Physics:Weyl−Lewis−Papapetrou coordinates
From HandWiki
In general relativity, the Weyl−Lewis−Papapetrou coordinates are a set of coordinates, used in the solutions to the vacuum region surrounding an axisymmetric distribution of mass–energy. They are named for Hermann Weyl, Thomas Lewis, and Achilles Papapetrou.[1][2][3]
Details
The square of the line element is of the form:[4]
- [math]\displaystyle{ ds^2 = -e^{2\nu}dt^2 + \rho^2 B^2 e^{-2\nu}(d\phi - \omega dt)^2 + e^{2(\lambda - \nu)}(d\rho^2 + dz^2) }[/math]
where (t, ρ, ϕ, z) are the cylindrical Weyl−Lewis−Papapetrou coordinates in 3 + 1 spacetime, and λ, ν, ω, and B, are unknown functions of the spatial non-angular coordinates ρ and z only. Different authors define the functions of the coordinates differently.
See also
- Introduction to the mathematics of general relativity
- Stress–energy tensor
- Metric tensor (general relativity)
- Relativistic angular momentum
- Weyl metrics
References
- ↑ Weyl, H. (1917). "Zur Gravitationstheorie". Ann. der Physik 54: 117–145. doi:10.1002/andp.19173591804.
- ↑ Lewis, T. (1932). "Some special solutions of the equations of axially symmetric gravitational fields". Roy. Soc., Proc. 136: 176–92. doi:10.1098/rspa.1932.0073.
- ↑ Papapetrou, A. (1948). "A static solution of the equations of the gravitatinal field for an arbitrary charge-distribution". Proc. R. Irish Acad.. A 52: 11.
- ↑ Jiří Bičák; O. Semerák; Jiří Podolský; Martin Žofka (2002). Gravitation, Following the Prague Inspiration: A Volume in Celebration of the 60th Birthday of Jiří Bičák. World Scientific. p. 122. ISBN 981-238-093-0. https://books.google.com/?id=Hen4Bb-bjgUC&pg=PA122&lpg=PA122&dq=Weyl%E2%88%92Lewis%E2%88%92Papapetrou+coordinates#v=onepage&q=Weyl%E2%88%92Lewis%E2%88%92Papapetrou%20coordinates&f=false.
Further reading
Selected papers
- J. Marek; A. Sloane (1979). "A finite rotating body in general relativity". Il Nuovo Cimento B 51 (1): pp. 45–52. doi:10.1007/BF02743695. Bibcode: 1979NCimB..51...45M.
- L. Richterek; J. Novotny; J. Horsky (2002). "Einstein−Maxwell fields generated from the gamma-metric and their limits". Czechoslov. J. Phys. 52: p. 2. doi:10.1023/A:1020581415399. Bibcode: 2002CzJPh..52.1021R.
- M. Sharif (2007). "Energy-Momentum Distribution of the Weyl−Lewis−Papapetrou and the Levi-Civita Metrics". Brazilian Journal of Physics 37. http://www.sbfisica.org.br/bjp/files/v37_1292.pdf.
- A. Sloane (1978). "The axially symmetric stationary vacuum field equations in Einstein's theory of general relativity". Aust. J. Phys. (CSIRO) 31: p. 429. doi:10.1071/PH780427. Bibcode: 1978AuJPh..31..427S.
Selected books
- J. L. Friedman; N. Stergioulas (2013). Rotating Relativistic Stars. Cambridge Monographs on Mathematical Physics. Cambridge University Press. p. 151. ISBN 978-052-187-254-6. https://books.google.com/?id=pv8djXCCwToC&pg=PA151&dq=Weyl%E2%88%92Lewis%E2%88%92Papapetrou+coordinates#v=onepage&q=Weyl%E2%88%92Lewis%E2%88%92Papapetrou%20coordinates&f=false.
- A. Macías; J. L. Cervantes-Cota; C. Lämmerzahl (2001). Exact Solutions and Scalar Fields in Gravity: Recent Developments. Springer. p. 39. ISBN 030-646-618-X. https://books.google.com/?id=imA3YuKdFYoC&pg=PA39&dq=Weyl%E2%88%92Lewis%E2%88%92Papapetrou+coordinates#v=onepage&q=Weyl%E2%88%92Lewis%E2%88%92Papapetrou%20coordinates&f=false.
- A. Das; A. DeBenedictis (2012). The General Theory of Relativity: A Mathematical Exposition. Springer. p. 317. ISBN 978-146-143-658-4. https://books.google.com/?id=wJR7SmPedWcC&pg=PA678&dq=Weyl%E2%88%92Lewis%E2%88%92Papapetrou+coordinates#v=onepage&q=Weyl%E2%88%92Lewis%E2%88%92Papapetrou%20coordinates&f=false.
- G. S. Hall; J. R. Pulham (1996). General relativity: proceedings of the forty sixth Scottish Universities summer school in physics, Aberdeen, July 1995. SUSSP proceedings. 46. Scottish Universities Summer School in Physics. pp. 65, 73, 78. ISBN 075-030-395-6. https://books.google.com/?id=IfhAAQAAIAAJ&q=Weyl%E2%88%92Lewis%E2%88%92Papapetrou+coordinates&dq=Weyl%E2%88%92Lewis%E2%88%92Papapetrou+coordinates.