Isotoxal figure

From HandWiki
Revision as of 05:24, 27 June 2023 by S.Timg (talk | contribs) (simplify)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Polytope or tiling with one type of edge


In geometry, a polytope (for example, a polygon or a polyhedron) or a tiling is isotoxal (from el τόξον  'arc') or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given two edges, there is a translation, rotation, and/or reflection that will move one edge to the other while leaving the region occupied by the object unchanged.

Isotoxal polygons

An isotoxal polygon is an even-sided i.e. equilateral polygon, but not all equilateral polygons are isotoxal. The duals of isotoxal polygons are isogonal polygons. Isotoxal [math]\displaystyle{ 4n }[/math]-gons are centrally symmetric, so are also zonogons.

In general, an isotoxal [math]\displaystyle{ 2n }[/math]-gon has [math]\displaystyle{ \mathrm{D}_n, (^*nn) }[/math] dihedral symmetry. For example, a rhombus is an isotoxal "[math]\displaystyle{ 2 }[/math]×[math]\displaystyle{ 2 }[/math]-gon" (quadrilateral) with [math]\displaystyle{ \mathrm{D}_2, (^*22) }[/math] symmetry. All regular polygons (equilateral triangle, square, etc.) are isotoxal, having double the minimum symmetry order: a regular [math]\displaystyle{ n }[/math]-gon has [math]\displaystyle{ \mathrm{D}_n, (^*nn) }[/math] dihedral symmetry.

An isotoxal [math]\displaystyle{ \bold{2}n }[/math]-gon with outer internal angle [math]\displaystyle{ \alpha }[/math] can be labeled as [math]\displaystyle{ \{n_\alpha\}. }[/math] The inner internal angle [math]\displaystyle{ (\beta) }[/math] may be greater or less than [math]\displaystyle{ 180 }[/math] degrees, making convex or concave polygons.

Star polygons can also be isotoxal, labeled as [math]\displaystyle{ \{(n/q)_\alpha\}, }[/math] with [math]\displaystyle{ q \le n - 1 }[/math] and with the greatest common divisor [math]\displaystyle{ \gcd(n,q) = 1, }[/math] where [math]\displaystyle{ q }[/math] is the turning number or density.[1] Concave inner vertices can be defined for [math]\displaystyle{ q \lt n/2. }[/math] If [math]\displaystyle{ D = \gcd(n,q) \ge 2, }[/math] then [math]\displaystyle{ \{(n/q)_\alpha\} = \{(Dm/Dp)_\alpha\} }[/math] is "reduced" to a compound [math]\displaystyle{ D \{(m/p)_\alpha\} }[/math] of [math]\displaystyle{ D }[/math] rotated copies of [math]\displaystyle{ \{(m/p)_\alpha\}. }[/math]

Caution: The vertices of [math]\displaystyle{ \{(n/q)_\alpha\} }[/math] are not always placed like those of [math]\displaystyle{ \{n_\alpha\}, }[/math] whereas the vertices of the regular [math]\displaystyle{ \{n/q\} }[/math] are placed like those of the regular [math]\displaystyle{ \{n\}. }[/math]

A set of "uniform tilings", actually isogonal tilings using isotoxal polygons as less symmetric faces than regular ones can be defined.

Examples of irregular isotoxal polygons and compounds
Number of sides [math]\displaystyle{ (2n) }[/math] 2×2 2×3 2×4 2×5 2×6 2×7 2×8
[math]\displaystyle{ \{n_\alpha\} }[/math]
Convex: [math]\displaystyle{ \beta \lt 180^\circ. }[/math]
Concave: [math]\displaystyle{ \beta \gt 180^\circ. }[/math]
Isotoxal rhombus.svg
[math]\displaystyle{ \{2_\alpha\} }[/math]
Isotoxal hexagon.svgConcave isotoxal hexagon.svg
[math]\displaystyle{ \{3_\alpha\} }[/math]
Isotoxal octagon.svgConcave isotoxal octagon.svg
[math]\displaystyle{ \{4_\alpha\} }[/math]
Isotoxal decagon.svgConcave isotoxal decagon.svg
[math]\displaystyle{ \{5_\alpha\} }[/math]
Isotoxal dodecagon.svgIsotoxal hexagram.svg
[math]\displaystyle{ \{6_\alpha\} }[/math]
Isotoxal tetradecagon.svgConcave isotoxal tetradecagon.svg
[math]\displaystyle{ \{7_\alpha\} }[/math]
Isotoxal hexadecagon.svgConcave isotoxal hexadecagon.svg
[math]\displaystyle{ \{8_\alpha\} }[/math]
2-turn
[math]\displaystyle{ \{(n/2)_\alpha\} }[/math]
-- Intersecting isotoxal hexagon.svg
[math]\displaystyle{ \{(3/2)_\alpha\} }[/math]
Isotoxal rhombus compound2.svg
[math]\displaystyle{ 2\{2_\alpha\} }[/math]
Intersecting isotoxal decagon2.svgIntersecting isotoxal decagon2b.svg
[math]\displaystyle{ \{(5/2)_\alpha\} }[/math]
Isotoxal hexagon compound2.svgConcave isotoxal hexagon compound2.svg
[math]\displaystyle{ 2\{3_\alpha\} }[/math]
Intersecting isotoxal tetradecagon.svgIsotoxal heptagram.svg
[math]\displaystyle{ \{(7/2)_\alpha\} }[/math]
Isotoxal octagon compound2.svgConcave isotoxal octagon compound2.svg
[math]\displaystyle{ 2\{4_\alpha\} }[/math]
3-turn
[math]\displaystyle{ \{(n/3)_\alpha\} }[/math]
-- -- Intersecting isotoxal octagon.svg
[math]\displaystyle{ \{(4/3)_\alpha\} }[/math]
Isotoxal decagram.svg
[math]\displaystyle{ \{(5/3)_\alpha\} }[/math]
Isotoxal rhombus compound3.svg
[math]\displaystyle{ 3\{2_\alpha\} }[/math]
Intersecting isotoxal tetradecagon3.svgIntersecting isotoxal tetradecagon3b.svg
[math]\displaystyle{ \{(7/3)_\alpha\} }[/math]
Intersecting isotoxal hexadecagon3.svgConcave intersecting isotoxal hexadecagon3.svg
[math]\displaystyle{ \{(8/3)_\alpha\} }[/math]
4-turn
[math]\displaystyle{ \{(n/4)_\alpha\} }[/math]
-- -- -- Intersecting isotoxal decagon.svg
[math]\displaystyle{ \{(5/4)_\alpha\} }[/math]
Intersecting isotoxal hexagon compound2.svg
[math]\displaystyle{ 2\{(3/2)_\alpha\} }[/math]
Intersecting isotoxal tetradecagon4.svg
[math]\displaystyle{ \{(7/4)_\alpha\} }[/math]
Isotoxal rhombus compound4.svg
[math]\displaystyle{ 4\{2_\alpha\} }[/math]
5-turn
[math]\displaystyle{ \{(n/5)_\alpha\} }[/math]
-- -- -- -- Intersecting isotoxal dodecagon.svg
[math]\displaystyle{ \{(6/5)_\alpha\} }[/math]
Intersecting isotoxal tetradecagon5.svg
[math]\displaystyle{ \{(7/5)_\alpha\} }[/math]
Intersecting isotoxal hexadecagon5.svg
[math]\displaystyle{ \{(8/5)_\alpha\} }[/math]
6-turn
[math]\displaystyle{ \{(n/6)_\alpha\} }[/math]
-- -- -- -- -- Intersecting isotoxal tetradecagon6.svg
[math]\displaystyle{ \{(7/6)_\alpha\} }[/math]
Intersecting isotoxal octagon compound2.svg
[math]\displaystyle{ 2\{(4/3)_\alpha\} }[/math]
7-turn
[math]\displaystyle{ \{(n/7)_\alpha\} }[/math]
-- -- -- -- -- -- Intersecting isotoxal hexadecagon7.svg
[math]\displaystyle{ \{(8/7)_\alpha\} }[/math]

Isotoxal polyhedra and tilings

Main page: List of isotoxal polyhedra and tilings

Regular polyhedra are isohedral (face-transitive), isogonal (vertex-transitive), and isotoxal (edge-transitive).

Quasiregular polyhedra, like the cuboctahedron and the icosidodecahedron, are isogonal and isotoxal, but not isohedral. Their duals, including the rhombic dodecahedron and the rhombic triacontahedron, are isohedral and isotoxal, but not isogonal.

Examples
Quasiregular
polyhedron
Quasiregular dual
polyhedron
Quasiregular
star polyhedron
Quasiregular dual
star polyhedron
Quasiregular
tiling
Quasiregular dual
tiling
Uniform polyhedron-43-t1.svg
A cuboctahedron is an isogonal and isotoxal polyhedron
Rhombicdodecahedron.jpg
A rhombic dodecahedron is an isohedral and isotoxal polyhedron
Great icosidodecahedron.png
A great icosidodecahedron is an isogonal and isotoxal star polyhedron
DU54 great rhombic triacontahedron.png
A great rhombic triacontahedron is an isohedral and isotoxal star polyhedron
Tiling Semiregular 3-6-3-6 Trihexagonal.svg
The trihexagonal tiling is an isogonal and isotoxal tiling
Star rhombic lattice.png
The rhombille tiling is an isohedral and isotoxal tiling with p6m (*632) symmetry.

Not every polyhedron or 2-dimensional tessellation constructed from regular polygons is isotoxal. For instance, the truncated icosahedron (the familiar soccerball) is not isotoxal, as it has two edge types: hexagon-hexagon and hexagon-pentagon, and it is not possible for a symmetry of the solid to move a hexagon-hexagon edge onto a hexagon-pentagon edge.

An isotoxal polyhedron has the same dihedral angle for all edges.

The dual of a convex polyhedron is also a convex polyhedron.[2]

The dual of a non-convex polyhedron is also a non-convex polyhedron.[2] (By contraposition.)

The dual of an isotoxal polyhedron is also an isotoxal polyhedron. (See the Dual polyhedron article.)

There are nine convex isotoxal polyhedra: the five (regular) Platonic solids, the two (quasiregular) common cores of dual Platonic solids, and their two duals.

There are fourteen non-convex isotoxal polyhedra: the four (regular) Kepler–Poinsot polyhedra, the two (quasiregular) common cores of dual Kepler–Poinsot polyhedra, and their two duals, plus the three quasiregular ditrigonal (3 | p q) star polyhedra, and their three duals.

There are at least five isotoxal polyhedral compounds: the five regular polyhedral compounds; their five duals are also the five regular polyhedral compounds (or one chiral twin).

There are at least five isotoxal polygonal tilings of the Euclidean plane, and infinitely many isotoxal polygonal tilings of the hyperbolic plane, including the Wythoff constructions from the regular hyperbolic tilings {p,q}, and non-right (p q r) groups.

See also

References

  1. Tilings and Patterns, Branko Gruenbaum, G.C. Shephard, 1987. 2.5 Tilings using star polygons, pp. 82-85.
  2. 2.0 2.1 "duality". http://maths.ac-noumea.nc/polyhedr/dual_.htm.