding an axisymmetric distribution of mass–energy. They are named for Hermann Weyl, Thomas Lewis, and Achilles Papapetrou.[1][2][3]
Details
The square of the line element is of the form:[4]
- [math]\displaystyle{ ds^2 = -e^{2\nu}dt^2 + \rho^2 B^2 e^{-2\nu}(d\phi - \omega dt)^2 + e^{2(\lambda - \nu)}(d\rho^2 + dz^2) }[/math]
where (t, ρ, ϕ, z) are the cylindrical Weyl–Lewis–Papapetrou coordinates in 3 + 1 spacetime, and λ, ν, ω, and B, are unknown functions of the spatial non-angular coordinates ρ and z only. Different authors define the functions of the coordinates differently.
See also
- Introduction to the mathematics of general relativity
- Stress–energy tensor
- Metric tensor (general relativity)
- Relativistic angular momentum
- Weyl metrics
References
- ↑ Weyl, H. (1917). "Zur Gravitationstheorie". Annalen der Physik 54 (18): 117–145. doi:10.1002/andp.19173591804. Bibcode: 1917AnP...359..117W. https://zenodo.org/record/1424330.
- ↑ Lewis, T. (1932). "Some special solutions of the equations of axially symmetric gravitational fields". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 136 (829): 176–92. doi:10.1098/rspa.1932.0073. Bibcode: 1932RSPSA.136..176L.
- ↑ Papapetrou, A. (1948). "A static solution of the equations of the gravitatinal field for an arbitrary charge-distribution". Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences 52: 191–204.
- ↑ Jiří Bičák; O. Semerák; Jiří Podolský; Martin Žofka (2002). Gravitation, Following the Prague Inspiration: A Volume in Celebration of the 60th Birthday of Jiří Bičák. World Scientific. p. 122. ISBN 981-238-093-0. https://books.google.com/books?id=Hen4Bb-bjgUC&q=Weyl%E2%88%92Lewis%E2%88%92Papapetrou+coordinates&pg=PA122.
Further reading
Selected papers
- J. Marek; A. Sloane (1979). "A finite rotating body in general relativity". Il Nuovo Cimento B 51 (1): 45–52. doi:10.1007/BF02743695. Bibcode: 1979NCimB..51...45M.
- L. Richterek; J. Novotny; J. Horsky (2002). "Einstein–Maxwell fields generated from the gamma-metric and their limits". Czechoslovak Journal of Physics 52 (9): 1021–1040. doi:10.1023/A:1020581415399. Bibcode: 2002CzJPh..52.1021R.
- M. Sharif (2007). "Energy-Momentum Distribution of the Weyl–Lewis–Papapetrou and the Levi-Civita Metrics". Brazilian Journal of Physics 37 (4): 1292–1300. doi:10.1590/S0103-97332007000800017. Bibcode: 2007BrJPh..37.1292S. http://www.sbfisica.org.br/bjp/files/v37_1292.pdf.
- A. Sloane (1978). "The axially symmetric stationary vacuum field equations in Einstein's theory of general relativity". Australian Journal of Physics 31 (5): 429. doi:10.1071/PH780427. Bibcode: 1978AuJPh..31..427S.
Selected books
- J. L. Friedman; N. Stergioulas (2013). Rotating Relativistic Stars. Cambridge Monographs on Mathematical Physics. Cambridge University Press. p. 151. ISBN 978-052-187-254-6. https://books.google.com/books?id=pv8djXCCwToC&q=Weyl%E2%88%92Lewis%E2%88%92Papapetrou+coordinates&pg=PA151.
- A. Macías; J. L. Cervantes-Cota; C. Lämmerzahl (2001). Exact Solutions and Scalar Fields in Gravity: Recent Developments. Springer. p. 39. ISBN 030-646-618-X. https://books.google.com/books?id=imA3YuKdFYoC&q=Weyl%E2%88%92Lewis%E2%88%92Papapetrou+coordinates&pg=PA39.
- A. Das; A. DeBenedictis (2012). The General Theory of Relativity: A Mathematical Exposition. Springer. p. 317. ISBN 978-146-143-658-4. https://books.google.com/books?id=wJR7SmPedWcC&q=Weyl%E2%88%92Lewis%E2%88%92Papapetrou+coordinates&pg=PA678.
- G. S. Hall; J. R. Pulham (1996). General relativity: proceedings of the forty sixth Scottish Universities summer school in physics, Aberdeen, July 1995. SUSSP proceedings. 46. Scottish Universities Summer School in Physics. pp. 65, 73, 78. ISBN 075-030-395-6. https://books.google.com/books?id=IfhAAQAAIAAJ&q=Weyl%E2%88%92Lewis%E2%88%92Papapetrou+coordinates.
Original source: https://en.wikipedia.org/wiki/Weyl–Lewis–Papapetrou coordinates.
Read more |