Physics:Weyl−Lewis−Papapetrou coordinates

From HandWiki

In general relativity, the Weyl−Lewis−Papapetrou coordinates are a set of coordinates, used in the solutions to the vacuum region surrounding an axisymmetric distribution of mass–energy. They are named for Hermann Weyl, Thomas Lewis, and Achilles Papapetrou.[1][2][3]

Details

The square of the line element is of the form:[4]

[math]\displaystyle{ ds^2 = -e^{2\nu}dt^2 + \rho^2 B^2 e^{-2\nu}(d\phi - \omega dt)^2 + e^{2(\lambda - \nu)}(d\rho^2 + dz^2) }[/math]

where (tρϕz) are the cylindrical Weyl−Lewis−Papapetrou coordinates in 3 + 1 spacetime, and λ, ν, ω, and B, are unknown functions of the spatial non-angular coordinates ρ and z only. Different authors define the functions of the coordinates differently.

See also

References

  1. Weyl, H. (1917). "Zur Gravitationstheorie". Ann. der Physik 54: 117–145. doi:10.1002/andp.19173591804. 
  2. Lewis, T. (1932). "Some special solutions of the equations of axially symmetric gravitational fields". Roy. Soc., Proc. 136: 176–92. doi:10.1098/rspa.1932.0073. 
  3. Papapetrou, A. (1948). "A static solution of the equations of the gravitatinal field for an arbitrary charge-distribution". Proc. R. Irish Acad.. A 52: 11. 
  4. Jiří Bičák; O. Semerák; Jiří Podolský; Martin Žofka (2002). Gravitation, Following the Prague Inspiration: A Volume in Celebration of the 60th Birthday of Jiří Bičák. World Scientific. p. 122. ISBN 981-238-093-0. https://books.google.com/?id=Hen4Bb-bjgUC&pg=PA122&lpg=PA122&dq=Weyl%E2%88%92Lewis%E2%88%92Papapetrou+coordinates#v=onepage&q=Weyl%E2%88%92Lewis%E2%88%92Papapetrou%20coordinates&f=false. 

Further reading

Selected papers

Selected books